
Early Experiences on Model
Transformation Testing

Alessandro Tiso - Gianna Reggio – Maurizio Leotta

DIBRIS

Università di Genova, Italy

Contents

• Considered problems

• Case study

• Model transformation testing: two approaches
– Target execution analysis

– Checking target static properties

• Test suite
• How to build models used for testing model transformation

• Regression Tests

• Conclusion and future work

Context

• The Model Transformation object of our
testing was developed as an application of a
general Method for Developing Model
Transformations (MeDMT)

• It was developed during the last year of a
three-year PhD course as an application of
MeDMT

• We wanted to test this model transformation

Model Transformation Testing issues

• Model Transformation Language heterogenity

– We chose:

• Two model transformation languages

• Building a good set of input models for testing
purposes

– We define a criteria to build input models for this
purpose

Model Transformation Testing issues

• Definition of oracle functions is difficult

– We analyse semantic and sinctactic properties of
the transformation target

• Support tools and their integration

– We chose a technology environment

Case Study

• A Model Transformation that:

– Input

• UML Design Models built following MARS method

– Output

• complete java desktop application (excluding the GUI)
in the form of a Java project managed by Maven

• AutoMARS is our tool that implement the
model transformation of the case study

Case Study
input Model

• Profiled UML Models
– <<context>>, active classes that represent the entities

external to the application interacting with it;
– <<boundary>>, active classes that represent entities

taking care of the interaction of the system with some
context entities;

– <<executor>>, active classes that represent entities
performing some core system activities;

– <<store>>, passive classes that represent entities
containing persistent data

– Other stereotypes…

• Only a subset of UML with well defined semantics

Case Study
output

• Complete Java desktop application (exluding
the GUI) in the form of a Java project
managed by Maven

• Application is built using:

– Spring as glue framework

– JPA with Hibernate as persistence provider

– OCL expressions are compiled in Java

Case Study
Model Transformation Architecture

One Model-to-Model Transformation written
in ATL (eclipse)

Four Model-To-Model Refinement
Transformations written in ATL (eclipse)

One Model-to-Text Transformation
written in Eclipse Acceleo

Maven project containing code
and configuration

Transformation under test

First Approach
Transformation Target execution analysis

• Only if transformation target is executable

1. Compiling target

2. Insert in the source model test classes test and
operations

• Generate executable test cases in the target

• Execute the test cases in the target

First Approach
Transformation Target execution analysis

• When test are executed
– Execution of test in the target fail

• Bug in the model?
• Bug in the transformation?
• Bug in the model AND Bug in the transformation

– More investigation is needed

– Execution of test in the target succeeds
• The transformation is bug free

– Excluding the case of two errors compensating each other

• We need very simple behaviour of tests
– Qualitatively speaking

• p(model bug) << p(transformation bug)

Target execution analysis
Store example

Target execution analysis
Store example

Store Example
Implementation

public class TestStoreClasses {
 ...
private void testCreateAirplaneBody(){
 AIRPLANE_STORE=Airplane.mkAirplane(2,"test");
}
…
private Boolean testCreateAirplanePostCondition(){
 Boolean cond=true;
 if(!(Airplane.findAirplaneAll()
 .size().equals(Integer.valueOf(1)))){
 cond = false;
 }
 return cond;
}
…
 public void testCreateAirplane() {
 testCreateAirplaneBody();
 if(!testCreateAirplanePostCondition()) {
 throw new PostConditionException("operation:
testCreateAirplane “);
 }
}

@Test
@Transactional
@Rollback(true)
public void testTestCreateAirplane(){
…
classRef = new TestStoreClasses();
 try{
 classRef.testCreateAirplane();
 }catch(Exception e){
exceptionOccurred = true;
…
}

Compiled
OCL

Store Example
Implementation

public class TestStoreClasses {
 ...
private void testCreateAirplaneBody(){
 AIRPLANE_STORE=Airplane.mkAirplane(2,"test");
}
…
private Boolean testCreateAirplanePostCondition(){
 Boolean cond=true;
 if(!(Airplane.findAirplaneAll()
 .size().equals(Integer.valueOf(1)))){
 cond = false;
 }
 return cond;
}
…
 public void testCreateAirplane() {
 testCreateAirplaneBody();
 if(!testCreateAirplanePostCondition()) {
 throw new PostConditionException("operation:
testCreateAirplane “);
 }
}

@Test
@Transactional
@Rollback(true)
public void testTestCreateAirplane(){
…
classRef = new TestStoreClasses();
 try{
 classRef.testCreateAirplane();
 }catch(Exception e){
exceptionOccurred = true;
…
}

Compiled
OCL

Store Example
Implementation

public class TestStoreClasses {
 ...
private void testCreateAirplaneBody(){
 AIRPLANE_STORE=Airplane.mkAirplane(2,"test");
}
…
private Boolean testCreateAirplanePostCondition(){
 Boolean cond=true;
 if(!(Airplane.findAirplaneAll()
 .size().equals(Integer.valueOf(1)))){
 cond = false;
 }
 return cond;
}
…
 public void testCreateAirplane() {
 testCreateAirplaneBody();
 if(!testCreateAirplanePostCondition()) {
 throw new PostConditionException("operation:
testCreateAirplane “);
 }
}

@Test
@Transactional
@Rollback(true)
public void testTestCreateAirplane(){
…
classRef = new TestStoreClasses();
 try{
 classRef.testCreateAirplane();
 }catch(Exception e){
exceptionOccurred = true;
…
}

Compiled
OCL

Store Example
Implementation

public class TestStoreClasses {
 ...
private void testCreateAirplaneBody(){
 AIRPLANE_STORE=Airplane.mkAirplane(2,"test");
}
…
private Boolean testCreateAirplanePostCondition(){
 Boolean cond=true;
 if(!(Airplane.findAirplaneAll()
 .size().equals(Integer.valueOf(1)))){
 cond = false;
 }
 return cond;
}
…
 public void testCreateAirplane() {
 testCreateAirplaneBody();
 if(!testCreateAirplanePostCondition()) {
 throw new PostConditionException("operation:
testCreateAirplane “);
 }
}

@Test
@Transactional
@Rollback(true)
public void testTestCreateAirplane(){
…
classRef = new TestStoreClasses();
 try{
 classRef.testCreateAirplane();
 }catch(Exception e){
exceptionOccurred = true;
…
}

Compiled
OCL

Target execution analysis
executor example

Fragment of the state machine defining the behaviour of Watch class

Target execution analysis
executor example

Fragment of the state machine defining the behaviour of Watch class

Executor Example
Implementation

 @Test
 public void testTestSettingState(){
 …
 classRef = new TestWatch();
 try{
 classRef.testSettingState();
 }catch(Exception e){
 exceptionOccurred = true;
 …
 }
}

public class TestWatch extends AbstractActiveClassTest
{
 private void testSettingStateBody(){
 a = Watch.mkWatch();
 a.setting();
 }

…
 private Boolean testSettingStatePostCondition(){
 Boolean cond=true;
 if(!(this. a.oclIsInState ("WatchSM::Settings", this))){
 cond = false;
 }
 return cond;
 }
…
public void testSettingState() {
 testSettingStateBody();
 if(!testSettingStatePostCondition()) {
 throw new PostConditionException("operation: testSettingState ");
 }
}

Second approach
Checking static properties

• Assess the presence of specific elements in
the target

• Analysing the input model

– Compute text snippets that must be in the
transformation target

• Analysing the target

– Assert the presence of text snippets in the target

Checking static properties
in the case study

Input Model MT Maven Java Project

Configuration
parameters

Static Analysis Tool
execution

Report

Test Suite
How to build test models

• Test models manually written

• Small input models containing mainly only one
kind of input elements

– One input model for each stereotype

– Each pattern used in the clauses defining the
model transformation design should be
instantiated

Input Models
used for testing

• Four test models
– Data Type

• containing mainly data types

– Executor
• containing mainly executors

– Boundary
• containing mainly boundaries

– Store
• containing mainly stores

• Each one containing:
– Test Classes and test operations

• We have also a model containing all the stereotypes used in
the other models

Test Models used
Store

Regression Test

• Compares the output of a specific run of the
model transformation with the expected one
– White spaces and line breaks are not considered

• Each model of the test suite activate only a
subset of the modules composing the model
transformation

• Is useful only when
– New features are added

– The model transformation is refactorized

Conclusion

• Usefulness

1. Analysing the target execution HIGH

2. Regression test

3. Checking static properties LOW

• Using hand made small input models containing
mainly one kind of stereotypes has simplified the
bugs finding activity

• Simple tools and techniques are very important
developing ″real″ model transformations

Future Work

• Generalize MeDMT giving guidelines for
building:

– Input test models

– Test cases on the result of the trasformation
starting from the design of the transformation
itself

• Execute some experiments to asses the
effectiveness of our approaches

Thank you for your attention

