Intro Activity Tracking Simulation	Activity-Based Modelling	Activity-Enhanced Simulation	Relationships	Example	Conclusions
000000000000					

Activity-Based Modelling and Activity-Enhanced Simulation

"the activity-enhanced working group" Xiaolin Hu, Luc Touraille, Hans Vangheluwe

Interdisciplinar Colloquium on Activity-based Systems 24 April 2009 Cargèse, Corsica

Intro Activity Tracking Simulation	Activity-Based Modelling	Activity-Enhanced Simulation	Relationships	Example	Conclusions
000000000000					

- Activity Tracking Simulation
- Activity-Based Modelling
- Activity-Enhanced Simulation
- **5** Relationships

6 Example

Intro	Activity Tracking Simulation	Activity-Based Modelling	Activity-Enhanced Simulation	Relationships	Example	Conclusions
0000	00000					

- notion of locality in space and time: "activity"
- activity" seems to be an emergent "abstraction" philosophical question: inherent or perceived?
- currently used in "activity tracking" simulators to better allocate computational resources

Intro	Activity Tracking Simulation	Activity-Based Modelling	Activity-Enhanced Simulation	Relationships	Example	Conclusions
0000	00000					

Example: Fire Spread

fire "front" is the only region of activity

Intro Activity Tracking Simulation	Activity-Based Modelling	Activity-Enhanced Simulation	Relationships	Example	Conclusions
0000000000					

Intro Activity Tracking Simulation	Activity-Based Modelling	Activity-Enhanced Simulation	Relationships	Example	Conclusions
000000000					

Activity Region moves over time

locality of activity in space and time

Intro Activity Tracking Simulation	Activity-Based Modelling	Activity-Enhanced Simulation	Relationships	Example	Conclusions
000000000					

Crowds: locality of activity in space and time

Intro Activity Tracking Simulation	Activity-Based Modelling	Activity-Enhanced Simulation	Relationships	Example	Conclusions
0000000000					

Goals

formalization of

- Activity Tracking simulation (computation view)
- Activity-Based modelling (modelling view)
- Activity-Enhanced simulation (computation view, from modelling)
- Relationships between 1 3 + validation
- explore examples (limits)

Intro Activity Tracking Sir	nulation Activity-Based Model	Iling Activity-Enhanced	Simulation Relationships	Example	Conclusions
000000000					

Notation

- time base T, time $t \in T$
- spatial "coordinates" used to index space S, $\textbf{s} \in S$
- the "state space" Q of the system state q(s, t) is a function of independent variables space and time

note: we may wish to use "generalized coordinates" which includes part of the state as this helps identify/encode regions of activity at the modelling level. Example: "liveness" coordinate = $\{alive, dead\}$

A "model", in the form of some transition function, concisely describes how *q* evolves.
 A "simulator" takes a model and a specification of initial state and computes the "trajectory" *q*(*s*, *t*).

Intro Activity Tracking Simulation	Activity-Based Modelling	Activity-Enhanced Simulation	Relationships	Example	Conclusions
000000000					

Measure of activity intensity

- assume Discrete Event abstraction (without loss of generality)
- Event Frequency $\nu_H(t)$
- need H lookahead horizon

Intro Activity Tracking Simulation	Activity-Based Modelling	Activity-Enhanced Simulation	Relationships	Example	Conclusions
000000000					

Activity Tracking Simulation

 $q(\mathbf{s},t) \Rightarrow
u_H(t) \Rightarrow AR_H(t) \Rightarrow$ (re-)allocate computational resources

Note

more fine-grained if (weighted) resource allocation is done based on $\nu_H(t)$

Intro	Activity Tracking Simulation	Activity-Based Modelling	Activity-Enhanced Simulation	Relationships	Example	Conclusions
	00000000	•				

Activity-Based introduction of modularity in models

- δ_{AR_H} model AR_H(t), the evolution of activity region over time
- model the evolution of state over time
 - $\delta = \hat{I}$ for $s \notin AR_H(t)$
 - $\delta = \delta_{ACT}$ for $s \in AR_H(t)$

Note: may start from δ and provide $AR_H(t)$

- in the best case, this allows for concise (from the point of view of modelling, and/or from the point of view of computation) description based on domain insights of the modeller.
- in the worst case, this is just an encoding of the activity tracking machinery.

 $(\delta, AR_H) \Rightarrow q(s, t)$ + (re-)allocate computational resources Implemented using appropriate model/solver interface

Intro Activity Tracking Simulation	Activity-Based Modelling	Activity-Enhanced Simulation	Relationships	Example	Conclusions
000000000000			•		

Validation

- track activity in simulator \rightarrow compute $AR_H(t)$
- AR_H model describing activity region evolution
- comparison + interpretation (conservative/optimistic)

Intro Activity Tracking Simulation	Activity-Based Modelling	Activity-Enhanced Simulation	Relationships	Example	Conclusions
000000000000					0

provided formalization of:

- Activity Tracking simulation
- Activity-Based modelling
- Activity-Enhanced simulation

accuracy

- Activity-Enhanced simulation has same accuracy as traditional or Activity Tracking
- Different $AR_H(t)$ do however influence performance

Intro Activity Tracking Simulation	Activity-Based Modelling	Activity-Enhanced Simulation	Relationships	Example	Conclusions
00000000000					00

future:

- generalized coordinates
- look into $AR_H(t)$ described in different formalism
- model ν_H to describe activity "levels" (no longer on/off)
- hierarchy of activity region/behaviour modelling