
Towards Refactoring of Rule-Based, In-Place Model
Transformation Systems

Gabriele Taentzer,
Thorsten Arendt

Philipps-Universität Marburg
Germany

{taentzer, arendt}
@informatik.uni-

marburg.de

Claudia Ermel
Technische Universität Berlin

Germany
claudia.ermel@tu-

berlin.de

Reiko Heckel
University of Leicester

UK
reiko@mcs.le.ac.uk

ABSTRACT
The more model transformations are applied in various ap-
plication domains, the more questions about their quality
arise. In this paper, we present a first approach towards
improving the quality of endogenous in-place model trans-
formation systems. This kind of model transformations is
typically rule-based and well suited to perform model simu-
lations and optimizations. After discussing suitable quality
aims for this kind of model transformation systems and how
they can be detected by smells, a first selection of refac-
torings is presented showing a variety of potential improve-
ments of model transformation systems. Each refactoring is
presented in a systematic way including an explanation how
the quality is improved, a description of its pre- and post-
conditions, a possible refactoring strategy, and an example.
All discussed refactorings are implemented in Henshin, a
model transformation engine based on graph transformation
concepts, using Henshin in combination with the Eclipse
plug-in EMF Refactor, a refactoring plug-in for defining
and applying refactorings of EMF models.

1. INTRODUCTION
Model transformations have been applied to solve various
tasks in model-driven engineering (MDE) such as model
refactoring and optimizations, translation into other mod-
eling languages, simulation and analysis, model migration
and code generation [17].

As model-driven technologies are becoming more mature,
it is worthwhile to make explicit expert knowledge on how
to create and maintain model transformation systems. In
this paper we address the refactoring of model transforma-
tions. Originally, refactoring means to improve a program’s
structure without changing its behavior [11]. Meanwhile,
this technique has also been used to improve other kinds of
software artifacts, such as models.

In a previous paper [8], we considered how changes in do-
main models can imply changes in rule-based model trans-
formations. In this paper, we generalize these ideas by pro-
viding a first collection of refactorings for in-place model
transformation systems, motivated by certain quality as-
pects. While model translations are typically out-place, i.e.,
constructing new result models, endogenous model trans-
formations (sticking to one language) may also be in-place,
i.e., modifying the input model directly [6]. Model simula-

tion and refactoring as well as other kinds of model modi-
fications such as further model optimizations and advanced
editing operations are typically realized by in-place trans-
formations. Note that we consider refactorings of in-place
model transformations in this paper, since our refactorings
do not refer to either source or target model elements only.
Refactorings of out-place model-to-model transformations
are presented in detail in [18]. Nevertheless, we could also
apply our techniques and tool to out-place (model-to-model)
transformations, which can be emulated by considering an
integrated domain model constructed from the source and
target domain, and defining a rule set where only target
domain model elements are generated [10].

Since specifications of model transformations are software
models, we adapt well-known quality assurance techniques
for models [4], based on metrics and smells to determine
quality aspects. Refactorings are adapted to domain- and
project-specific needs, including the specification of new ones.
Such a project-specific quality assurance process is applied
to models until their quality is sufficiently improved. Adapt-
ing this approach to model transformation systems, we iden-
tify quality aspects for model transformation systems and
introduce suitable smells (potential indicators of low qual-
ity) and refactorings that make existing knowledge explicit
about how to write model transformation systems.

Our selection of refactorings is guided by mainly two as-
pects: First of all, we concentrate on what we consider
the core concepts of rule-based, in-place transformation sys-
tems. Considered concepts are meta-models with their usual
object-oriented features, and rules with left- and right-hand
sides as well as positive and negative application condi-
tions. Furthermore, refactorings have been selected accord-
ing to certain quality aspects. We concentrate on concise-
ness, comprehensibility and changeability of model transfor-
mation systems. Quality improvements are indicated by a
variety of smells being based on metrics and patterns.

The main contribution of this paper is a first collection of
useful refactorings for rule-based, in-place model transfor-
mation systems, described in a systematic way. To inte-
grate these refactorings into a systematic quality assurance
process, we discuss quality aspects for model transformation
systems and define a first collection of smells based on met-
rics and patterns. Each refactoring description is presented

by means of a short description, an explanation in which
ways the quality is improved (affected smells), a descrip-
tion of its pre- and post-conditions, a possible refactoring
strategy, and an example. Furthermore, we present ideas
on how to implement presented refactorings on the basis of
Henshin [2], a model transformation engine for the Eclipse
Modeling Framework (EMF) [15] based on graph transfor-
mation concepts.

Structure of the paper : In Section 2, the core concepts of
rule-based, in-place model transformation systems are dis-
cussed. Valuable quality aims for this kind of model trans-
formation systems and smells affecting these quality aspects
are discussed in Section 3. Section 4 presents our refactoring
collection. In Section 5 we present ideas for the implementa-
tion of Henshin refactorings using Henshin again. Finally,
we conclude the paper in Section 6.

2. CORE TRANSFORMATION CONCEPTS
The core concepts of rule-based, in-place model transforma-
tion approaches form the basis for our catalogs of smells
and refactorings. Of course, taking further concepts into ac-
count, the corresponding transformation language is widened
and the catalogs shall be extended accordingly. Transfor-
mation languages offering (most of) these core concepts are,
e.g., Henshin [2], ViaTra [16], Groove [12], and ATL (in-
place) [5].

An instance model consists of a set of objects having at-
tributes and references. While attributes are typed over data
types, references are typed over classes. All instance mod-
els have to conform to a domain or type model, also called
meta-model, supporting class inheritance, including abstract
classes (without instances) and containment relations. As
example, consider the domain model for phones in the upper
leftmost screen shot in Figure 1. Due to space limitations,
we do not discuss multiplicities and further constraints here.

Transformation rules specify local changes on instance mod-
els. Usually, a rule r contains two model patterns, called left-
hand side (LHS) specifying the pre-condition and right-hand
side (RHS) formulating the post-condition of the rule.Either
the differences between LHS and RHS show us the modifi-
cations induced by the rule (as in Henshin and ViaTra) or
all modifications are defined in the RHS only (as in ATL).
Alternatively, one pattern may be given being an integra-
tion of both rule sides where elements and references to be
deleted or created are annotated accordingly. In addition,
checks and computations of attribute values can be speci-
fied by expression languages such as JavaScript and OCL.
A rule is applicable to some model if the left-hand side pat-
tern occurs in the model1 or the guard pattern is satisfied,
including the satisfaction of all attribute value checks. In
that case, all specified rule actions are performed2. Rule el-
ements may be typed over abstract classes, however, when
applied, each rule element has to be mapped to some model
element concretely typed. Rule elements specifying object
creation have to be typed concretely already in the rule.
Furthermore, variables for attribute values may be defined

1We restrict to injective matching of the LHS.
2Formally, we follow the DPO graph transformation ap-
proach for rule application [7].

in the scope of a rule to be used for checks and computa-
tions. When a rule is applied, its variables are bound to
concrete data type values.

The application of a rule may be further restricted by condi-
tions being any kind of logical expression over the existence
of model patterns. In the following, we restrict our con-
siderations to the most simple ones being used by graph
transformation-based approaches, i.e., negative application
conditions (NACs) and positive application conditions (PACs)
which forbid resp. require the existence of certain model pat-
terns in instance models the rule is applied to.

Example. Figure 1 shows an example using Henshin: A
simple domain model for phone systems is shown together
with rule liftFixed for lifting a fixed phone. The only effect
of this rule is to unset attribute isIdle. This rule is applied
to a simple instance model shown underneath using EMF-
Compare [9]. Note that the transformed instance model is
shown on the left, while the original one is on the right.

Figure 1: Domain model, rule, and a transformation
step in Henshin

3. QUALITY ASPECTS AND SMELLS FOR
MODEL TRANSFORMATION SYSTEMS

In this section, we motivate quality aims for model trans-
formation systems as explained above, and give structured
descriptions of some smells affecting these quality aspects.

3.1 Quality aspects
As for other software artifacts, the correctness of a model
transformation system is defined w.r.t. the transformation
language used and its interpretation in terms of the domain.
While language correctness is considered syntactical, the in-
terpretation forms the model semantics. Refactorings are
supposed to preserve the model semantics.

Conciseness is concerned with the compactness of models
which should present systems on the right abstraction level.
It is open how to measure conciseness effectively. We can
consider the size of transformation models, i.e., the size of
domain models and the numbers of rules and rule elements.
Sticking to a level of abstraction, we can say that the smaller
these numbers are, the more concise is the model. A discus-
sion on model transformation metrics can be found in [1].

A model transformation system is changeable, if it can be
evolved rapidly and continuously. Conciseness and more-
over, low redundancy and low coupling of modules, seem to
be necessary prerequisites for changeability.

A model transformation system is comprehensible if it is
understandable by the intended users. Comprehensibility
is increased if a system is simple, concise, and structured
enough to grasp its design. Moreover, comprehensibility is
also influenced by the quality of the used concrete syntax
(textual or graphical layouts), however, we do not consider
this quality aspect throughout this paper.

3.2 Selected smells
In the following, we present a small set of selected smells for
rule-based, in-place model transformation systems. Smells
report on suspicious system parts which should be inspected
closer. Since we are mainly interested in the conciseness,
comprehensibility, and changeability of model transforma-
tion systems, we investigate size and redundancy issues.
Each smell is described in a structured way including af-
fected quality aspects and refactorings that can eliminate
them (the refactorings are described in detail in Section 4).

Smell “Large Rule”: A rule specifies a model pattern and
replaces it. It should handle a single aspect of the behavior.
A large rule seems to care about too many different concerns.

Detection: This smell can be easily detected by counting
the number of elements in a given rule. This smell depends
very much on the modeling purpose: First, it has to be
decided if objects, relations, pre-conditions, or actions are
counted. Second, the threshold value has to be determined
by experimental investigations.

Affected quality aspects: Large rules do not represent a
good modular design and can contain redundant informa-
tion. Conciseness and comprehensibility might be affected.

Usable refactorings: Extract Pre-condition, Loop Edges to
Boolean Attributes;

Smell “Redundant Attributes and References”: Sev-
eral model element types have equivalent attributes and ref-
erences.

Detection: This smell can be detected by comparing the
number of all attributes and references and the number of
equivalent attributes and references.

Affected quality aspects: Redundant information blows up
the meta-model and potentially also the rule set. It af-
fects the conciseness, comprehensibility, and changeability
of model transformation systems.

Usable refactorings: Pull Up Attribute, Pull Up Reference;

Smell “Redundant Rules”: Several rules with equal pat-
tern structures may differ in model element and attribute
types used only.

Detection: This smell can be detected by comparing the
number of all rule pairs differing in types only.

Affected quality aspects: Redundant information blows up
the meta-model and the rule set. It affects the conciseness,
comprehensibility, and changeability of model transforma-
tion systems.

Usable refactorings: Pull Up Attribute, Pull Up Reference,
Abstract Rule;

Smell “Unused Object Type”: There are object types
that are not used in rules at all. Here, the purpose of the
transformation rule set has to be considered when interpret-
ing this smell (e.g., transformation of the entire model vs.
local transformation).

Detection: This smell can be detected by counting the rules
using a specific object type.

Affected quality aspects: Unused object types may affect
the correctness, the completeness and the conciseness of of
transformation systems, dependent on the reason for this
smell. Wrong types may be used, rules may be missing, or
types may not be needed.

Usable refactorings: Eliminate Object Type, Change Ob-
ject Type;

Smell “Delete and Create the Same Object”: There
are rules with objects being first deleted and then created
again with the same attribute values but different contexts,
or the same contexts but different attribute values.

Detection: This smell can be detected by applying some
clone detection to find corresponding patterns in rules.

Affected quality aspects: If objects are deleted and imme-
diately created again keeping their attribute values or their
contexts, rules are not as concise and comprehensible as pos-
sible and can be improved.

Usable refactorings: Move vs. Delete / Create;

Smell “Rules With Common Subrule”: The model
transformation system has several rules containing the same
subrule.

Detection: This smell has to apply some clone detection to
find common subpatterns in rule parts.

Affected quality aspects: If rules have common subrules,
they contain redundant information that may affect quality
aspects such as conciseness, changeability, and comprehen-
sibility.

Usable refactorings: Unify Rules with Same Actions;

Further smells are the well-known object-oriented smells that
may be checked on the meta-model having also effects on the
rule set in general.

4. SELECTED REFACTORINGS
In this section, we present a collection of refactorings for
rule-based, in-place model transformation systems, each de-
scribed in a systematic way. This collection mirrors our
experiences in the application of model transformation to
various purposes. It shows a range of refactorings serving

several quality aims. For example, refactoring ”Pull Up At-
tribute” reduces the amount of redundancy w.r.t. attribute
definitions and potentially also reduces the number of rules,
while ”Extract Pre-condition” reduces the number of rule
elements and thus improves the conciseness. Each refac-
toring is systematically described including an example and
change of identified smells before and after a refactoring, and
an argumentation how semantics is preserved. For model
transformation systems, semantics preservation may refer
to the preservation of model transformation sequences, the
preservation of transformed models, or the preservation of
the amount of information in models.

Note that we do not present a refactoring which is prob-
ably most useful, i.e., the renaming of transformation sys-
tems, rules, types, etc., since it is obvious. Furthermore,
the well-known refactorings of object-oriented models such
as Extract Superclass, Pull Up Attribute, Remove Middle
Man, etc. are basically applicable to domain models to im-
prove them. Changes in domain models can imply changes
in rules [8]. It may happen that rules differing in types only
can be merged by using a superclass as type. Furthermore,
most of the refactorings presented below come with an in-
verse, taking back the original refactoring effect. E.g. the
inverse refactoring of “Pull Up Attribute” is ”Push Down
Attribute” which might be useful to prepare a variation of
attribute definitions in subtypes. The inverse of “Extract
Pre-Condition”, called “Inline Pre-Condition”, may be help-
ful for rule modifications. In this paper, inverse refactorings
are not presented in detail, due to space limitations.

4.1 Refactoring “Merge Rules
Differing in Types Only”

If there are rules which differ in object types only and these
types are subclasses of the same superclass, they can be
merged to one rule. This refactoring is often combined with
a “Pull Up Attribute” refactoring of the domain model.

Input parameter: Names of the rules to be merged.

Example: Phones are refined to fixed and mobile phones.
Both subtypes are attributed by a Boolean attribute isIdle.
Two rules describe the lifting of fixed resp. mobile phones
(see Figure 2 with domain model in Figure 1). A refactoring
“Pull Up Attribute” is performed on the domain model first
to pull attribute isIdle up to class Phone (if class Phone
does not have the isIdle attribute already). Figure 3 shows
the desired domain model and contains a lift rule for phones
in general being abstracted from the two original lift rules.
This is possible, since the rules in Figure 2 differ in types
only and thus, can be merged to the rule in Figure 3.

Figure 2: Before refactoring “Merge Rules Differing
in Types Only”

Figure 3: After refactorings“Pull Up Attribute”and
“Merge Rules Differing in Types Only”

Pre-condition: Indicated rules differ in one object type
only. The set of varying object types found contains all
subclasses of a common superclass.

Strategy:

1. Identify all varying object types being classes with a
common superclass.

2. Construct a new rule by taking one original rule and
replacing identified subclasses by identified superclass.
Rename the modified rule, if necessary.

3. Delete all remaining original rules.

Post-condition: All original rules are replaced by one new
rule using the identified superclass as object type.

Affected smells: Redundant rules

Quality improvement: The number of rules becomes smaller.
The model becomes more concise.

Semantics: The semantics is preserved, since the same
transformation sequences are induced.

4.2 Refactoring “Extract Pre-condition”
This refactoring makes pre-conditions explicit by extracting
preserved parts as positive application conditions.

Input parameter: name of the rule

Example: A new fixed phone is installed. The rule mainly
consists of context, i.e., preserved model elements that are
not transformed. We extract the context that is not needed
for inserting new edges into a positive application condition
to make it more explicit (see Figure 4). Note that this re-
duces the size of the internal rule representation, though this
effect is not visible in our compact notation.

Figure 4: Before and after refactoring “Extract Pre-
Condition”

Pre-condition: none

Strategy:

1. Determine the preserved part of the input rule.

2. Create a new PAC and put those preserved objects into
it that are not needed as targets for newly created ref-
erences.

3. Reduce the rule’s preserved part to the boundary ob-
jects needed for creating new references.

Post-condition: The preserved part of the rule is minimal.

Affected smells: Large Rule, Implicit Pre-condition

Quality improvement: The rule is better comprehensible,
since the pre-condition is expressed more explicitly.

Semantics: The semantics is preserved, since the same
transformation sequences are induced.

4.3 Refactoring “Move Vs. Delete/ Create”
Rule elements being deleted and created in the original rule,
are moved afterwards.

Input parameter: Name of the rule

Example: Taking up the Phone example again, we con-
sider a rule that replaces a fixed phone at one location by
another one at another location, i.e. the fixed phone at the
original location is deleted and a new one is created at the
new location. After the refactoring, the rule specifies the
movement of a fixed phone from one location to another one
(see Figure 5).

Create PDF with GO2PDF for free, if you wish to remove this line, click here to buy Virtual PDF Printer

Figure 5: Refactoring of deletion and creation of a
fixed phone by its movement

Pre-condition: There are model objects being first deleted
and then created again with the same attribute values but
different contexts or same contexts but different attribute
values.

Strategy:

1. Identify objects and references being deleted and cre-
ated afterwards. If these elements are attributed, they
are either identified if the attribute values of created
elements are the same as of deleted ones or if their ad-
jacent references are created in the same way as they
existed before.

2. Preserve identified elements instead of deleting and cre-
ating them.

Post-condition: The rule does not contain any object that
is deleted and created with the same attribute values or the
same context.

Affected smells: Delete and Create the Same Object

Quality improvement: The resulting rule is more concise,
since unnecessary actions are avoided.

Semantics: The semantics is preserved in the sense that
the same models are created, when both rules are appli-
cable; however, the number of transformation effects when
applying the refactored rule is reduced. Note that the origi-
nal rule is not applicabele if the FixedPhone node has more
incident edges than specified by the rule (in the DPO ap-
proach), whereas the refactored rule is applicable also to
FixedPhones with more connections.

4.4 Refactoring “Unify Rules
with Same Actions”

Given a set of rules which share a subset of actions. This
subset is encapsulated in a new rule to be applied first. The
original rules are reduced to their remaining actions each.

Input parameter: Set of rule names

Example: For registering a new phone, it is enough for
mobile phones to set the person who will own it. For fixed
phones, their location has to be registered in addition. These
two cases are specified in rules “registerMobilePhone” and
“registerFixedPhone” in Figure 6. However, the owner reg-
istration is common to both rules. Thus, we can form a
kernel rule for phone registration handling the owner regis-
tration only. While this is all what has to be done for mobile
phone there is a remainder rule for fixed phones. It specifies
the location registration only. We have to make sure that to
fixed phones both rules in Figure 7 are applied.

Figure 6: Before refactoring“Unify Rules with Same
Actions”

Figure 7: After refactoring “Unify Rules with Same
Actions”

Pre-condition: None

Strategy:

1. Identify the set of actions being shared by the set of
input rules.

2. Besides the common actions identify also the common
preserved model part.

3. Create a new rule, called kernel rule containing all iden-
tified actions and the identified preserved part. If com-
mon actions and preserved parts differ only in all sub-
classes of a common super class, this common super
class is used as object type instead.

4. Reduce each of the original rules, called remainder rule,
by the identified set of actions. Reduce the preserved
part if it is common and not needed for the remaining
actions, i.e., if it forms a pre-condition.

5. Make sure that the kernel rule is applied before remain-
der rules. This can be done e.g. by an additional con-
trol structure putting both rules into a sequence.

Post-condition: There is a new rule, the kernel rule, that
contains all common actions and the common preserved part.
All remainder rules do not contain common actions or pre-
conditions anymore. A remainder rule is not applicable
without applying the kernel rule beforehand.

Affected smells: Rules With Common Subrule

Quality improvement: The number of elements in the con-
sidered rule set is reduced, i.e., its conciseness is increased.

Semantics: Each original rule can be constructed by the
composition of the kernel rule and optionally, a remainder
rule. There may be more transformation sequences than
before, since the resulting transformations allow for more
interleaving of rule applications than before.

5. IMPLEMENTATION ISSUES
This section presents the key ideas for implementing model
transformation refactorings using the Eclipse Modeling Frame-
work (EMF) [15] as basis to define domain models, and Hen-
shin to specify rule-based, in-place transformation systems.

Henshin transformation systems can be refactored in a straight-
forward way by defining higher-order transformations on the
Henshin transformation model as Henshin transformation
system again, i.e., refactorings are implemented based on
Henshin rules typed over the Henshin transformation model
being the domain model in that case.

To specify these refactorings as advanced operations to be
integrated in the Henshin editors, we use EMF Refactor [14]
supporting the specification and application of refactorings
to EMF-based models. Since the Henshin model is an EMF
model, EMF Refactor can be used. The specification of
refactoring Extract Pre-condition can be found at [3].

6. CONCLUSION
Refactorings are a well-established means to make develop-
ment experiences explicit such that further developers can
benefit from these experiences. Therefore, we start with a
selection of interesting refactorings for rule-based, in-place
model transformation systems. In this paper, we explicitly
restrict this approach to core features. However, further fea-
tures should be considered, primarily rule parameters and
control structures for rule applications. In addition, it is cer-
tainly worthwhile to define not only metric-based but also
pattern-based model transformation smells. Here, novel

smells that are specific to transformations have to be con-
sidered. Taking also typical smells for out-place model-
to-model transformations into account [18], more complex
nested and structured refactorings have to be considered.
Here, our underlying basis of graph transformation theory
may help to analyse complex refactoring rule systems for
conflicts and dependencies among rules [13]. It is up to
future work, to enable developers to define comprehensive
quality assurance processes for model transformation sys-
tems that can be adapted to specific needs.

7. REFERENCES
[1] van Amstel, M., van den Brand, M., Nguyen, P.H.:

Metrics for Model Transformations. In: Ninth
Belgian-Netherlands Software Evolution Workshop
(BENEVOL 2010), Lille, France (2010)

[2] Arendt, T., Biermann, E., Jurack, S., Krause, C.,
Taentzer, G.: Henshin: Advanced concepts and tools
for in-place EMF model transformations. In: Proc.
MODELS. LNCS, vol. 6394, pp. 121–135 (2010)

[3] Arendt, T.: Specification of Refactoring Extract
Pre-condition for Henshin Transformation Systems,
www.mathematik.uni-marburg.de/~arendt/amt12/

[4] Arendt, T., Kranz, S., Mantz, F., Regnat, N.,
Taentzer, G.: Towards Syntactical Model Quality
Assurance in Industrial Software Development:
Process Definition and Tool Support. In: Software
Engineering 2011. LNI, vol. 183, pp. 63–74. GI (2011)

[5] ATL Transformation Language, eclipse.org/atl/

[6] Czarnecki, K., Helsen, S.: Feature-based survey of
model transformation approaches. IBM Systems
Journal 45(3), 621–646 (2006)

[7] Ehrig, H., Ehrig, K., Prange, U., Taentzer, G.:
Fundamentals of Algebraic Graph Transformation.
EATCS Monographs in Theor. Comp. Science,
Springer (2006)

[8] Ehrig, H., Ermel, C., Ehrig, K.: Refactoring of Model
Transformations. ECEASST 18 (2009)

[9] EMF Compare, eclipse.org/emf/compare/

[10] Ermel, C., Hermann, F., Gall, J., Binanzer, D.: Visual
modeling and analysis of EMF model transformations
based on triple graph grammars. ECEASST (2012),
To Appear

[11] Fowler, M.: Refactoring: Improving the Design of
Existing Code. Addison-Wesley (1999)

[12] Groove, http://sourceforge.net/projects/groove/

[13] Mens, T., Taentzer, G., Runge, O.: Analysing
refactoring dependencies using graph transformation.
Software and System Modeling 6(3), 269–285 (2007)

[14] EMF Refactor, eclipse.org/modeling/emft/refactor/

[15] Steinberg, D., Budinsky, F., Patenostro, M., Merks,
E.: EMF: Eclipse Modeling Framework, 2nd Edition.
Addison Wesley (2008)

[16] ViaTra, eclipse.org/gmt/VIATRA2/

[17] Völter, M., Stahl, T., Bettin, J., Haase, A., Helsen, S.:
Model-Driven Software Development: Technology,
Engineering, Management. John Wiley (2006)

[18] Wimmer, M., Mart́ınez, S., Jouault, F., Cabot, J.: A
catalogue of refactorings for model-to-model
transformations. Journal of Object Technology 11(2),
2:1–40 (Aug 2012)

www.mathematik.uni-marburg.de/~arendt/amt12/
eclipse.org/atl/
eclipse.org/emf/compare/
http://sourceforge.net/projects/groove/
eclipse.org/modeling/emft/refactor/
eclipse.org/gmt/VIATRA2/

	Introduction
	Core transformation concepts
	Quality aspects and smells for model transformation systems
	Quality aspects
	Selected smells

	Selected refactorings
	Refactoring ``Merge Rules Differing in Types Only''
	Refactoring ``Extract Pre-condition''
	Refactoring ``Move Vs. Delete/ Create''
	Refactoring ``Unify Rules with Same Actions''

	Implementation issues
	Conclusion
	References

