
Budapest University of Technology and Economics
Department of Measurement and Information Systems

Developing and Visualizing
Live Model Queries

Zoltán Ujhelyi, Tamás Szabó
István Ráth, Dániel Varró

Ábel Hegedüs (demonstrator)

What is a Model Query?

 ModelQuery(A,B)
Cond(A,B)

o Retrieve tuples of
model elements A,B

o Satisfying the query
condition Cond

o Enumerate
one / all instances

o With A,B as
input or output
parameters

2

AUTOSAR

• Select pairs of SystemSignal and
its signal group which are not in
the same IPDU

IMA

• Find instances of critical functions
not running on different
processors of different chassis

BPMN

• Show sink activities with no
outgoing flow

Live Model Queries

 Live Query Evaluation:
Incremental cache of matches
o Maintain a cheap cache

(only memory overhead)

o Notify about relevant changes

o Enable reactions to complex
 structural events

3

Live Model Queries

 Live Query Evaluation:
Incremental cache of matches
o Maintain a cheap cache

(only memory overhead)

o Notify about relevant changes

o Enable reactions to complex
 structural events

• Find all contexts a MT rule is
applicable for

• Live MT rules: triggered
automatically upon change

Live Model Queries for
Model Transformations

• Find all violations of
a well-formedness constraint

• Immediate re-validation
upon model change

Live Model Queries for
Early Validation

• See talk tomorrow at 11:30

Live Model Queries for
Traceability Management

4

Example: Validation of BPMN Models

 BPMN models

o Describing business processes

o Models control and dataflow

• Flowchart-like notation

5

Example: Validation of BPMN Models

 Well-formedness validation during editing

o Sink Activity: activity without outgoing edge

6

EMF-IncQuery Framework

EMF-IncQuery: Architecture Overview
Application

Framework

API

RETE Core INCQUERY Core

Application code

Query

specification

Generated pattern

matcher

Generative tooling

Interpreted

pattern matcher

Validation

Engine

Derived feature

support

INCQUERY

Base

Efficient

maintenance of

derived attributes

and references

Typesafe query

wrappers (DTOs)

for easy

integration

High performance

backward getters

and transitive

closure

Scalable evaluation for

complex queries

(over 2 000 000

EObjects)

On-the-fly validation

and problem marker

management

• Easy-to-use API

for query

management

• Support for

programmed and

dynamic queries

• Fully dynamic

parameterization

• Graph pattern-based

query language

• Xtext2-based tooling

• Execution, testing and

debugging for queries

Simple Graph Pattern in EMF-IncQuery

pattern sequenceFlowEdge
 (Flow:SequenceEdge,
 Src:Activity, Dst:Activity)= {
 SequenceEdge.source(Flow, Src);
 SequenceEdge.target(Flow, Dst);
}

9

Src :
Activity

Dst:
Activity

Flow:
Sequence

Edge

target source

And Some More Complex Examples…

pattern hasOutEdge(A: Activity) {

 find sequenceFlowEdge(_Fr, A, _Other);

 } or {

 find messageFlowEdge(_Fr, A, _Other);

}

pattern sinkActivityNames(Name) {

 Activity(A);

 Activity.name(A, Name);

 neg find hasOutEdge(A);

}

10

Pattern composition
(for reuse)

Negative composition
(negation, quantification)

EMF-INCQUERY Development Tools

EMF Instance Model

Query Explorer

Pattern Editor

Query results
recalculated
on-the-fly

• Works with most
EMF editors
out-of-the-box

• Reveals matches
as selection

Visualization of Live Model Queries
in EMF-IncQuery

Requirements for Query Visualization

Genericity

• Multiple Model Sources

• Model Editors

• Current Selection

Incrementality

• Query Changes

• Model Changes

Traceability

• Query Definitions

• Input Model

Presentation

• Filtering

• Grouping

13

Proposed Architecture of Query Visualizer

14

Query
Engine

Query
Repository

Other Model
Sources

Edited
Query

Edited
Query

Model
Editors

Filtered group of

queries

Query Result Viewer

Query
Definition

Query Results

Connectors

Query Result
Deltas

Model and
Notifications

Model Source Connectors for Genericity

 Different model sources
o Graphical (e.g BPMN, UML)

o Textual (e.g. OCL)

o Different implementation
technologies

Model source connectors

 Operations
o Open model

o Send notification upon model
change

o Get current selection

o Close editor

15

Query
Engine

Other
Model

Sources

Edited
Query

Edited
Query

Model
Editors

Connectors

Model and
Notifications

Genericity

• Multiple Model Sources

• Model Editors

• Current Selection

Incrementality

• Query Changes

• Model Changes

Traceability

• Query Definitions

• Input Model

Presentation

• Filtering

• Grouping

Query-based Indexing for Incrementality
 Update query results

incrementally upon
o Model updates

• E.g. using the built-in editor
• Engine: handles this case

internally

o Query updates
• E.g. using the query editor
• Engine: rebuilds internal model

indexes

• Contains model elements accessed
by the query

• Populated by an exhaustive model
traversal (can be slow!)

• Goal: Avoid unnecessary re-
traversal

Query-based indexing

• “Wildcard mode”:
index every model element

• Higher memory consumption

Strategy 1:
Generic model indexer

• Initialize several patterns together

Strategy 2:
Group initialization

16

Genericity

• Multiple Model Sources

• Model Editors

• Current Selection

Incrementality

• Query Changes

• Model Changes

Traceability

• Query Definitions

• Input Model

Presentation

• Filtering

• Grouping

Traceability and Navigation

 Maintaining source models
and queries

 Support for navigating
to/highlighting
o Corresponding query

definitions
• Highlighting functionality in the

query editor

o Referenced model element(s)
• Editor-dependent

implementation

• Model source connector
handles functionality

17

Genericity

• Multiple Model Sources

• Model Editors

• Current Selection

Incrementality

• Query Changes

• Model Changes

Traceability

• Query Definitions

• Input Model

Presentation

• Filtering

• Grouping

Query
Engine

Query
Repository

Other
Model

Sources

Edited
Query

Edited
Query

Model
Editors

Query Result Viewer

Connectors

Query
Editor

EMF Instance Model

Query Explorer

Pattern Editor

Traceability in Query Visualizer

Grouping and Filtering for Presentation

 Define query groups
(„related” queries)
o Static groups

• E.g. Namespaces

o Dynamic groups
• E.g. Dependency based

 Filtering
o Filter visible queries

• Uses hints from developer

• Manual overriding

o Filter query results
• By binding query parameters

19

Genericity

• Multiple Model Sources

• Model Editors

• Current Selection

Incrementality

• Query Changes

• Model Changes

Traceability

• Query Definitions

• Input Model

Presentation

• Filtering

• Grouping

Query Result Viewer

Query
Definitions

Query
Results

Query Result
Deltas

Result Viewer

20

Szöveg
Different model

sources
Loaded
Queries

Query Results

Filtering Visible Queries

21

Elements in Query
Registry

Queries Loaded

Query Result Filtering

22

Conclusions and Future Work

23

Query
Engine

Query
Repository

Other Model
Sources

Edited
Query

Edited
Query

Model
Editors

Filtered group of

queries

Query Result Viewer

Query
Definition

Query Results

Connectors

Query Result
Deltas

Model and
Notifications

R1. Genericity
R3. Traceability

R3. Traceability
R4. Presentation

R2. Incrementality

R4. Presentation
Future Plans
• Analysis-based grouping
• Graph-based result visualization

