
Composing Textual Modelling Languages in Practice

Bart Meyers

Dep. of Mathematics and
Computer Science

University of Antwerp
{Bart.Meyers}@ua.ac.be

Antonio Cicchetti

Malardalen Research and
Technology Centre (MRTC)

Malardalen University
{antonio.cicchetti}@mdh.se

Esther Guerra,
Juan de Lara

Dep. of Computer Science
Univ. Autónoma de Madrid

{Esther.Guerra,
Juan.deLara}@uam.es

ABSTRACT
Complex systems require descriptions using multiple mod-
elling languages, or languages able to express different con-
cerns, like timing or data dependencies. In this paper, we
propose techniques for the modular definition and composi-
tion of languages, including their abstract, concrete syntax
and semantics. These techniques are based on (meta-)model
templates, where interface elements and requirements for
their connection can be established. We illustrate the ideas
using the MetaDepth textual meta-modelling tool.

Categories and Subject Descriptors
I.6.5 [Simulation and Modeling]: Model Development—
Modeling methodologies

General Terms
Design, Languages

Keywords
Meta-Modelling, Language Composition, Concrete Textual
Syntax, MetaDepth

1. INTRODUCTION
In domain-specific modelling, the engineering of domain-

specific languages (DSLs) is a vital part of the development
cycle. Techniques such as meta-modelling and model trans-
formation greatly facilitate the development of such DSLs.
However, most methods for development require the lan-
guage engineer to start from scratch when developing a new
DSL. This is in contrast with the observation that there are
similarities between DSLs: one might need a new variant of
Petri nets, a different kind of automaton (as there are tens
of variants of these two formalisms), or the combination of
a number of formalisms. Therefore, there is a clear need for
reuse of existing languages, or language modules.
In this paper we introduce an approach for the modu-

lar composition of modelling languages, based on existing

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
MPM ’12 Innsbruck, Austria
Copyright 20XX ACM X-XXXXX-XX-X/XX/XX ...$15.00.

language modules. Inspired by generic programming [10],
we use existing, generic model composition mechanisms to
achieve this [5]. This way, we aim for general applicability of
our approach, provided that these composition mechanisms
are supported. A language is defined by its abstract syntax
(the structure of valid models, defined by a meta-model),
concrete syntax (the visual/textual representation of valid
models) and behavioural semantics (how its models run as
a system). We support the composition of the modules of
these three aspects of a language, and our implementation in
the MetaDepth tool [4] supports textual concrete syntax.
Paper organization. Sec. 2 presents a running example,
used throughout the paper. Sec. 3 introduces the compo-
sition mechanisms we use. Sec. 4 shows how to use these
mechanisms, illustrated by the running example. Sec. 5 dis-
cusses related work and Sec. 6 concludes the paper.

2. MOTIVATING EXAMPLE
In this section, we introduce our motivating example, i.e.,

Timed State Machines, and a model in this language, i.e., a
model of a traffic light, to be used in the following sections.

2.1 Timed State Machines
As a running example, we will implement a language for

timed automata [1]. A timed automaton is a finite-state
automaton with a number of clocks. The integer value of
each clock increases step-wise, along with the execution of
the automaton. A transition of a timed automaton may
have a guard expression over the clock values, which may
enable or disable the transition. A transition may also have
actions that assign a new value to a clock, after firing the
transition.

Figure 1 shows a model of the timed behaviour of a traffic
light, using Timed State Machines (visual syntax taken from
[2]). The model shows how a traffic light goes from green
to yellow, and to red, in respectively 20, 3, and 20 seconds.
This is the default behaviour, when the pedestrian button is
not pushed. When the traffic light is green and a pedestrian
wants to cross the road, he can push a button. Whenever
this happens, a press event occurs in the traffic light model,
and after 3 seconds, the light switches to yellow, and then
red, so that the pedestrian can cross. There are two clocks
in this model, x and y. The clock x represents the time that
the traffic light should be in the same state (green, yellow
or red), while y models the delay in changing from green to
yellow when the pedestrian pushes the button.

The Timed State Machine language proves to be an ex-
cellent example of our modular approach for language en-

greenyellowred

y>3

press

y:=0

x=20

nopress

x:=0; y:=4

y=3

nopress

x:=0

x=20

nopress

x:=0

x=3

nopress

x:=0

Figure 1: A Timed State Machine for a traffic light.

gineering as it can be seen as a combination of two inde-
pendent language modules: (a) finite state machines, and
(b) a language for expressions, with constructs for compar-
ison, assignment and simple mathematics (for the guards
and actions). These two language modules could be used
autonomously, or in combination (using our approach) with
different language modules. In this paper we will show how
to combine them, and additional constructs such as clocks
will have to be introduced.

2.2 Implementation in MetaDepth
For this paper, the concepts are illustrated using theMeta-

Depth tool [4]. This is a tool for textual modelling that
allows the definition of the three aspects of a language:
abstract, concrete syntax and semantics. Abstract syntax
is modelled using the MetaDepth default textual syntax,
which can be used on any meta-level. Domain-specific tex-
tual concrete syntax is modelled using a designated Meta-
Depth meta-model named TextualSyntax, which enables as-
signing the meta-model and each meta-class a syntactic tem-
plate indicating how their instances should be represented.
Models conforming to TextualSyntax are compiled to ANTLR
grammars1, with appropriate semantic actions to create the
model in-memory [6]. MetaDepth integrates the Epsilon
family of model management languages2. Hence, behavioural
semantics (e.g., the behaviour of the traffic light) are defined
with an in-place transformation using the Epsilon Object
Language (EOL) [11]. This is a language similar to OCL
with imperative constructs to e.g. create objects, and make
assignments.

3. COMPOSITION MECHANISMS
In this section we review some (meta-)model composi-

tion mechanisms that we will use in order to compose mod-
elling languages. These mechanisms are supported by the
MetaDepth tool [4, 5], but the ideas are general, applica-
ble to other modelling frameworks.

3.1 Extension
We use two extension mechanisms, at the class/object

level and at the meta-model/model level. Inheritance is used
as an extension mechanism for both types (class inheritance)
and objects. In the former case, children classes inherit at-
tribute types defined in parent classes. In the latter case,
inheritance acts as value overriding. In this way, if children
objects do not define a value for an attribute instance, the
value is taken from the parent object.

1http://www.antlr.org/
2http://www.eclipse.org/epsilon/

Regarding models, our first modularity mechanism is (meta-
)model extension, and is applicable to models and meta-
models. At the meta-model level, an extension is a meta-
model fragment that increments the elements in a base meta-
model, by adding new types, new constraints, or defining
new attributes of existing classes. Therefore, it is similar to
package merge in UML [8]. This mechanism allows a mod-
ular definition of meta-models, and is used intensively, e.g.,
in the definition of the UML itself [13].

Our extension mechanism works at the model level as well,
by using object inheritance. This is useful to define libraries
of predefined models, which can be later extended with fur-
ther objects, or to override the properties of existing objects.

Finally, models and meta-models can use the import di-
rective in order to access other model elements.

3.2 Concepts
Some of our composition mechanisms are based on ex-

pressing requirements that need to be fulfilled by other (meta-
)models, to enable their composition. Using terminology
from generic programming [10], we call structural concept to
a set of structural requirements to be fulfilled by a (meta-
)model. They can be used to express requirements both for
models and meta-models, and therefore have the form of a
model or a meta-model as well3. However, their elements
(classes, attributes, references) are interpreted as variables,
which need to be bound to the elements of the meta-model.

Concept

(requirements)
(Meta-)Model

Template

P
a
ra

m
s

Generic

Behaviour
«requires» «requires»

(Meta-)

Model-1

«binding»

(Meta-)

Model-2

(Meta-)

Model-n

«binding»

…

«binding»

«applicable to» «composable with»

Figure 2: Expressing generic behaviour and com-
posability criteria through concepts

Concepts are useful in several ways. First, one can define
operations over a concept, so that they become reusable.
When the concept gets bound to some meta-model, the op-
eration becomes applicable to it. In this case, the concept
expresses the requirements for the execution of an opera-
tion. Second, concepts can be used to express composition
requirements. Hence, it is possible define meta-model frag-
ments, where some elements of such fragment are variables.
The requirements for binding such variables to concrete ele-
ments in other models can be expressed through a concept.

The binding is a process by which the variables in a con-
cept are bound to elements in a meta-model [5]. It is a
one-to-one or many-to-one correspondence between the vari-
ables in the concept and elements in the meta-model, allow-
ing some heterogeneity between the concept and the meta-
model. For example, the subtyping relations in the concept
must be preserved in the meta-model, but the meta-model
may collapse several classes, or add intermediate ones.

In order to gain further flexibility, hybrid concepts can
reduce to a minimum the structure required from a spe-
cific meta-model, but requiring instead the implementation

3For simplicity, next we just talk about meta-model con-
cepts, but explanations are also applicable to model concepts

of some operations. Hence, in addition to a binding, the
user needs to implement some operations (in EOL). This is
a means to hide unessential structural requirements, which
could be implemented in different ways by different meta-
models, behind operations, like e.g. in Java interfaces.

3.3 Templates
While (meta-)model extension provides an extensibility

mechanism, such extensions are not a reusability mecha-
nism but a means for modularity. (Meta-)Model templates
enable a more flexible definition of model and meta-model
fragments, as they permit their connection (perhaps through
extension) to other models, which are not specified at design
time. Hence, a meta-model template is a meta-model where
some elements (meta-classes, features, associations) are vari-
ables. The connection requirements for such variables are
expressed through a concept.
Operation templates enable the definition of an operation

independently of a concrete meta-model. For this purpose,
they are defined over a concept. Hence the types used in
the operation are actually variables. Then, a binding from
the concept to some meta-model assigns a particular type to
each variable, and induces a retyping of the operation tem-
plate, which becomes applicable to the bound meta-model.
Once we have reviewed some composition mechanisms,

next section shows how they can be applied to our example.

4. COMPOSING MODELLING LANGUAGES
Next we show how to create the Timed State Machine lan-

guage from two existing language modules: StateMachine
and Expression. Using the composition mechanisms previ-
ously presented, we tackle the three aspects of the language:
abstract, concrete syntax, and semantics. The two language
modules are woven in four steps:

1. SMC : Template instantiation of the existing StateMa-
chine template with the existing Expression language,
to obtain SMC, a machine with conditions and actions;

2. TSM : Extension of SMC with a Clock language con-
struct, to obtain TSM, a state machine with time;

3. ExpressionTemplate: Extension of TSM to create a
new template ExpressionTemplate, linking identifiers
in the expressions to a particular value;

4. TimedStateMachine: Template instantiation of Expres-
sionTemplate to link identifiers with clocks.

Figure 3 shows these four steps. (Parts of) meta-models
are shown in blue squares representing a language module,
with normal arrows as associations and filled arrows as in-
heritance links. Template parameters are represented by
red dark squares (with the name of the variable preceded by
“&”), instantiations are represented by green dotted arrows,
and extension is represented by red “+” symbols.
Applying these four steps results in TimedStateMachine,

for which Associations have conditions and actions that can
refer to clock values: e.g., a transition that can only be fired
if the value of clock c is greater than 5 (see also 1).

4.1 Abstract Syntax
In order to create the abstract syntax for the language,

the four steps presented above are followed:
Step 1 Listing 1 shows a template for a state machine. It

has three template parameters (line 1), which are identifiers

preceded by a “&”. The first parameter represents a model
that contains the necessary concepts for conditions and ac-
tions and is imported into the StateMachine model (line
3). The second and third parameter represent the condition
and action construct, which are then referenced in Transi-
tion (lines 16–17): a Transition may have a condition, and
multiple actions. A Transition also has an incoming and
an outgoing State, and may have a symbol (lines 13–15),
that should be (represented by the constraint on lines 18–
20) in the alphabet (lines 4–7). A State can be an initial
state or a final state (lines 8–11), and there should be ex-
actly one initial state, and at least one final state (lines 22–
23). Constraints (lines 6, 18–20 and 22–23) are expressed in
EOL-code between dollar signs. The template requires the
fulfilment of the Evaluatable concept (line 2). This concept
(not shown due to space restrictions) states that &Condition
and &Action should be node elements of a model &Condi-
tionActionModel and should implement an operation eval
(we will come back to this issue in subsection 4.3).

1 template <&ConditionActionModel, &Condition, &Action>
2 requires Evaluatable(&ConditionActionModel, &Condition, &Action)
3 Model StateMachine imports &ConditionActionModel {
4 Node alphabet[1] {
5 size : int ;
6 minSize : $self . size>0$
7 }
8 Node State {
9 initialflag : boolean = false ;

10 finalflag : boolean = false ;
11 }
12 Node Transition {
13 incoming : State ;
14 outgoing : State ;
15 symbol : int [0..1];
16 condition : &Condition [0..1];
17 action : &Action[∗];
18 noinvalidsymbols : $alphabet. exists (a | Transition . all () . select
19 (t | t . incoming=self). forAll
20 (t | not t .symbol. isDefined () or t .symbol<a.size))$
21 }
22 oneInitial : $State. allInstances () .one(s | s . initialflag =true)$
23 severalFinal : $State. allInstances () . exists (s | s . finalflag =true)$
24 }
25 StateMachine<Expression, Expression :: Exp, Expression :: Assignment> SMC;

Listing 1: Template for the StateMachine module

A model exists for the Expression language, representing
simple algebraic expressions (omitted by space constraints).
The language contains an abstract Exp class which is a su-
perclass of all kinds of expressions, such as Equals, Plus,
Literal (a constant value) or Variable (an identifier), and it
also contains an Assignment element. Its Exp element can
serve as a condition for a Transition, and Assignment can
serve as an action for a Transition. In line 25 the template is
instantiated with the Expression language, with Exp as the
condition and Assignment as the action, resulting in SMC,
a state machine with conditions and actions.

1 Model TSM extends SMC {
2 Node Clock { time : int ; }
3 }

Listing 2: Adding the clock feature

Step 2 We still need an element denoting a clock, with a
clock value. This is achieved by using extension as shown in
Listing 2. Line 1 states that the current meta-model TSM
extends SMC, which is actually the template instantiation
shown in line 25 of Listing 1.

1 template <&ContextModel, &Context> requires IntGettable(&ContextModel, &Context)
2 Model ExpressionTemplate extends TSM, &ContextModel {
3 Node RefVar : Variable { context : &Context; }
4 }
5 ExpressionTemplate<TSM, TSM::Clock> TimedStateMachine;

Listing 3: Linking the Variable element to a clock

StateMachine Expression

&Condition

&Context

State

Clock

- time

Exp

Literal Ops
Transition

-condition

-action

Variable
T

S
M

&Action

RefVar

- context

E
x
p
re

s
s
io

n
T
e
m

p
la

te

TimedStateMachine

SMC

Assignment

1

2 3

4

…

Figure 3: The four steps for weaving the two languages.

Step 3 and 4 The conditions and actions use named
variables (e.g., x), which should refer to the clock values in
our final timed state machine. This means that a Variable
should be linked (i.e., have a context) to a Clock instance.
This is shown in Listing 3. First a template is created (lines
1–4) where a RefVar with a context is introduced. By using
template parameters, this is again a generic way of extending
the Expression language. The concept IntGettable will be
discussed in Section 4.3. Finally, the template is instantiated
with a Clock (line 5).

1 TimedStateMachine trafficlight {
2 Clock x { time = 0; }
3 Clock y { time = 0; }
4 alphabet a{ size = 2; }
5
6 State red { initialflag = true; finalflag = true;}
7 State green { finalflag = true;}
8 State yellow { finalflag = true;}
9

10 Transition r2g{ incoming= red; outgoing= green; condition= x20; action= [initx , inity4];}
11 Transition g2y{ incoming = green; outgoing = yellow; condition = x20; action= [initx]; }
12 //...
13 RefVar varx { name = ”x”; context = x; }
14 RefVar vary { name = ”y”; context = y; }
15 Literal zero { value = 0; }
16 //...
17 Literal twenty { value = 20; }
18 Assignment initx { op1 = varx; op2 = zero; }
19 //...
20 Equals x3 { op1 = varx; op2 = three; }
21 //...
22 GreaterThan ygt3 { op1 = vary; op2 = three; }
23 }

Listing 4: The traffic light model as an instance of
the TimedStateMachine.

The language TimedStateMachine that results from the
four steps can be instantiated as in Listing 4, which shows a
traffic light MetaDepth model4. The three states (lines 6–
8), some transitions (lines 10–11) and two clocks (lines 2–3)
from Figure 1 can be recognized, and the size of the alphabet
is 2 (line 4): there are symbols for pressing and not pressing
the button. The syntax is quite verbose, especially for the
conditions and actions (lines 10–23), which become similar
to abstract syntax trees. Naturally, a simpler, more intuitive
syntax is desirable, which we define next.

4.2 Concrete Syntax
InMetaDepth, textual concrete syntax can be defined by

creating a TextualSyntax model as described in detail in [6].
Similar to defining the abstract syntax, we use the four steps

4The syntax is explained in [4].

described above (i.e., we use the extension mechanisms) in
combination with the TextualSyntax language to obtain the
textual syntax model. Just like the abstract syntax model,
the concrete syntax model is composed modularly with max-
imal reuse of existing models. As a difference, this time
the template and composition mechanisms are used at the
model level, as we are building and connecting instances of
the TextualSyntax meta-model.

Listing 5 shows an excerpt of a template (with a slightly
simplified syntax for better understandability) for the con-
crete syntax of StateMachine. It defines the syntax for a
StateMachine model (lines 4–7), State instances (lines 9–15)
and Transitions (lines 17–21). Such definitions are included
in instances of TModel and TNode. In both cases, they need
to reference a given meta-model (field refModel) or meta-
class (field refNode), declare a syntactic template (temp-
Exp) and optionally, simple semantic actions (creationExp
field). The listing is actually a model template, so that the
syntactic template for Transition can reference the syntac-
tic templates defined for the template parameters (variables
&TCond and &TAct, in line 19), which will become available
when the model template is instantiated (lines 24–25).

1 template <&TConditionModel, &TCond, &TAct>
2 requires ModelTNode2(&TConditionModel, &TCond, &TAct)
3 TextualSyntax StateMachineSyntax imports StateMachine, &TConditionModel {
4 TModel TMachine {
5 refModel = StateMachine;
6 tempExp = [”StateMachine id { (&TState | &TTransition)∗ } ”];
7 }
8
9 TNode TState {

10 refNode = State;
11 tempExp = [”State id ;”, ” InitialState id ;”,
12 ”FinalSate id ;”, ” InitialFinalState id ;”];
13 creationExp = [””, ”# initialflag = true”,
14 ”# finalflag = true”, ”# initialflag = true ; # finalflag = true ”];
15 }
16
17 TNode TTransition {
18 refNode = Transition ;
19 tempExp = [”#incoming −[#symbol]−> #outgoing [&&TCond] / ([&&TAct])∗ ;”];
20 creationExp = [”#condition = &&TCond ; #action = &&TAct”];
21 }
22 //...
23 }
24 StateMachineSyntax<ExpressionSyntax, ExpressionSyntax::Texpr,
25 ExpressionSyntax :: Tass> SMCSyntax;

Listing 5: TextualSyntax model that describes
concrete syntax for StateMachine

The template is instantiated using ExpressionSyntax (lines
24–25, analogue to Listing 1 line 25), which is the Textu-
alSyntax model for the Expression language module (not
shown due to space limitations). The textual syntax of the

conditions and actions are the template parameters &TCond
and &TAct, that have to be TNodes in TextualSyntax model
&TConditionModel according to the ModelTNode2 concept
(lines 1–2, the concept itself is not shown). The TextualSyn-
tax model is compiled to an ANTLR grammar with seman-
tic actions [6], so that the parsing results in a MetaDepth
model. The remaining three steps also follow the structure
of the four steps, and are similar to the composition of the
abstract syntax model.
Listing 6 shows the traffic light model as an instance of

the TimedStateMachine, using the concrete syntax. The
model is much more concise and clear, in comparison to the
same model using the default abstract syntax description
(see Listing 4), especially for the conditions and actions.

1 TimedStateMachine trafficlight {
2 Clock x 0;
3 Clock y 0;
4 InitalFinalstate green;
5 FinalState yellow ;
6 FinalState red;
7 red−[0]−>green [x=20] / [x:=0] [y:=4];
8 green−[0]−>yellow [x=20] / [x:=0];
9 yellow−[0]−>red [x=3] / [x:=0];

10 green−[1]−>green [y>=4] / [y:=0];
11 green−[0]−>yellow [y=3] / [x:=0];
12 }

Listing 6: The traffic light model using the
modularly composed concrete syntax

4.3 Semantics
Abstract and concrete syntax are composed following the

same outline. This is possible, as they are both implemented
as MetaDepth models (meta-models in the case of the ab-
stract syntax), so the same composition mechanisms can
be used. Semantics are implemented as EOL programs, so
other mechanisms, namely concepts, have to be used.
Hence, we will define the simulator over the variable types

in concept ExecutableTimedStateMachine defined in List-
ing 7. The concept is actually a hybrid concept, as it requires
both a binding and an implementation of some operations.
The concept requires an entity &S modelling states, an en-
tity &T modelling transitions, and another one &C playing
the role of clocks. For each entity in the concept, we require
the implementation of some operations that will be used by
the simulator. In this way, we can decouple the semantics
from any specific meta-model, but we require a binding, plus
the implementation of some operations. Lines 19–21 show
the binding of the concept to the TimedStateMachine meta-
model we have defined in previous sections.

1 concept ExecutableTimedStateMachine(&M, &S, &T, &C) {
2 Model &M {
3 Node &S {
4 operation isInitial () : boolean;
5 operation isFinal () : boolean;
6 }
7 Node &T {
8 operation incoming() : &S;
9 operation outgoing() : &S;

10 operation canFire(symbol : int) : boolean;
11 operation action () ;
12 }
13 Node &C {
14 operation getValue() : int ;
15 operation setValue(value : int) ;
16 }
17 }
18 }
19 bind ExecutableTimedStateMachine(TimedStateMachine, TimedStateMachine::State,
20 TimedStateMachine::Transition, TimedStateMachine::Clock)
21 requires ”TimedStateMachineOps.eol”

Listing 7: Concept for binding semantics to a Timed
State Machine

Listing 8 shows the core of the semantics for the state
machine language. The operation uses the variable types

defined in the previous concepts, and their operations. First,
the initial state is set as the currently active state (line 4). In
each iteration of the while-loop (lines 6–17), the next symbol
on the input string is fed to the state machine. This is done
by first finding all enabled transitions (line 9). If there is
at least one enabled transition, one is chosen randomly and
is fired, all clock values are incremented (lines 10–15) and
the associated actions are triggered. If there is no enabled
transition, the clock values are incremented (line 16). When
all input symbols are consumed, the input is accepted if the
active state is final, else it is rejected (lines 18–19).

1 @concept(name=”ExecutableTimedStateMachine”)
2 operation main() {
3 //....
4 current := &S.select(s | s . isInitial ()) . first () ;
5 ws := 0;
6 while (ws < input. size ()) {
7 symb := input.at(ws);
8 ws := ws+1;
9 var x := &T.all() . select (t | t . incoming()=current and t. canFire(symb));

10 if (x. size ()>0) {
11 currenttrans := x.random();
12 current := currenttrans .outgoing() ;
13 for (c in &C.all()) c. setValue(c.getValue()+1);
14 for (a in currenttrans . action) a. eval () ;
15 }
16 else for (c in &C.all()) c. setValue(c.getValue()+1);
17 }
18 if (current . isFinal ()) (’The word ’+input+’ is accepted’) . println () ;
19 else (’The word ’+input+’ is rejected ’) . println () ;
20 }

Listing 8: Simulator for Timed State Machines

The use of these semantics requires the implementation
of a number of operations, such as isInitial, canFire or set-
Value, as stated in the concept shown in Listing 7. Listing 9
shows implementations of some of the operations for the
TimedStateMachine meta-model. Interestingly, such opera-
tions are defined modularly, over the different meta-models
involved in the composition: the StateMachine meta-model,
and the TSMmeta-model. Listing 10 shows some operations
needed by the Evaluatable concept referenced in Listing 1.

1 operation Transition canFire(symbol : Integer) : Boolean {
2 return (not self .symbol. isDefined () or self .symbol = symbol)
3 and (not self . condition . isDefined () or self . condition . eval ()) ; }
4 operation Clock setValue(value : Integer) { self .time := value ; }

Listing 9: Operations needed for state machine
semantics.

1 operation Assignment eval () { self .op1.context . setValue(self .op2.eval ()) ; }
2 operation Equals eval () : Boolean { return self .op1.eval () = self .op2.eval () ; }

Listing 10: Operations for the Assignment and
Equals elements of Expression, required by the
Evaluatable concept.

5. RELATED WORK
The problems related to domain-specific modelling and its

malleability are becoming more and more relevant. It can
be seen as a natural consequence of the ever increasing ex-
ploitation of DSLs for embracing the MDE vision in software
development [12]. Therefore, in the latest years a number
of research works have been devoted to improving language
design processes and in particular proposing the adoption of
language modularization and composition mechanisms.

The closest approach to the idea illustrated in this paper
is presented in [12], where the authors propose a language
embedding technique for creating families of DSLs. The ab-
stract syntax is defined through meta-modelling, the textual
concrete syntax is specified by means of a mapping between

metaelements and keywords, and the translational seman-
tics is expressed by means of a proper transformation lan-
guage. All the methodology relies on a “host” language (in
this case Ruby) that has to own enough expressiveness to al-
low the definition of keyword extensions, scope restrictions,
type and operator extensions and overrides. The main dis-
tinction with the technique discussed in this work is the ex-
pressive power of the template/binding mechanisms, which
allow us to obtain extensive forms of language combinations.
In contrast, in [12] merging and importing methods are ex-
ploited to address modularity.
In [14] the author discusses mechanisms for combining

DSLs with a particular focus on multiview-based modelling
approaches. In this respect, the combination of several view-
points (i.e. DSLs) is called synthesized meta-model and
is reached by means of a viewpoint unification technique.
In particular, correspondences are drawn among different
views and the unified result is obtained relying on them.
Since correspondences can be differentiated as refinements,
abstractions, equivalences, and implementations, DLSs can
be combined in several interesting ways. However, the ap-
proach does not offer combination facilities comparable to
the template/binding mechanism illustrated in this work,
and only deals with abstract and concrete syntax combi-
nations. Moreover, in general, merging graphical concrete
syntaxes discloses additional and non-trivial issues intrinsic
of iconic languages and implicit semantics associated to sym-
bols [7, 14]. That problem is alleviated in our work thanks
to the exploitation of textual concrete syntaxes.
DSLs composition through model weaving is proposed

in [7]: new software architecture languages can be designed
by composing existing ones by means of weaving links. Sim-
ilarly to [14], semantics associated to weaving links allow
creating merges, extensions, refinements, and specializations
among architectural languages. Additionally, in this case
combinations of language semantics are supported by adopt-
ing a reference“semantic core”to which all the concepts have
to refer to. The main difference with respect to our proposal
is the focus on the sole software architecture languages (that
simplifies the problem of semantics combination). Moreover,
weaving links semantics provide less expressive power if com-
pared to the template/binding mechanism discussed in this
work.
The use of templates in modelling is not new. They are

already present in the UML 2.0 specification [13], as well
as in approaches like Catalysis’ model frameworks [9] and
package templates, and the aspect-oriented meta-modelling
approach of [3]. Interestingly, while all of them consider
templates for meta-models or class diagrams, none consider
concepts or model templates. Moreover, they do not con-
sider concrete syntax or semantics.

6. CONCLUSIONS
In this paper, we have demonstrated the use of differ-

ent composition mechanisms to define the abstract, con-
crete syntax and semantics of a language in a modular way.
Abstract syntax and semantics are defined through meta-
models and models, and therefore template models and con-
cepts are used. The semantics are defined through an EOL
program, defined over an hybrid concept, which gathers the
entities an operations needed by the simulator, which should
then be implemented for the types of the different meta-
models involved in the composition.

In the future, we plan to apply this approach to fur-
ther examples. We are also working in supporting more
advanced textual concrete syntax and more advanced com-
position mechanisms allowing, e.g. a bidirectional binding
for two templates or a more flexible binding.

7. REFERENCES
[1] R. Alur and D. L. Dill. A theory of timed automata.

Theor. Comput. Sci., 126(2):183–235, Apr. 1994.

[2] J. Bengtsson and W. Yi. Timed automata: Semantics,
algorithms and tools. In Lectures on Concurrency and
Petri Nets, volume 3098 of LNCS, pages 87–124.
Springer, 2004.

[3] T. Clark, A. Evans, and S. Kent. Aspect-oriented
metamodelling. The Computer Journal, 46:566–577,
2003.

[4] J. de Lara and E. Guerra. Deep meta-modelling with
MetaDepth. In TOOLS’10, volume 6141 of LNCS,
pages 1–20. Springer, 2010.

[5] J. de Lara and E. Guerra. From types to type
requirements: Genericity for model-driven engineering.
Software and System Modeling, in press, 2011.

[6] J. de Lara and E. Guerra. Domain-specific textual
meta-modelling languages for model driven
engineering. In ECMFA’12, volume 7349 of LNCS,
pages 259–274. Springer, 2012.

[7] D. Di Ruscio, I. Malavolta, H. Muccini, P. Pelliccione,
and A. Pierantonio. Developing next generation adls
through mde techniques. In ICSE’10 (1), pages 85–94.
ACM, 2010.

[8] J. Dingel, Z. Diskin, and A. Zito. Understanding and
improving uml package merge. Software and System
Modeling, 7(4):443–467, 2008.

[9] D. F. D’Souza and A. C. Wills. Objects, components,
and frameworks with UML: the catalysis approach.
Addison-Wesley Longman Publishing Co., Inc., 1999.

[10] D. Gregor, J. Järvi, J. G. Siek, B. Stroustrup, G. D.
Reis, and A. Lumsdaine. Concepts: linguistic support
for generic programming in C++. In OOPSLA, pages
291–310. ACM, 2006.

[11] D. S. Kolovos, R. F. Paige, and F. Polack. The
Epsilon Object Language (EOL). In ECMDA-FA’06,
volume 4066 of LNCS, pages 128–142. Springer, 2006.

[12] J. Sanchez Cuadrado and J. G. Molina. A
model-based approach to families of embedded
domain-specific languages. IEEE Trans. Softw. Eng.,
35(6):825–840, Nov. 2009.

[13] UML. http://www.uml.org/.

[14] A. Vallecillo. On the combination of domain specific
modeling languages. In ECMFA’10, volume 6138 of
LNCS, pages 305–320. Springer, 2010.

