Floating Point - IEEE-754

October 20/23, 2009

Computersystemen en -architectuur 2009-2010

Floating Point Formats

Universiteit Antwerpen

Conversion Example

- Represent -12.625 10 in single precision IEEE-754 format.
- Step \#1: Convert to target base. $-12.625_{10}=-1100.101_{2}$
- Step \#2: Normalize. $-1100.101_{2}=-1.100101_{2} \times 2^{3}$
- Step \#3: Fill in bit fields.
- Sign is negative, so sign bit is 1. Exponent is in excess 127 (not excess 128!), so exponent is represented as the unsigned integer $3+127=130$. Leading 1 of significand is hidden, so final bit pattern is:

$$
110000010 \text {. } 10010100000000000000000
$$

Filling the gap: denormalized numbers

- Normalization
- Drawback: gap between 0 and "most precize numbers next to 0 "

- Solution: allow denormalized fractions
- implicitly preceeded by 0
- "virtual" exponent is smallest possible
- apply this for "some chosen exponent" -> 0

Type	Exponent	Fraction
Zeroes	0	0
Denormalized numbers	0	non zero
Normalized numbers	1 to $2^{e}-2$	any
Infinities	$2^{e}-1$	0
NaNs	$2^{e}-1$	non zero

Value
(a) $\quad+1.101 \times 2^{5}$
(b) -1.01011×2^{-126}
(c) $\quad+1.0 \times 2^{127}$
(d)
(e)
(f) $+\infty$
(g) $\quad+2^{-128}$
(h) $\quad+\mathrm{NaN}$
(i) $+2^{-128}$

Bit Pattern

Sign	Exponent
0	10000100
1	00000001
0	11111110
0	00000000
1	00000000
0	11111111
0	00000000
0	11111111
0	011111

Fraction
10100000000000000000000 01011000000000000000000 00000000000000000000000 00000000000000000000000 00000000000000000000000 00000000000000000000000 01000000000000000000000 01101110000000000000000

000000000000000000000000 0000000000000000000000000000

