
Towards a Hybrid Transformation Language:
Implicit and Explicit Rule Scheduling in Story Diagrams

Bart Meyers
University of Antwerp
Antwerpen, Belgium

bart.meyers@student.ua.ac.be

Pieter Van Gorp
University of Antwerp
Antwerpen, Belgium

pieter.vangorp@ua.ac.be

ABSTRACT
Transformation rules can be controlled explicitly using lan-
guage constructs such as a loop or a conditional. This ap-
proach is realized in Fujaba’s Story Diagrams, in VMTS,
MOLA and Progres. Alternatively, transformation rules can
be controlled implicitly using a fixed strategy. This approach
is realized in AGG and AToM3. When modeling transforma-
tion systems using one approach exclusively, particular as-
pects could have been expressed more intuitively using the
other approach. Unfortunately, most (if not all) transfor-
mation languages do not enable one to model the control of
some rules explicitly while leaving the control of other rules
unspecified. Therefore, this paper proposes the extension
of Story Diagrams with support for implicit rule scheduling.
By relying on a UML profile and on higher order transforma-
tions, the language construct is not only executable on the
MoTMoT tool, but on any tool that supports the standard
UML syntax for Fujaba’s Story Diagrams.

Keywords
Transformation Languages, Rule Scheduling, Higher Order
Transformations, Language Engineering

1. INTRODUCTION
Transformations are critical in model-driven development.
Since homemade modeling languages may be defined and
integrated at any time in the development process of a soft-
ware system, transformations have to be tailored accordingly
to integrate these new languages before they can actually
be used. Therefore, a highly expressive transformation lan-
guage is very useful, because it facilitates defining the needed
transformations.

When defining transformation languages, certain choices are
made. The language can be imperative (i.e., operational) or
declarative [8, Chapter 2]. Explicit rule scheduling mecha-
nisms (e.g., conditionals) tend to be called imperative since
they enable one to model the execution of transformation
rules in terms of the state of the transformation system.
Languages with implicit rule scheduling (such as AGG) tend
to be called declarative due to the absence of an explicit state
concept. There is no better choice in this matter. For certain
problems implicit rule scheduling feels more intuitive, some-
times explicit rule scheduling turns out to be convenient.
Therefore, this paper introduces a language construct for
the integration of implicit rule scheduling in an imperative
language. The integrated language is hybrid (imperative as
well as declarative) with regards to rule scheduling.

Figure 1: Control flow of a transformation from class
diagrams to a relational database schema.

The remainder of this paper consists of the following: Sec-
tion 2 motivates the need for the hybrid transformation
language by means of an example. Section 3 describes a
higher order transformation for mapping hybrid transfor-
mation models to fully imperative transformation models in
ordinary Story Diagrams. This defines a compiler for the
new language construct. Section 4 presents related work
and Section 5 discusses future work. Finally, Section 6 sum-
marizes with a conclusion.

2. IMPLICIT RULE SCHEDULING
Consider the example of Figure 1, which represents a simpli-
fied model transformation from class diagrams to relational
database schemata. This example has been used for compar-
ing transformation languages before [1]. Figure 1 displays
a story diagram that applies explicit rule scheduling exclu-
sively. Throughout this paper, the UML profile for story
diagrams is used. The benefits of using a profile rather than
metamodels are discussed in Schippers et al. [6].

In the UML profile, rules (annotated class diagrams) are em-
bedded in a control flow (annotated activity diagrams) by
using a tag named transprimitive whose value points to the
UML package containing the transformation rule (i.e., clas-
ses and associations annotated with�create�,�destroy�,
etc. [8]). In effect, the value of the transprimitive tag states
which rewrite rule needs to be executed when the transfor-
mation system is in a particular state. Fujaba realizes the
same semantics but differs syntactically by visually embed-
ding the rewrite rules instead of referring to their name.



Figure 2: Example of the usage of the new language
construct.

In Figure 1, the first rule that has to be executed checks
whether there are tables in the database. If some tables ex-
ist in the database, the algorithm ends since otherwise ex-
isting data may be corrupted by the simple transformation.
If not, the actual creation of schema elements is started:
first, classes are transformed to tables. Next, class attributes
must be transformed. There are two types of attributes: ob-
ject references and primitive values. It turns out that the
transformation of the two kinds of attributes can be mod-
eled elegantly with two transformation rules. Attributes of
a simple data type t become columns of type t. Object
attributes of class T become columns of type integer con-
taining key references to the primary unique ID column of
table T. Additionally, a foreign key constraint is added to the
database. Therefore, in Figure 1, all data fields are trans-
formed, and then all object fields are transformed.

Having to express the transformation of attributes in two se-
quentially executed rules decreases the quality of the trans-
formation model in several ways. First, one has to impose an
order on these two rules, which is useless and has no mean-
ing. This is a clear case of over-specification. Secondly, the
transformation of all attributes is conceptually one action,
and should be modeled as such.

Alternatively, one could have modeled the transformation
using implicit rule scheduling. However, in that case, the
”no tables exist” test (this kind of sanity checks are rather
common at the start of model transformations) could not
have been scheduled before the other rules without having to
rely on hand-written code or other tool-specific approaches.
This is a reason why modeling in a language using explicit
rule scheduling is a good choice for this problem.

2.1 A new language construct
It turns out that both implicit and explicit rule scheduling
are needed to model the example of Figure 1 in a decent way.
Therefore, this paper introduces a new language construct
for story diagrams that allows implicit rule scheduling. Con-
sider Figure 2 as an example of the usage of this new con-
struct. Analogue to the transprimitive tag definition, a new
UML tag definition transprimitiveND is proposed that can
be used for the state that transforms attributes. However,
a transprimitiveND state can reference more than one UML
Package and chooses non-deterministically in which order
the packages are executed, hence “ND” in the name.

More general, consider a set of rules that can be executed in

Figure 3: Fully imperative equivalent of Figure 2.

any order. Such rules need to be executed until all of them
fail to match. Every time a rule of this set is evaluated,
it is executed, and all the other rules of the set have to be
checked again in the next iteration, because applying a rule
to a model can change the model.

2.2 The fully imperative equivalent
The new construct must be transformed to an equivalent
which is solely written in plain story diagrams. Otherwise,
our contribution would probably only become supported by
our own tool. Such an imperative equivalent for the exam-
ple from Figure 2 is shown in Figure 3. After the Transform

classes to tables state, the initialize state is entered,
where some variables that will be used are declared. The
�code� stereotype denotes that the state corresponds to
(Java) code instead of a transformation rule. More in de-
tail, an integer n is set to 2, as there are two rules (Data
fields to columns and Object fields to foreign keys)
that can be executed. A list ignored is initialized, which will
represent the rules that must be ignored because they didn’t
match in the current model state.

After the initialize state, a rule is chosen non-determinis-
tically in the choose pattern id state, also a code state. In
fact, a random number generator produces an integer rang-
ing from 1 to n, which represents the randomly chosen rule.
Moreover, this generated integer must not be contained in
the ignored list. According to this random number, one of
the transprimitive states which represent the actual trans-
formation rules is entered.

If the rule matches, the �success� transition is followed.
This transition leads to a state that ensures that ignored is
cleared, as the ignored rules must be evaluated again because
the state of the model might have changed. Then, a new rule
can be chosen in the choose pattern id state for execution.

If the rule didn’t match, it would be useless that this rule
would be coincidentally chosen in the next iteration, so the



Figure 4: Prototype that is put into the input model.

rule is added to the ignored list. As long as there are rules
available for execution, a new rule can be chosen for the next
iteration. If there are no rules left for execution, i.e. they
are all in ignored, the algorithm ends. The end state does
nothing, but is added in order to end the equivalent with a
transition without a guarding expression.

This results in an equivalent for unconstrained implicit rule
scheduling, which schedules all the rules with equal prior-
ity. This algorithm can easily be extended to support con-
strained rule scheduling, like the use of priorities [2] (as re-
alized in AToM3) or layers [5] (as realized in AGG).

3. HIGHER ORDER TRANSFORMATION
In this section, a higher order transformation is proposed
that transforms applications of the introduced new language
construct to plain story diagrams.

The higher order transformation consists of a main loop that
sequentially transforms each transprimitiveND state in the
input model. Such states are transformed to their imper-
ative equivalents as in Figure 3. These equivalents will be
very similar to one another. Therefore, the common part is
bundled into a separate generic prototype model, given in
Figure 4. Starting from this prototype will avoid verbose
rewrite rules in abstract syntax form. To use the prototype
in the input model, it has to be moved to there. Roughly
speaking, this is done in the following steps: first, the proto-
type model file is read. Secondly, all the states of the proto-
type model are moved to the input model. Thirdly, all the
transitions of the prototype model are moved to the input
model. Fourth, the target of some transitions is reassigned.
And fifth, the source of some transitions is reassigned.

Interestingly, the second, third, fourth and fifth step can be
executed independently. So in theory, a transprimitiveND
state could be used to control the rewrite rules for these
steps. Doing so would emphasize the similarity between
these steps, thus improving the structure and readability of
the overall transformation model. However, we have not yet
bootstrapped the higher order transformation [4]. Instead,
it is modeled using plain story diagrams (i.e., the language
without the transprimitiveND construct).

Once a prototype is created in the input model, the (Java)
code in the initialize code state must be changed in order
to initialize n with the actual number of rules. Then, for each
rule of the transprimitiveND state, a new perform pattern

state has to be created, with its according transitions. Fig-
ure 5 represents a slightly simplified version of the pattern in
the higher order transformation that performs this task. A

new state performState and transitions from choose pat-

tern id and to clear ignore list and no match, ignore

pattern are created.

When each rule of the transprimitiveND state is added in
a transprimitive state, a few elements, including the origi-
nal transprimitiveND state must be removed from the input
model. Once we bootstrap the higher order transformation,
we will model this behavior using a transprimitiveND state
with one rewrite rule for each element that needs to be re-
moved. When all transprimitiveND states are transformed,
the transformation completes.

4. RELATED WORK
The imperative realization from Section 2.2 executes rules
sequentially, in a random order. Alternatively, one could ex-
ecute the rules in parallel. It seems intuitive to rely on UML
Fork and Join elements to model the parallel nature of a
transformation system explicitly. However, neither version
of Fujaba nor MoTMoT generates any code aimed at parallel
execution (thread creation, synchronization, ...). Therefore,
a higher order transformation approach such as the one pre-
sented in Section 3 does not seem to be applicable. Instead,
one would have to extend the core of a particular story di-
agram tool. On the other hand, the use of standard UML
elements (see Section 2.1) does apply. Instead of relying on
UML activity diagrams as a standard language for control-
ling the application of rewrite rules, Syriani and Vangheluwe
rely on DEVS [7].

The non-determinism of implicit rule scheduling can lead
to unexpected results: in many cases, one rule for example
creates elements that are used by another one and deleted
by yet another rule. Since such dependencies can be intro-
duced accidentally, dedicated analysis support is desirable in
transformation tools that support languages with implicit
rule scheduling. For example, the AGG tool offers a so-
called Critical Pair Analysis (CPA [3]). To be applicable on
the proposed hybrid language, CPA algorithms need to take
into account nodes that are already bound from previously
executed rules in a control flow.

5. FUTURE WORK
As an easy extension to this paper, the algorithm can be
extended to support priorities or layers, as briefly stated in
Section 2.2. Support for layers can be realized in another
higher order transformation by putting together all rules of
the same priority in transprimiveND states, then ordering
them according to their priorities or layers. The higher or-
der transformation from this paper can then transform the
resulting model to a plain story diagram. In the case of pri-
orities, the execution engine needs to re-evaluate all rules
upon each iteration again, starting from rules with the low-
est priority. Although this can be realized again using a
higher order transformation, the one presented in this paper
produces quite a different control structure.

The current realization aims at true nondeterminism by us-
ing random numbers. In some cases however, the order of
the rules is irrelevant. More specifically, one may not care if
the same order is used at all times. In these cases, the ran-
dom number generator is nothing but a performance bottle-
neck. Therefore, we may extend our approach with another,



Figure 5: The rule in the higher order transformation that adds a perform pattern state and its transitions.

much simpler higher order transformation that imposes a
particular order on the rules instead of guaranteeing ran-
domness.

This paper discusses an algorithm for a transprimitiveND
state in combination with a �loop� stereotype. Without
a �loop�, the transprimitiveND state ensures that all the
rules are executed at most one time. A �success� tran-
sition will be followed if all rules did match once, and a
�failure� transition will be followed if any of the rules did’t
match. As an example, suppose that in Figure 2, besides
the No tables exist state, many other sanity checks have
to be passed before the actual transformation can be done.
All these checks could be referenced in one transprimitiveND
state, avoiding a cascading effect of states with �success�
and �failure� transitions, which could easily become very
verbose and confusing.

This paper presents a transformation language that is hybrid
with regards to rule scheduling. It is our ongoing work to
realize a language that is hybrid with regards to other con-
cerns, like execution direction and change propagation [8],
too.

6. CONCLUSION
This paper discusses a standard syntax, the informal seman-
tics and working tool support for a new language construct
that allows users to use implicit rule scheduling in story di-
agrams. We illustrated its relevance and meaning by means
of a toy example. As a more realistic example, we indi-
cated where the language construct could even improve the
readability and conciseness of its own compiler (i.e., that of
its supportive higher order transformation). As a generic
technique, this paper illustrated how profiles and higher or-
der transformations enable language engineers to contribute
new language contructs to a variety of tools (any version of
Fujaba, MoTMoT, ...) without writing code specific to the
editor or code generator of a particular tool.

7. REFERENCES
[1] J. Bézivin, B. Rumpe, A. Schürr, and L. Tratt. Model

transformations in practice workshop. In J.-M. Bruel,
editor, Satellite Events at the MoDELS 2005
Conference, volume 3844 of LNCS, pages 120–127,
2005.

[2] S. M. Kaplan and S. K. Goering. Priority controlled
incremental attribute evaluation in attributed graph
grammars. In J. Dı́az and F. Orejas, editors,
TAPSOFT, Vol.1, volume 351 of Lecture Notes in
Computer Science, pages 306–336. Springer, 1989.

[3] L. Lambers, H. Ehrig, and F. Orejas. Efficient conflict
detection in graph transformation systems by essential
critical pairs. Electron. Notes Theor. Comput. Sci.,
211:17–26, 2008.

[4] O. Lecarme, M. Pellissier, and M.-C. Thomas.
Computer-aided production of language
implementation systems: A review and classification. In
Software: Practice and Experience, volume 12, pages
785–824, 1982.

[5] J. Rekers and A. Schürr. Defining and parsing visual
languages with layered graph grammars. Journal of
Visual Languages and Computing, 8:27–55, 1997.

[6] H. Schippers, P. Van Gorp, and D. Janssens. Leveraging
UML profiles to generate plugins from visual model
transformations. Electronic Notes in Theoretical
Computer Science, 127(3):5–16, 2004. Software
Evolution through Transformations (SETra). Satellite
of the 2nd Intl. Conference on Graph Transformation.

[7] E. Syriani and H. Vangheluwe. Programmed graph
rewriting with DEVS. In M. Nagl and A. Schürr,
editors, International Conference on Applications of
Graph Transformations with Industrial Relevance,
Lecture Notes in Computer Science, Kassel, 2007.
Springer.

[8] P. Van Gorp. Model-driven Development of Model
Transformations. PhD thesis, University of Antwerp,
2008.


