
Towards Refactoring of
Rule-Based, In-Place

Model Transformation Systems

Claudia Ermel

AMT 2012

Gabriele Taentzer,
Thorsten Arendt

Technische Universität Berlin
Germany

Reiko Heckel

Towards Refactoring of
Rule-Based, In-Place

Model Transformation Systems

Claudia Ermel

AMT 2012

Gabriele Taentzer,
Thorsten Arendt

Technische Universität Berlin
Germany

Reiko Heckel

 2 Towards Refactoring of Rule-Based, In-Place Model Transformation Systems AMT 2012

Selected Refactorings

Quality Aspects of Model Transformation Systems

Motivation

Agenda

Improving the Quality of Model Transformations

Some Remarks on Semantics Preservation

Merge Rules Differing in Types Only
Extract Precondition
Unify Rules with Same Actions

Selected Smells

Implementation: EMF Model Transformation Henshin

Conclusion and Future Work

Implementation: Using the EMF Model Transformation Tool Henshin

 3 Towards Refactoring of Rule-Based, In-Place Model Transformation Systems AMT 2012

Motivation: Model Transformations in MDD

Model Transformations and Refactorings: Central Technologies in MDD

 Challenge: Evolution, maintainability and quality assurance of
 model transformations

 Solution Idea:

 Consider rule-based, in-place model transformation systems
 Use Rule-Based Transformation for Refactoring of Model Trafos

Analysis
model

Design
model

Code

Formal
model

Refactoring
Code

Generation

Validation

System
Design

Refactoring Refactoring

Validation Simulation

 4 Towards Refactoring of Rule-Based, In-Place Model Transformation Systems AMT 2012

A Quality Assurance Process for Models

Aim: Apply the quality assurance process to rule-based model
transformation specifications

 5 Towards Refactoring of Rule-Based, In-Place Model Transformation Systems AMT 2012

Quality Aspects of Model Trafo Systems

Correctness
 Concerning syntax and semantics

Conciseness
 Presentation at the “right“ level of abstraction

Changeability
 Rapid and continuous evolution possible

Comprehensibility
 Understandable by intended users

 6 Towards Refactoring of Rule-Based, In-Place Model Transformation Systems AMT 2012

Selected Smells of Model Trafo Systems (1)

Large Rule
 Detection: number of elements (objects, relations,

 pre-conditions, actions, …)
 Affected quality aspects: conciseness, comprehensibility

Redundant Attributes and References
 Detection: No. of equal attributes and references
 Affected quality aspect: conciseness, comprehensibility,

 changeability

Redundant Rules
 Detection: No. of rule pairs differing in types only
 Affected quality aspect: conciseness, comprehensibility,

 changeability

 7 Towards Refactoring of Rule-Based, In-Place Model Transformation Systems AMT 2012

Selected Smells of Model Trafo Systems (2)

Unused Object Type
 Detection: number of rules using a specific object type
 Affected quality aspect: correctness, conciseness, completeness

Delete and Created the Same Object
 Detection: find corresponding patterns in rules
 Affected quality aspect: conciseness, comprehensibility

Rules with Common Subrules
 Detection: find corresponding subpatterns in rules
 Affected quality aspect: conciseness, changeability,

 comprehensibility

 8 Towards Refactoring of Rule-Based, In-Place Model Transformation Systems AMT 2012

Refactoring of Model Trafo Systems

Refactoring changes a model transformation system such that its
structure is improved while its semantics is preserved.

Selected Refactorings, improving
 typing: pull up attribute, push down attribute, extract

 supertype, remove supertype, extract node type,
 loop-edges-to Boolean-attributes
 rules: extract pre-condition, split rule into set of action rules,

 merge rules differing in types only, move versus
 delete and create, unify rules with same actions
 feature usage: inline pre-condition,

 Boolean-attribute-to-loop-edges,

 9 Towards Refactoring of Rule-Based, In-Place Model Transformation Systems AMT 2012

Refactoring „Merge Rules Differing in Types Only“

After:

Before:

 10 Towards Refactoring of Rule-Based, In-Place Model Transformation Systems AMT 2012

Input parameters: Names of rules to be merged

Pre-condition: Rules differ in one object type only; the set of found
 object types contains all subclasses of a common superclass

Strategy:
 Identify all varying object types with a common superclass
 Construct new rule by taking one existing rule and replacing the

 identified subclass by the identified superclass; rename rule
 Delete all remaining original rules

Post-condition:
 Original rules are replaced by one new rule using superclass type

Quality improvement: conciseness, comprehensibility

Semantics: is preserved

Refactoring „Merge Rules Differing in Types Only“

 11 Towards Refactoring of Rule-Based, In-Place Model Transformation Systems AMT 2012

Refactoring „Extract Pre-condition“

 12 Towards Refactoring of Rule-Based, In-Place Model Transformation Systems AMT 2012

Input parameters: Rule name

Pre-condition: none

Strategy:
 Determine preserved part
 Create new PAC and put preserved part in
 Reduce the rule‘s preserved part

Post-condition:
 Preserved part is minimal

Quality improvement:
 conciseness, comprehensibility

Semantics: is preserved
12

Refactoring „Extract Pre-condition“

 13 Towards Refactoring of Rule-Based, In-Place Model Transformation Systems AMT 2012

Refactoring „Unify Rules with Same Actions“

After:

Before:

 14 Towards Refactoring of Rule-Based, In-Place Model Transformation Systems AMT 2012

Input parameters: Set of rule names

Pre-condition: none

Strategy:
 Identify set of actions being shared by the set of input rules
 Create new rule scheme with common action (kernel rule) and

remaining actions (remainder rules)
 Apply kernel rule before remainder rules

Post-condition:
 new kernel rule (common actions) and remainder rules

Quality improvement:
 conciseness

Semantics: more trafo rule sequences (more interleaving of rules)

Refactoring „ Unify Rules with Same Actions“

 15 Towards Refactoring of Rule-Based, In-Place Model Transformation Systems AMT 2012

Some Remarks on Preservation of Semantics

Refactoring r : MTS1 → MTS2 induces mapping of models (graphs).

Depending on the kind of semantics, e.g.
 generated language L(MTS),
 transformation relation MT(MTS) over input-output models,
 operational semantics LTS(MTS),

preserving them means different things.

For example, r preserves the
 generated language if r(L(MTS1)) = L(MTS2)
 transformation relation if r (MT(MTS1)) = MT(MTS2)
 operational semantics if r is suitable observational equivalence

relating LTS(MTS1) and LTS(MTS2)

 16 Towards Refactoring of Rule-Based, In-Place Model Transformation Systems AMT 2012

Prototypical Implementation

Model transformation language based on graph
transformation concepts for the Eclipse Modeling
Framework

Model transformation
system

Refactored model
transformation system

Henshin
refactoring

Henshin meta-model

 17 Towards Refactoring of Rule-Based, In-Place Model Transformation Systems AMT 2012

Higher Order Transformations in Henshin

Henshin Features
 in-place: models are transformed directly
 rule-based: transformation rules are defined visually
 transformation model in EMF:

 refactorings: higher-order transformation on the Henshin model

 18 Towards Refactoring of Rule-Based, In-Place Model Transformation Systems AMT 2012

Example: Extract Pre-condition

Control Structures on Rules

(here: rule sequence)

Integration of refactorings in Henshin editors by EMF Refactor

 19 Towards Refactoring of Rule-Based, In-Place Model Transformation Systems AMT 2012

Conclusion

New topic: Refactoring of model transformation systems

Modeling experiences are made explicit.

Selection of interesting refactorings as starting point

What next?

Startet joint activity to build up a Wiki with interesting smells and
refactorings (for graph transformations so far)

 20 Towards Refactoring of Rule-Based, In-Place Model Transformation Systems AMT 2012

A glimpse at the graph transformation refactoring wiki
ht

tp
:/

/r
ef

ac
to

rin
gs

4g
ts

.w
ik

ia
.c

om
/

 21 Towards Refactoring of Rule-Based, In-Place Model Transformation Systems AMT 2012

A glimpse at the graph transformation refactoring wiki
ht

tp
:/

/r
ef

ac
to

rin
gs

4g
ts

.w
ik

ia
.c

om
/

 22 Towards Refactoring of Rule-Based, In-Place Model Transformation Systems AMT 2012

Conclusion

New topic: Refactoring of model transformation systems

Modeling experiences are made explicit.

Selection of interesting refactorings as starting point

What next?

Started joint activity to build up a Wiki with interesting smells and
refactorings (for graph transformations so far)

Cover further model transformation features: Join forces with
Wimmer et al. (including also constraints, e.g. OCL)

M. Wimmer, S. Martinez, F. Jouault, J. Cabot: A Catalogue of Refactorings for Model-to-
Model Transformations. Journal of Object Technology, August 2012

	Towards Refactoring of �Rule-Based, In-Place �Model Transformation Systems
	Towards Refactoring of �Rule-Based, In-Place �Model Transformation Systems
	Agenda
	Foliennummer 4
	A Quality Assurance Process for Models
	Quality Aspects of Model Trafo Systems
	Selected Smells of Model Trafo Systems (1)
	Selected Smells of Model Trafo Systems (2)
	Refactoring of Model Trafo Systems
	Refactoring „Merge Rules Differing in Types Only“
	Refactoring „Merge Rules Differing in Types Only“
	Refactoring „Extract Pre-condition“
	Refactoring „Extract Pre-condition“
	Refactoring „Unify Rules with Same Actions“
	Refactoring „ Unify Rules with Same Actions“
	Some Remarks on Preservation of Semantics
	Prototypical Implementation
	Higher Order Transformations in Henshin
	Example: Extract Pre-condition
	Conclusion
	A glimpse at the graph transformation refactoring wiki
	A glimpse at the graph transformation refactoring wiki
	Conclusion
	Background Slides and Outtakes
	Foliennummer 25
	Foliennummer 26
	Foliennummer 27
	Foliennummer 28
	Foliennummer 29
	Foliennummer 30
	Refactoring „Loop Edges to Boolean Attributes“
	Refactoring „ Loop Edges to Boolean Attributes“
	Refactoring „Split Rule into Set of Action Rules“
	Refactoring „ Split Rule into Set of Action Rules“

