
On Static and Dynamic Analysis of

UML and OCL Transformation Models

Martin Gogolla, Lars Hamann, Frank Hilken

Database Systems Group, University of Bremen, Germany
{gogolla|lhamann|fhilken}@informatik.uni-bremen.de

Abstract. This contribution discusses model transformations in the
form of transformation models that connect a source and a target meta-
model. The transformation model is statically analyzed within a UML
and OCL tool by giving each constraint an individual representation in
the underlying class diagram by highlighting the employed model ele-
ments. We also discuss how to analyze transformation models dynami-
cally on the basis of a model validator translating UML and OCL into
relational logic. One can specify, for example, the transformation source
and let the tool compute automatically the transformation target on the
basis of the transformation model without the need for implementing the
transformation. Properties like injectivity of the transformation can be
checked through the construction of example transformation pairs.
Keywords. Transformation model, Metamodel, UML, OCL, Model val-
idator, Static and dynamic transformation model analysis.

1 Introduction

Model transformations are regarded as essential cornerstones for Model-Driven
Engineering (MDE). Quality assessment and improvement techniques like trans-
formation validation and verification are thus central for the success of MDE.
Therefore, testing and analysis techniques for model transformations [2, 1] are
obtaining more and more attention.

Here, we discuss model transformations in form of transformation models [3].
Transformation models are descriptive characterizations of mappings between a
source and target metamodel. Our approach proposes to check the covering of
constraints within transformation models statically in order to better understand
the model, and to check for the completion of partially specified transformation
pairs. We apply a so-called model validator in the tool USE (Uml-based Speci-
fication Environment) that searches for instances within a finite search space.

Our work has links to related approaches. Our contribution is based on Alloy [8]
and Kodkod [10]. The implementation of the model validator that we employ is
grounded on a translation of UML and OCL concepts into relational logic as de-
scribed in [9]. Transformation models using the same example as here, however
with different metamodels and focusing on refinement, have been studied in [4].
A general context of descriptive transformations employing UML and OCL is

1

nicely described in [5]. The same example with focus on different transformation
properties (as consistency and metamodel property preservation) and discussing
solving and translation times has been studied in [7], but the covering and com-
pletion techniques developed here are not treated there.

The rest of this paper is structured as follows. Section 2 describes the running ex-
ample. Section 3 sketches how to apply the model validator. Section 4 shows how
transformation models can be statically inspected. Section 5 applies our tech-
nique for dynamically completing partial transformation model pairs. Section 6
closes the paper with a conclusion and future work.

2 Model Transformation Example

The running example in this paper is the well-known transformation between
ER and relational database schemata. We study this transformation in form

Fig. 1. Class diagram and invariants for example transformation model.

of a transformation model as introduced in [6, 3]. A transformation model is a
descriptive model where the relationship between source and target is purely
characterized by the (source,target) model pairs determined by the transforma-
tion. A transformation model consists in our approach of a plain UML class

2

diagram with restricting OCL invariants. Typically, there is an anchor class for
the source model, an anchor class for the target model, and a connecting class
for the transformation. There are OCL invariants for restricting the source meta-
model, for the target metamodel, and for the transformation.

In Fig. 1 the class diagram and the invariant names for the example are pictured.
All details of the example can be found in [6]. The example transformation model
has four parts: a base part with datatypes and attributes for concepts commonly
employed in the ER and relational model; a part for ER schemata (ErSchema)
with the concepts Entity, Relship (relationship), and Relend (relationship
end); a part for relational database schemata (RelDBSchema) incorporating re-
lational schemata (RelSchema); finally, a part for the transformation (Trans).
[6] discusses also the semantics. Therefore, some classes here are marked in their
names as belonging to the syntax (ErSyn, RelSyn).

We have used the terms source and target, but transformation models are
direction-neutral due to the central employment of associations. We will say that
we ‘transform a source ER schema into a target relational database schema’, but
formally the class diagram does not indicate any direction. In our view, trans-
formation models can be looked at as a form of bidirectional transformations.

Currently our model validator does not support the computation of strings in
a satisfactory way. In particular, we need string computations for relational at-
tributes in connection with ER attribute names and relationship end names.
Through this, we can establish a connection between the source and the target
model. Thus, in contrast to [6], we model names (for example, of entities or
attributes) as integers and have to pose certain restrictions on the use of the un-
derlying integers and strings. We encode ten letters as digits: A↔0, B↔1, C↔2,
D↔3, E↔4, F↔5, G↔6, H↔7, J↔8, K↔9. Through a derived attribute nameS,
we are able to represent the ‘integer names’ formally as string values. For ex-
ample, we will calculate: 20 = 2*10+0 ~= ‘2.concat(0)’ ~= ’C’.concat(’A’) =

’CA’. This section followed the ideas we have developed in [7].

3 Applying the USE Model Validator

We explain the application of the USE model validator by showing how the tool
has to be configured in order to construct a model transformation between an
example ER schema and a corresponding relational database schema. The needed
configuration is shown in Fig. 2 and the resulting generated object diagram,
which captures both schemata, is pictured in Fig. 3.

In a model validator configuration, the population of (a) classes, (b) associations,
(c) attributes and (d) datatypes is determined. Classes, attributes and datatypes
are displayed in the configuration table in black-on-white, and associations in
black-on-light-grey. (a) A class needs an integer upper bound for the maximal
number of objects in that class, and an optional lower bound may be given.
(b) Associations may also have a lower and upper bound for the number of links
or their population may be left open and be thus determined through the (up-

3

Fig. 2. Configuration for ER schema with binary relationship.

Fig. 3. Generated ER and relational database schema with binary relationship.

4

per bounds for the) participating classes. (c) Attributes may be determined by
specifying an enumeration of allowed values or by the set of values derived from
the value set of the corresponding datatype. (d) The numerical datatypes In-
teger and Real may be configured through an enumeration (e.g., Set{42,44,46}
or Set{3.14, 6.28, 9.42}) or with lower and upper bounds for the interval of al-
lowed values with an additional step value for Real (for example, resulting in
Set{-8..7} or Set{-1, -0.5, 0, 0.5, 1}). The datatype String may be determined by
an enumeration (e.g., Set{‘UML’,‘OCL’,‘MDE’}) or through a lower and upper
bound for the number of automatically generated String literals (resulting in,
for example, Set{‘String1’,...,‘String7’}).
The example configuration requires (among other restrictions) the following:
(a) there is exactly one transformation object (in class Er2Rel Trans), and
there are exactly two relational schemas (in class RelSyn RelSchema); (b) the
links in association ErSyn OwnershipErSchemaEntity between ErSyn ErSchema

and ErSyn Entity are not explicitly restricted, but only implicitly through the
upper bounds of the participating classes, and there is no link in the associa-
tion ErSyn OwnershipRelshipAttribute, meaning that in the constructed ER
schema there will be no relationship attribute; (c) the attribute isKey is al-
lowed to take values from the enumeration Set{false,true} (recall that in UML
and OCL more than two truth values are available); (d) the datatype Integer is
allowed to take values from the interval [0..127].

The automatically generated transformation in Fig. 3 is displayed in form of the
constructed object diagram and in form of a visual resp. textual domain-specific
representation of the ER schema (in traditional ER notation) and the relational
database schema (as textual SQL table declarations). In particular, the two
relationship ends E and J of the relationship HE are represented as attributes ED
and JD in the relational schema HE, because the attribute D constitutes the key
in entity HD and in the relational schema HD. If there would be a composed
key in the entity HD, say attributes DA and DB, the relational schema HD has to
contain four attributes EDA, EDB, JDA, and JDB. Thus, the key attribute names on
the relational side have to be composed from the relationship end and attribute
names from the ER side. This section followed the ideas we have developed in [7].

4 Analyzing Static Transformation Model Properties by
Coverage of Model Elements

Analyzing static transformation model properties means for us to explore the
model transformation text in order to achieve relevant transformation proper-
ties. Static analysis is interesting because transformation models are usually
structured at least into three parts: (a) the source, (b) the target, and (c) the
transformation metamodel. Accompanying constraints will be found in the re-
spective parts. For a single constraint it is thus particular interesting whether
it restricts all three parts in conjunction or it treats a single part only. Such an
analysis is possible with the static technique proposed here that is based on the

5

idea of covering, i.e., to analyze and to indicate which part of the underlying
class diagram is covered by a particular constraint. In our example we even have
four parts in the transformation model, namely the source, the target, the trans-
formation, and a common part that represents model features that are used in
both the source and the target (here, attributes and datatypes). This is probably
not an unusual situation.

In Fig. 4 we have displayed four (of the 22) invariants in the transformation
model. Below we show the invariants also in detail. The coloring in the figure
indicates the degree the respective model element (here classes, attributes, op-
erations) is used in and covered by the constraint. By inspecting the invariant’s
color coverage profile one can analyze its effect on the respective model element,
and one gets an impression about its dominance.

context self:ErSyn_Relend inv c_Relend_Entity_Relship_ErSchema:

self.entity.erSchema=self.relship.erSchema

context self:ErSyn_Entity inv uniqueOsRelendNamesWithinEntity:

self.osRelend()->forAll(re1,re2 | re1.name=re2.name implies re1=re2)

context self:Base_Attribute inv linkedToOneOfEntityRelshipRelSchema:

(self.entity->size)+(self.relship->size)+(self.relSchema->size)=1

context self:Er2Rel_Trans inv forEntityExistsOneRelSchema:

self.erSchema.entity->forAll(e |

self.relDBSchema.relSchema->one(rl |

e.name=rl.name and

e.attribute->forAll(ea |

rl.attribute->one(ra |

ea.name=ra.name and ea.dataType=ra.dataType and

ea.isKey=ra.isKey))))

ErSyn Relend::c Relend Entity Relship ErSchema basically expresses that
the path from Relend over Entity to ErSchema coincides with the path
from Relend over Relship to ErSchema (c stands for ‘commutativity con-
straint’). This is reflected in the invariant’s coverage profile.

ErSyn Entity::uniqueOsRelendNamesWithinEntity restricts the other-side-
relends (osRelends()) of an entity. For example, if we have Person-
employee-Job-employer-Company, then employer is an osRelend of Person
and employee is an osRelend of Company. An osRelend can be applied to
an entity just like an attribute is applied. The collection of the osRelends

must be unique for an entity. The coverage profile of the constraint clearly
expresses that the constraint is working on the ER side only and points out
the influence of the operation osRelend().

Base Attribute::linkedToOneOfEntityRelshipRelSchema requires that an
Attribute either belongs to an Entity or to a Relship or to a RelSchema,
but not to more than one model element although the multiplicities would
allow this. The coverage profile points to and emphasizes the connection
between the four mentioned metaclasses.

Er2Rel Trans::forEntityExistsOneRelSchema is a transformation (Trans)
constraint and thus covers a large portion of the metamodel, the source, the

6

Fig. 4. Coverage of model elements for selected invariants.

7

target, and the transformation itself. As the constraint deals with Entity

objects only, the coverage reveals that Relship or Relend objects are not
touched. If one goes through all Trans constraints, one basically discovers
that the operation osRelend() is not used in the Trans part at all. Thus the
coverage indicates that this operation is not relevant for the transformation.

Currently we have realized the coverage analysis in the graphical user interface
and with predefined metrics. We are considering to represent the analysis results
in textual and table form as well and to offer apart from predefined metrics the
option to let the developer define her project specific metrics, if desired.

5 Analyzing Dynamic Transformation Model Properties
by Transformation Completion

Analyzing dynamic transformation model properties means for us to actually
construct transformation instances in form of object diagrams. Doing so can
reveal relevant transformation properties. The properties and questions that we

Fig. 5. Transformation completion starting from an ER schema.

consider here are: (a) given a concrete ER schema that is manually constructed,
is it possible to automatically complete the transformation yielding a relational
database schema and to show by this the effectiveness of the transformation and
inspect whether the transformation model constructs the expected result (see
Fig. 5) and (b) given a manually constructed relational database schema, is it
possible to complete the partially given object diagram and to show that the
transformation is non-unique in the sense that the given relational database
schema has two ER counterparts (see Fig. 6).

In Fig. 5 question (a) is treated. A partial object diagram representing the man-
ually constructed ER schema (the white objects in the left part of the figure)

8

is handed to the model validator in order to complete the object diagram. The
completion is shown in the right part of the figure. The model validator config-
uration asks for one transformation object, one connected ER schema, and one
connected relational database schema.

In Fig. 6 question (b) is handled. A partial object diagram representing the man-
ually constructed relational database schema (the white objects in the middle of
the figure) is handed to the model validator in order to complete the object dia-

Fig. 6. Non-unique transformation completion starting from a relational DB schema.

gram. The ER completions are shown in the left and the right part of the figure.
The model validator configuration in this case explicitly asks for two transfor-
mation objects connected to a single relational database schema and connected
to two different ER schemas. Additionally, two invariants had to be added for
the process of finding the proper object diagram. These invariants are not part
of the transformation model, but are needed to drive the model validator into
the proper direction.

context ErSyn_ErSchema inv connectedToTransformation:

self.trans->notEmpty()

context ErSyn_ErSchema inv oneWithRelship_oneWithoutRelship:

ErSyn_ErSchema.allInstances()->exists(with,without|

with.relship->notEmpty() and without.relship->isEmpty())

Summarizing, we observe that the approach allows the developer to check the
injectivity of a transformation model in either direction. We have considered a
transformation model in one particular direction, from the relational database
model to the ER model, and were able to show through the construction of
an example, that the particular considered direction of the transformation is
not injective because one relational database schema was connected with two
ER schemas. As the approach is grounded on finite checks, it is not possible to

9

prove in general that a transformation going into one direction is injective, but
one can show through examples the non-injectivity.

6 Conclusion

The paper presented an approach for automatically checking transformation
model features. We have analyzed transformation models statically by identify-
ing model elements in the underlying class diagram that are covered by a trans-
formation model invariant. We also checked transformation models dynamically
through the completion of partially specified transformation pairs.

Future work could consider to study invariant independence, i.e., minimality of
transformation models. The static analysis features can be improved by present-
ing the results in table and text form and through the introduction of project
specific definition of metrics. The handling of strings must be improved. Last
but not least, larger case studies must check the practicability of the approach.

References

1. Amrani, M., Lucio, L., Selim, G.M.K., Combemale, B., Dingel, J., Vangheluwe,
H., Traon, Y.L., Cordy, J.R.: A Tridimensional Approach for Studying the Formal
Verification of Model Transformations. In Antoniol, G., Bertolino, A., Labiche, Y.,
eds.: Proc. Workshops ICST, IEEE (2012) 921–928

2. Baudry, B., Ghosh, S., Fleurey, F., France, R.B., Traon, Y.L., Mottu, J.M.: Barriers
to Systematic Model Transformation Testing. CACM 53(6) (2010) 139–143

3. Bezivin, J., Büttner, F., Gogolla, M., Jouault, F., Kurtev, I., Lindow, A.: Model
Transformations? Transformation Models! In Nierstrasz, O., Whittle, J., Harel, D.,
Reggio, G., eds.: Proc. 9th Int. Conf. Model Driven Engineering Languages and
Systems (MoDELS’2006), Springer, Berlin, LNCS 4199 (2006) 440–453

4. Büttner, F., Egea, M., Guerra, E., de Lara, J.: Checking Model Transformation
Refinement. In Duddy, K., Kappel, G., eds.: Proc. Inf. Conf. ICMT. LNCS 7909,
Springer (2013) 158–173

5. Cabot, J., Clarisó, R., Guerra, E., de Lara, J.: Verification and Validation of
Declarative Model-To-Model Transformations through Invariants. Journal of Sys-
tems and Software 83(2) (2010) 283–302

6. Gogolla, M.: Tales of ER and RE Syntax and Semantics. In Cordy, J.R., Lämmel,
R., Winter, A., eds.: Transformation Techniques in Software Engineering, IBFI,
Schloss Dagstuhl, Germany (2005) Dagstuhl Seminar Proceedings 05161. 51 pages.

7. Gogolla, M., Hamann, L., Hilken, F.: Checking Transformation Model Properties
with a UML and OCL Model Validator. In: Proc. 3rd Int. STAF’2014 Workshop
Verification of Model Transformations (VOLT’2014). (2014) CEUR Proceedings.

8. Jackson, D.: Software Abstractions: Logic, Language, and Analysis. MIT Press
(2006)

9. Kuhlmann, M., Gogolla, M.: From UML and OCL to Relational Logic and Back. In
France, R., Kazmeier, J., Breu, R., Atkinson, C., eds.: Proc. 15th Int. Conf. Model
Driven Engineering Languages and Systems (MoDELS’2012), Springer, Berlin,
LNCS 7590 (2012) 415–431

10. Torlak, E., Jackson, D.: Kodkod: A Relational Model Finder. In: Proc. Int. Conf.
Tools and Algorithms for the Construction and Analysis of Systems (TACAS’2007).
(2007) LNCS 4424, 632–647

10

