Towards Rigorously Faking

Bidirectional Model Transformations
AMT at MODELS 2014, Valencia

Chris Poskitt
Mike Dodds
Richard Paige
Arend Rensink

ETH-zurich university Wm'k_
UNIVERSITY OF TWENTE.

Unidirectional model transformations

translate models in some source language to
models in some target language

maintain some sense of consistency between the
models

Unidirectional model transformations

translate models in some source language to
models in some target language

maintain some sense of consistency between the
models

4) 4)

AN

o) \
M. source

What If users modify both models?

IN some scenarios, users may modify both

models In concurrent engineering activities

- -

— -

-

_

A

~

J

source

q
h

-

_

A

~

J

target

® e.g. database view problem, system integration

harder

maintaining consistency still important - but

Bidirectional transformations (bx)

bidirectional model transformations (bx)
simultaneously describe transformations in both
directions

compatibility of the directions guaranteed
=> |.e. both directions maintain consistency of models

BUT: inherently complex and challenging to

Implement

=> many model transformation languages do not support
)

=> others do, with conditions (e.g. bijective, TGGS)

=> QVT-R supports bx, but has an ambiguous
semantics, and QVT-R tools don’t exist

Is there another way?

(if a framework existed in which it were
possible to write the directions of a
transformation separately and then check,
easlly, that they were coherent, we might

be able to have the best of both worlds

Stevens, P.. Alandscape of bidirectional model transformations. In: GTTSE 2007.

“Faking” bx in=gSlle)r!

c

® Epsilon is a platform of interoperable model
management languages

® no direct support for bx, but:

=> languages for unidirectional transformations (ETL,
EWL, EOL)
=> an inter-model consistency language (EVL)

® bx can be faked in Epsilon by:
(1) defining pairs of unidirectional transformations
(2) defining consistency via inter-model
constraints

update transformation constraint violation repair transformation

o——0—0

Class Diagrams to Relational Databases
(the forbidden example)

® two metamodels: class diagram and relational DB

® consistency defined in terms of a
correspondence between the data (attributes) In
the models

.Class Table

name = "users"

name = "users"

feature feature
pkey column

Attribute :Attribute

:Column :Column

pkey = True pkey = False

s gm g " name = "id"| [name = "username”
name ="id name = "username

class diagram relational DB

Example bx “faked” in Epsilon

® users of the models should be able to create new
classes (or tables) whilst maintaining consistency

® first, we specify a pair of unidirectional
transformations in Epsilon’ s update-in-place

language

wizard AddClass A
do {
var c:. new Class;
Cc.name = newName,
self.Class.all.first().contents.add(

c);
13

wizard AddTable {
do {
var table: new Table;
table.name = newName;
self.Table.all.first () .contents.add(
table) ;
13

Example bx “faked” in Epsilon

® then, we specify and monitor inter-model
constraints that express what it means to be

consistent

context 00!Class {
constraint TableExists {
check : DB!Table.all.select(t|t.name
= self.name).size() > O
H

context DB!Table {
constraint ClassExists {
check : 0O0O!Class.all.select(c|c.name
= self.name).size() > 0
H

Example bx “faked” in Epsilon

® then, we specify and monitor inter-model
constraints that express what it means to be

consistent

context 00!Class {
constraint TableExists {
check : DB!Table.all.select(t|t.name
= self.name).size() > O

H

context DB!Table {
constraint ClassExists {
check : 0O0O!Class.all.select(c|c.name
= self.name).size() > 0

H

We didn’ t quite fake everything yet...

fake bx lack the consistency guarantees that true bx
have by construction

what does this mean?

=> compatibility of the directions might not be maintained
(e.g., discovered when checking consistency)

=> repair transformations might not actually restore
consistency

our example Is obviously compatible, but we should be
able to check this easily and automatically

Our proposal: exploit graph
transformation verification techniques

to check compatibility

® graph transformation (GT) is a computation

abstraction

=> state Is represented as a graph

=> computational steps represented as GT rule
applications

Our proposal: exploit graph
transformation verification techniques

to check compatibility

® graph transformation (GT) is a computation

abstraction

=> state Is represented as a graph

=> computational steps represented as GT rule
applications

Our proposal: exploit graph
transformation verification techniques

to check compatibility

® graph transformation (GT) is a computation

abstraction

=> state Is represented as a graph

=> computational steps represented as GT rule
applications

o ~
init :
° >0

) = o)=, 2

TOW :
5 — Ol:ﬁ — o’!.>o—>o

s — ° grow grow

1 1

_ J

GT verification techniques

® functional correctness of GT rules can
be verified in a weakest precondition style

® pre- and postconditions are expressed in the graph-
based logic of nested conditions, equiv. to FO logic

® roughly, to verify {pre} P {post}:

[GT rules
P \¢
alculate WP(P, post)

y
nested conditions / \

pre & post does WP(P, post) => pre 7

How we will rigorously fake bx

translate the unidirectional transformations to GT

rules
=> denoted Ps and P

translate the inter-model constraints to nested

conditions
=> denoted evl

automatically discharge the following specifications
using the weakest precondition calcull

|{evl} Ps; P {evl}' |{evl} P1; Ps {evl}'

Proving consistency of our CD/DB bx

D r D

@ :Class @ ‘Table
name = newName name = newName
y, _ J
evl
4 A

Proving consistency of our CD/DB bx

A Y

‘Table

name =y

‘Table

:Class

name =y

name =y

4 ™\ 4)
@ :Class @ :Table
name = newName name = newName

\ y, _ J

evl

4)
\v/ :Class — :Class ‘Table
(name = x Y — name = x name = x))

)

J

Jcompatible: WP(Ps;P1,evl) = WP(Pt;Ps,evl) = evil

Putting It all together

we need to do this bit

/ \
no [loo

evl = o
model transformations

I)S d o v 1
to graph programs Pr WipLEs: B evl) [50 validity yes
”.faked"’ BX ¥ WLP . compatible
in Epsilon construction yes

EVL constraints to —
nested conditions evl evl = I FO validity l.
Wlp(Py: Ps, evl) 27

no [loop **

exploit existing theorem provers here

Our next steps

identify a selection of bx case studies

fake them in Epsilon, manually translate them into
GT rules and nested conditions, and verify
compatibility

Implement the translations for an expressive
subset of the Epsilon languages; implement the
WP calculation

challenges and open questions:
=> finding counterexamples (e.g. using GROOVE)
=> theoretical / practical limitations (e.g. is FO
expressive enough?)

In summary

bx simultaneously describe transformations in both
directions - compatible by construction

but they are inherently complex and challenging to
Implement

can be faked in Epsilon as pairs of unidirectional
transformations and inter-model consistency
constraints

we will leverage GT proof technology to obtain
compatibility guarantees for faked bx

