
Towards Tracking “Guilty”
Transformation Rules

AMT Workshop @ MoDELS’12, Innsbruck, October 2nd 2012

Loli Burgueño, Manuel Wimmer, and Antonio Vallecillo
{loli, mw, av}@lcc.uma.es

This work has been partly funded by the Austrian Science Fund (FWF) under grant J 3159-N23.

Motivation

Although specified at a very high level of abstraction,
model transformations are becoming very complex
as the complexity of the relations they are able to describe
grows…

Testing of Model Transformations with TractsTool

Motivation for (Con)Tracts

In general it is difficult and expensive (time and
computational complexity-wise) to validate in full the
correctness of a model transformation (MT).

Tracts offer a cost-effective MT testing approach, which
is a particularization of the concept of MT Contract.

Testing of Model Transformations with TractsTool

T ?

Contracts as Specifications

Testing of Model Transformations with TractsTool

MT
Implementation

MT
Specification

describesfulfills

Specification: A document that specifies, in a complete, precise, verifiable manner,
the requirements, design, behavior, or other characteristics of a system or
component… [IEEE Standard Computer Dictionary]

Implementation:
(1) The process of translating a design into hardware components, software
components, or both.
(2) The result of the process in (1) [IEEE Standard Computer Dictionary]

What?

How?

vs.

Tracts,
PaMoMo, …

ATL, ETL, QVT-R,
QVT-O, RubyTL,

TGG, GT, …

What’s in a Tract?

A Tract defines
a set of constraints on the source and target
metamodels,
a set of source-target constraints, and
a tract test suite (a collection of source models
satisfying the source constraints)

Testing of Model Transformations with TractsTool

Black-box testing of MTs

Different tracts are defined for every transformation
Each one defines either a use case (scenario) or a special
condition or a negative test
They are written in OCL and refer to the SMM, TMM and
the relationship between the two

For each tract
Input test suite models are automatically generated using
ASSL (A Snapshot Sequence Language)
Input models are transformed into output models by the
transformation under test
The results are checked with the USE tool against the
constraints defined for the transformation

Testing of Model Transformations with TractsTool

TractsTool Screenshot

Testing of Model Transformations with TractsTool

Consequences
The specification and implementation of a model
transformation are completely separated

Advantages
Several implementations for one specification possible
Specification language independent from implementation
language
Implementations are independent of specification

Disadvantages
Relationships between contracts and transformation rules
not explicitly given
Artifacts are of different nature and live in different
worlds!
Tracing between contracts and transformation rules not
possible

Testing of Model Transformations with TractsTool

Consequences

Can we answer questions like…?:

Which transformation rule(s) implement(s) which
constraint(s)?

Are all constraints covered by transformation rules?

Are all transformation rules covered by constraints?

Testing of Model Transformations with TractsTool

Consequences

Can we answer questions like…?:

Which transformation rule(s) implement(s) which
constraint(s)?

Are all constraints covered by transformation rules?

Are all transformation rules covered by constraints?

Testing of Model Transformations with TractsTool

Make the relationship between specifications
and implementations explicit!

Matching Constraints and Rules

Heterogeneities
Programming paradigm
Granularity

Testing of Model Transformations with TractsTool

Common denominator
Source and Target
Metamodels (i.e., metamodel
elements they both refer to)

OCL Constraints ATL Rules

Source
Metamodel(s)

Target
Metamodel(s)

OCL
Metamodel

ATL
Metamodel

c2 c2uu u u

Base matching function on used metamodel element overlaps

Matching Constraints and Rules

Testing of Model Transformations with TractsTool

Member
Person

Female
Member

rule Member2Female {
from

s: Families ! Member (s. isFemale ())
to

t: Persons ! Female (
fullName <- s. firstName + ' ' + s.

familyName
)

}

Member . allInstances -> size
=
Person . allInstances -> size

Tract

ATL Rule

Types used
by Tract

Types used
by Rule

Pre-Matching Step: Extract types

Testing of Model Transformations with TractsTool

OCL Constraints
(as text)

ATL rules
(as text)

T2M Parser T2M Parser

OCL Constraints
(as model)

ATL rules
(as model)

Type Extractor Type Extractor

Extracted Types Extracted Types

• Reject OCL
default types

• Select types
from the
MMs

• In/Out
Pattern
Elements

… …

Matching & Post-Matching Step

Testing of Model Transformations with TractsTool

Extracted Types Extracted Types

Match
Function

Overlap Value

MatchingTableMatchingTable
Calculator

CC Table RC Table RCR Table

… …

Find Type Overlaps
(full type
equivalence, …)

Different metrics
provide different
viewpoints

CC: coverage for constraint i by rule j

RC: coverage for rule j by constraint i

RCR: relatedness of constraint i and rule j, without a
specific direction for interpreting the values

Current Metrics

Testing of Model Transformations with TractsTool

Five possible situations

Testing of Model Transformations with TractsTool

How to Interpret the Matching Tables

Testing of Model Transformations with TractsTool

CC

RC

RCR

Next steps
Properties of alignment

Reason about design guidelines based on matching tables

Refinements of alignments
Inheritance between rules, lazy rule calls, etc.

Dynamic approach
Based on traces

Testing of Model Transformations with TractsTool

Thanks!!!

Contact
Loli Burgueño, Manuel Wimmer, and Antonio Vallecillo

{loli, mw, av}@lcc.uma.es

TractsTool
http://atenea.lcc.uma.es/index.php/Main_Page/Resources/Tracts

Tracts2ATL
http://atenea.lcc.uma.es/index.php/Main_Page/Resources/Tracts-ATL

