Towards Refactoring of
Rule-Based, In-Place
Model Transformation Systems

Gabriele Taentzer, Claudia Ermel Reiko Heckel
Thorsten Arendt

L

X University of

HaRT

w Leicester

Technische Universitat Berlin
Germany

AMT 2012

Towards Refactoring of
Rule-Based, In-Place
Model Transformation Systems

Gabriele Taentzer, Claudia Ermel Reiko Heckel
Thorsten Arendt

Philipps ;‘_:_;f “"ﬁ.*: Universitit l'ﬁ
i &+y 5 Marburg

Technische Universitat Berlin
Germany

& Unwersuy of

,u.iil

AMT 2012

Agenda

B Motivation

Improving the Quality of Model Transformations

B Quality Aspects of Model Transformation Systems

Selected Smells

W Selected Refactorings
Merge Rules Differing in Types Only
Extract Precondition

Unify Rules with Same Actions
B Some Remarks on Semantics Preservation

B Implementation: Using the EMF Model Transformation Tool Henshin

B Conclusion and Future Work

Towards Refactoring of Rule-Based, In-Place Model Transformation Systems AMT 2012 2

Motivation: Model Transformations in MDD

Model Transformations and Refactorings: Central Technologies in MDD

Refactoring Refactoring

Refactoring
q System q G COdi,
: eneration
Analysis Design Design
Code

model ' ' model ' -

\ Validat? u
Validation Simulation

Formal

model

0 Challenge: Evolution, maintainability and quality assurance of
model transformations

0 Solution Idea:

B Consider rule-based, in-place model transformation systems
B Use Rule-Based Transformation for Refactoring of Model Trafos

Towards Refactoring of Rule-Based, In-Place Model Transformation Systems AMT 2012

&

A Quality Assurance Process for Models

Process Specification

/Quality

Aspect —‘

e

4

Question

| 4

Q_‘.“ -------

(M

odel Smells

Metric }

N

Anti-Pattern

| T oA T e W

~

.

%

Refactoring “

Process Application

%

~

—
ﬁ Interpretation
Check
Model l'
Smells —
@ | Apply
\ Refactoring

\I—

Aim: Apply the quality assurance process to rule-based model

transformation specifications

Towards Refactoring of Rule-Based, In-Place Model Transformation Systems

AMT 2012

Quality Aspects of Model Trafo Systems

Correctness
= Concerning syntax and semantics

Conciseness
" Presentation at the “right” level of abstraction

Changeability
= Rapid and continuous evolution possible

Comprehensibility
= Understandable by intended users

Towards Refactoring of Rule-Based, In-Place Model Transformation Systems AMT 2012 5

Selected Smells of Model Trafo Systems (1)

Large Rule

= Detection: number of elements (objects, relations,
pre-conditions, actions, ...)

= Affected quality aspects: conciseness, comprehensibility

Redundant Attributes and References
= Detection: No. of equal attributes and references
= Affected quality aspect: conciseness, comprehensibility,
changeability

Redundant Rules
= Detection: No. of rule pairs differing in types only

= Affected quality aspect: conciseness, comprehensibility,
changeability

Towards Refactoring of Rule-Based, In-Place Model Transformation Systems AMT 2012

Selected Smells of Model Trafo Systems (2)

Unused Object Type
= Detection: number of rules using a specific object type

= Affected quality aspect: correctness, conciseness, completeness

Delete and Created the Same Object
= Detection: find corresponding patterns in rules

= Affected quality aspect: conciseness, comprehensibility

Rules with Common Subrules
= Detection: find corresponding subpatterns in rules

= Affected quality aspect: conciseness, changeability,
comprehensibility

Towards Refactoring of Rule-Based, In-Place Model Transformation Systems AMT 2012 7

&
" s

5

Refactoring of Model Trafo Systems

berli

Refactoring changes a model transformation system such that its
structure is improved while its semantics is preserved.

Selected Refactorings, improving

= typing: pull up attribute, push down attribute, extract
supertype, remove supertype, extract node type,
loop-edges-to Boolean-attributes

" rules: extract pre-condition, split rule into set of action rules,
merge rules differing in types only, move versus
delete and create, unify rules with same actions

= feature usage: inline pre-condition,
Boolean-attribute-to-loop-edges,

Towards Refactoring of Rule-Based, In-Place Model Transformation Systems AMT 2012 8

Refactoring ,,Merge Rules Differing in Types Only“

H Location E Person
0.1 0.1
locatedAt owner r@ Rule liftFixed | [Rute liftMobile
H Phone
Before: «preserves «preserves
"—?‘ "—? :FixedPhone ‘MobilePhone
o isldle=true->false o isldle=true->false
E MobilePhone H FixedPhone
= jsldle : EBoolean = jsldle : EBoolean
H Location H Person = Rule lift
0.1 0.1 «presenes
| S . / ‘Phone
ocatedAt owner = isldle=true->false
H Phone
After: = isldle : EBoolean
Transformed Model 'Original Model
‘%‘% 4 Phone System 44 Phone System |

4 Mobile Phone \\ 4 Mobile Phone

B MobilePhond [B FixedPhone 4 Fixed Phone false % Fixed Phone true
<% Person <% Person
4 Location % Location

Towards Refactoring of Rule-Based, In-Place Model Transformation Systems AMT 2012 9

Refactoring ,Merge Rules Differing in Types Only“

Input parameters: Names of rules to be merged

Pre-condition: Rules differ in one object type only; the set of found
object types contains all subclasses of a common superclass

Strategy:
= |dentify all varying object types with a common superclass

= Construct new rule by taking one existing rule and replacing the
identified subclass by the identified superclass; rename rule

= Delete all remaining original rules

Post-condition:
= QOriginal rules are replaced by one new rule using superclass type

Quality improvement: conciseness, comprehensibility

Semantics: is preserved

Towards Refactoring of Rule-Based, In-Place Model Transformation Systems AMT 2012 10

Refactoring , Extract Pre-condition®

FZ} Rule insertFixedPhoneBefore

= Rule insertFixedPhoneAfter

«Preserven «Preserves «Preserves «requires “«Preserves «reguires
—_— - -
‘PhoneSystem :PhoneSystemn
clients ¢ places clients ¢ places
«ITINE SN E wIE =P 3
PIEAEE phones |«preserves «preserves phones | “PIEsElve
.Person Location Person Location
aCreates
5 aCleaten [
M i
owner owner - wCreates
zCreates» «Creates» wCreates
e FixedPhone T «creates FixedPhone locatedAt
ocate
Towards Refactoring of Rule-Based, In-Place Model Transformation Systems AMT 2012

11

{

Refactoring , Extract Pre-condition’

Input parameters: Rule name
Pre-condition: none

Strategy:
= Determine preserved part

" Create new PAC and put preserved partin

= Reduce the rule‘s preserved part

Post-condition:
" Preserved part is minimal

Quality improvement:
= conciseness, comprehensibility

Semantics: is preserved

Towards Refactoring of Rule-Based, In-Place Model Transformation Systems AMT 2012

12

12

Refactoring ,,Unify Rules with Same Actions”

= Rule registerFixedPhone = Rule registerMobilePhone
wpreserves» «preserves»
‘FixedPhone :‘MobilePhone
Before:
«Ccreates» «Creates» «create»
owner locatedAt owner
«preserve» [}I'G‘SE'I‘JE' 3 «preserve»
Person ‘Location Person
= Rule registerPhone = Rule registerFixedPhoneLocation
«preserves «preserve»
Phone FixedPhone
After: _
uClE"aEe» “Create”
owner locatedAt
«preserve» «preserve»
Person ‘Location

Towards Refactoring of Rule-Based, In-Place Model Transformation Systems AMT 2012 13

Refactoring ,, Unify Rules with Same Actions”

Input parameters: Set of rule names
Pre-condition: none

Strategy:
= |dentify set of actions being shared by the set of input rules

" Create new rule scheme with common action (kernel rule) and
remaining actions (remainder rules)

= Apply kernel rule before remainder rules

Post-condition:
* new kernel rule (common actions) and remainder rules

Quality improvement:
" conciseness

Semantics: more trafo rule sequences (more interleaving of rules)

Towards Refactoring of Rule-Based, In-Place Model Transformation Systems AMT 2012 14

Some Remarks on Preservation of Semantics

Refactoring r : MTS; — MTS, induces mapping of models (graphs).

Depending on the kind of semantics, e.g.
= generated language L(MTYS),

= transformation relation MT(MTS) over input-output models,
= operational semantics LTS(MTS),

preserving them means different things.

For example, r preserves the
= generated language if r(L(MTS,)) = L(MTS,)

= transformation relation if r (MT(MTS,)) = MT(MTS,)

= operational semantics if r is suitable observational equivalence
relating LTS(MTS,) and LTS(MTS,)

Towards Refactoring of Rule-Based, In-Place Model Transformation Systems AMT 2012 15

Prototypical Implementation

L |1 Model transformation language based on graph
Nt transformation concepts for the Eclipse Modeling
Framework

—em

Henshin meta-model

Henshin
refactoring '\

Higher Order Trafo

Model transformation Refactored model
system transformation system

Towards Refactoring of Rule-Based, In-Place Model Transformation Systems AMT 2012 16

Higher Order Transformations in Henshin

Henshin Features
= jn-place: models are transformed directly

= rule-based: transformation rules are defined visually

= transformation model in EMF: e .
mappings | g + Ihs
B Mapping E Graph

origin image 0% T ‘4
E Node -

mappings nodes

S/

source target

D'thg'i”‘l? &inccming formula
Lk 0..*

H Edge Soes 0.1

L) 0.* "B Formula

H NestedCondition
b

= negated : EBoolean (=

iy

conclusion

= refactorings: higher-order transformation on the Henshin model

Towards Refactoring of Rule-Based, In-Place Model Transformation Systems AMT 2012 17

Example: Extract Pre-condition

il Extract Pre-condition .G
AP = v Activat...
Control Structures on Rules "|"" addPresNodes2NewPAC
-
v Activat...
(here: rule sequence) i
= ¥ Activat...
reducePreservedNodes
= reducePreservedNode multi
< <preserve> > formula ef<<preserve>>| |hs |<<preserve>> rhs <<preserve> >
e e - [
:NestedCondition - < :Graph selectedRule:Rule :Graph]
< <forbid:AC2>>
' lusi edges nodes mappings I< <delete>>| < <forbid:ACO> >I edges
conersion <<forbid:AC3>>|_<<forbid:AC3>> <<de|ete>:(dEIEte>> nodes < <forbid:AC0O> >
<<preserve> > :Edge origin | < *:deli.ete> >| image Edge
:Graph < <forbid:AC3> > <<delete>> :Mapping
edges target
g <<delete>>| <<delete>> <demte;7 : soree edges
. source : <<delete>>
nodes E;fc;rb|d.AC2> >, . :Node < <delete>> Node < <forbid:ACO> >
.£dg < <forbid:AC2> > . type < <forbid:AC1>>
<<preserve>> origin P target .
‘Node image <<delete>> |<<delete>> <<preserve>> < <forbid:AC1> >
<<delete>> mappings |Mapping | __ jojctes s EClass < <f0rbid:ACl}}:Edqe

Integration of refactorings in Henshin editors by EMF Refactor

Towards Refactoring of Rule-Based, In-Place Model Transformation Systems AMT 2012

18

Conclusion

New topic: Refactoring of model transformation systems
Modeling experiences are made explicit.
Selection of interesting refactorings as starting point

What next?

Startet joint activity to build up a Wiki with interesting smells and
refactorings (for graph transformations so far)

19

Towards Refactoring of Rule-Based, In-Place Model Transformation Systems AMT 2012

A glimpse at the graph transformation refactoring wiki

- - T e 2 o | - —~ - - . e
W[k]ﬂ | statawiki | Video Games -~ = Entertainment - = Lifestyle - Login ~ | Signup

Refactorings for
Graph

Transformation
SYStemS Wiki Popular pages | Community ~ ¢ RandomPage @b Wiki Activity
Home Thewi EPAddaPage | [0] Talk | [Hlke q0 Search this wiki n

Contents [show]

Welcome to the Refactorings for Graph Transformation Systems Wiki <”Edit

This wiki collects refactoring definitions and specifications for graph transformation systems (GTS). These refactorings can be used to improve some quality aspects of a
specific GTS and serve as a first step towards an overall guality assurance of graph transformation systems.

Describe your topic . Edit

Graph transformations are used in various fields of computer science research. As a consequence, graph transformations systems must be of high quality in order to be
applied properly. One possible technique to improve this quality is refactoring as used in several other research domains. In this wiki, refactorings for graph transformation
systems are collected and systematically specified.

//refactoringsdgts.wikia.com/

Current refactorings +”Edit

» Extract Pre-condition

http

= | oop Edges to Boolean Attributes
= Pull Up Attribute
= Split Rule into Set of Action Rules

Towards Refactoring of Rule-Based, In-Place Model Transformation Systems AMT 2012 20

A glimpse at the graph transformation refactoring wiki

- - B ————————
WIk]u | statawiki | | Video Games - | Entertainment - @ Lifestyle - Login * | Signup
Refactorings for
~ Graph
& Transformation
8 SYStemS WI kl Popular pages | Community = =2 Random Page Q@ wiki Activity
L]
o— Extract Pre-condition O) comments | [Eluke|<0] | Search this wiki (ol
0
Contents [show] G
3 Breses:
[]
H P . Advertisement | Your ad here
Y5 Description <”Edit
3 This refactoring reduces the preserved part of a rule and extracts it as positive application condition. Latest Photos
0o o
c Input parameters *Edit e
': - name of the rule (respectively the rule itself) T
"5 Example < Edit
() A customer takes an item out of the shelf. The rule mainly consists of context which has to be determined. We
m extract this context into a positive application condition which makes the rule considerably smaller (see figure). See all photos >
S PutinCart of Shopping |
Ny LHS g 4 rus 6 |
} 5: —{1:Customer| [3:Shelf " 5 —{1:Customer| [3:Shelf ' Recent Wiki Activity
= o) | |)
od
i - Context 4| PutinCart2 of Shopping
PAC T i rus
Shet]
ttem] | | [2Can] [ttem] | | [2Can]—»{1em]

Towards Refactoring of Rule-Based, In-Place Model Transformation Systems AMT 2012 21

Conclusion

New topic: Refactoring of model transformation systems
Modeling experiences are made expli Q
Selection of intere | g ing point

What next? T B
p @M eresting smells and

Started joint activit

refactorings (for rmatlons so far N
Cover further model transfgr, rces with
Wimmer et al. (mcﬂ%og s e.g. OCL)

M. Wimmer, S. Martinez, F. Jouault, J. Cabot: A Catalogue of Refactorings for Model-to-
Model Transformations. Journal of Object Technology, August 2012

Towards Refactoring of Rule-Based, In-Place Model Transformation Systems AMT 2012 22

	Towards Refactoring of �Rule-Based, In-Place �Model Transformation Systems
	Towards Refactoring of �Rule-Based, In-Place �Model Transformation Systems
	Agenda
	Foliennummer 4
	A Quality Assurance Process for Models
	Quality Aspects of Model Trafo Systems
	Selected Smells of Model Trafo Systems (1)
	Selected Smells of Model Trafo Systems (2)
	Refactoring of Model Trafo Systems
	Refactoring „Merge Rules Differing in Types Only“
	Refactoring „Merge Rules Differing in Types Only“
	Refactoring „Extract Pre-condition“
	Refactoring „Extract Pre-condition“
	Refactoring „Unify Rules with Same Actions“
	Refactoring „ Unify Rules with Same Actions“
	Some Remarks on Preservation of Semantics
	Prototypical Implementation
	Higher Order Transformations in Henshin
	Example: Extract Pre-condition
	Conclusion
	A glimpse at the graph transformation refactoring wiki
	A glimpse at the graph transformation refactoring wiki
	Conclusion
	Background Slides and Outtakes
	Foliennummer 25
	Foliennummer 26
	Foliennummer 27
	Foliennummer 28
	Foliennummer 29
	Foliennummer 30
	Refactoring „Loop Edges to Boolean Attributes“
	Refactoring „ Loop Edges to Boolean Attributes“
	Refactoring „Split Rule into Set of Action Rules“
	Refactoring „ Split Rule into Set of Action Rules“

