
Towards Rigorously Faking

Bidirectional Model Transformations
AMT at MODELS 2014, Valencia

Chris Poskitt

Mike Dodds

Richard Paige

Arend Rensink

• translate models in some source language to

models in some target language

• maintain some sense of consistency between the

models

Unidirectional model transformations

• translate models in some source language to

models in some target language

• maintain some sense of consistency between the

models

Unidirectional model transformations

source target

• in some scenarios, users may modify both

models in concurrent engineering activities

• e.g. database view problem, system integration

• maintaining consistency still important - but

harder

What if users modify both models?

source target

• bidirectional model transformations (bx)

simultaneously describe transformations in both

directions

• compatibility of the directions guaranteed

 => i.e. both directions maintain consistency of models

• BUT: inherently complex and challenging to

implement
 => many model transformation languages do not support

bx

 => others do, with conditions (e.g. bijective, TGGs)

 => QVT-R supports bx, but has an ambiguous

semantics, and QVT-R tools don’t exist

Bidirectional transformations (bx)

if a framework existed in which it were

possible to write the directions of a

transformation separately and then check,

easily, that they were coherent, we might

be able to have the best of both worlds

Stevens, P.: A landscape of bidirectional model transformations. In: GTTSE 2007.

Is there another way?

• Epsilon is a platform of interoperable model

management languages

• no direct support for bx, but:

 => languages for unidirectional transformations (ETL,

EWL, EOL)

 => an inter-model consistency language (EVL)

• bx can be faked in Epsilon by:

 (1) defining pairs of unidirectional transformations

 (2) defining consistency via inter-model

constraints

“Faking” bx in

constraint violation repair transformation update transformation

• two metamodels: class diagram and relational DB

• consistency defined in terms of a

correspondence between the data (attributes) in

the models

Class Diagrams to Relational Databases
(the forbidden example)

class diagram relational DB

• users of the models should be able to create new

classes (or tables) whilst maintaining consistency

• first, we specify a pair of unidirectional

transformations in Epsilon’s update-in-place

language

Example bx “faked” in Epsilon

• then, we specify and monitor inter-model

constraints that express what it means to be

consistent

Example bx “faked” in Epsilon

• then, we specify and monitor inter-model

constraints that express what it means to be

consistent

Example bx “faked” in Epsilon

TableExists fails

ClassExists fails

• fake bx lack the consistency guarantees that true bx

have by construction

• what does this mean?
 => compatibility of the directions might not be maintained

 (e.g., discovered when checking consistency)

 => repair transformations might not actually restore

consistency

• our example is obviously compatible, but we should be

able to check this easily and automatically

We didn’t quite fake everything yet...

• graph transformation (GT) is a computation

abstraction
 => state is represented as a graph

 => computational steps represented as GT rule

applications

Our proposal: exploit graph

transformation verification techniques

to check compatibility

• graph transformation (GT) is a computation

abstraction
 => state is represented as a graph

 => computational steps represented as GT rule

applications

Our proposal: exploit graph

transformation verification techniques

to check compatibility

• graph transformation (GT) is a computation

abstraction
 => state is represented as a graph

 => computational steps represented as GT rule

applications

Our proposal: exploit graph

transformation verification techniques

to check compatibility

• functional correctness of GT rules can

be verified in a weakest precondition style

• pre- and postconditions are expressed in the graph-

based logic of nested conditions, equiv. to FO logic

• roughly, to verify {pre} P {post}:

GT verification techniques

GT rules

P

nested conditions

pre & post

calculate WP(P, post)

does WP(P, post) => pre ?

• translate the unidirectional transformations to GT

rules
 => denoted PS and PT

• translate the inter-model constraints to nested

conditions
 => denoted evl

• automatically discharge the following specifications

using the weakest precondition calculi

How we will rigorously fake bx

{evl} PS; PT {evl} {evl} PT; PS {evl}

Proving consistency of our CD/DB bx

PS PT

evl

Proving consistency of our CD/DB bx

compatible: WP(PS;PT,evl) ≡ WP(PT;PS,evl) ≡ evl

PS PT

evl

Putting it all together

exploit existing theorem provers here

we need to do this bit

• identify a selection of bx case studies

• fake them in Epsilon, manually translate them into

GT rules and nested conditions, and verify

compatibility

• implement the translations for an expressive

subset of the Epsilon languages; implement the

WP calculation

• challenges and open questions:
 => finding counterexamples (e.g. using GROOVE)

 => theoretical / practical limitations (e.g. is FO

expressive enough?)

Our next steps

• bx simultaneously describe transformations in both

directions - compatible by construction

• but they are inherently complex and challenging to

implement

• can be faked in Epsilon as pairs of unidirectional

transformations and inter-model consistency

constraints

• we will leverage GT proof technology to obtain

compatibility guarantees for faked bx

In summary

