
Domain-Specific Modelling for
Human-Computer Interaction

Simon Van Mierlo, Yentl Van Tendeloo, Bart Meyers, and Hans Vangheluwe

1 Introduction

Developing complex, reactive, often real-time, software-intensive systems using a
traditional, code-centric approach, is not an easy feat: knowledge is required from
both the problem domain (e.g., power plant engineering), and computer program-
ming. Apart from being inefficient and costly, due to the need for an additional
programmer on the project, this can also result in more fundamental problems. The
programmer, who implements the software, has no knowledge of the problem do-
main, or basic knowledge at best. The domain expert, on the other hand, has deep
knowledge of the problem domain, but only a limited understanding of computer
programs. This can result in communication problems, such as the programmer
making false assumptions about the domain, or the domain expert to gloss over
details when explaining the problem to the programmer. Furthermore, the domain
experts will finally receive a software component that they don’t fully understand,
making it difficult for them to validate and modify if necessary. There is in effect a
conceptual gap between the two domains, hindering productivity.

Model-Driven Engineering (MDE) [30] tries to bridge this gap, by shifting the
level of specification from computing concepts (the “how”) to conceptual models
or abstractions in the problem domain (the “what”). Domain-Specific Modelling
(DSM) [12] in particular makes it possible to specify these models in a Domain-
Specific Modelling Language (DSML), using concepts and notations of a specific
domain. The goal is to enable domain experts to develop, understand, and verify
models more easily, without having to use concepts outside of their own domain. It

Simon Van Mierlo · Yentl Van Tendeloo · Bart Meyers
University of Antwerp, Belgium
e-mail: {simon.vanmierlo, yentl.vantendeloo, bart.meyers}@uantwerpen.be

Hans Vangheluwe
University of Antwerp, Belgium
McGill University, Canada
e-mail: {hv@cs.mcgill.ca}

1

2 Simon Van Mierlo, Yentl Van Tendeloo, Bart Meyers, and Hans Vangheluwe

allows the use of a custom visual syntax, which is closer to the problem domain, and
therefore more intuitive. Models created in such DSMLs are used, among others, for
simulation, (formal) analysis, documentation, and code synthesis for different plat-
forms. There is, however, still a need for a language engineer to create the DSML,
which includes defining its syntax, and providing the mapping between the problem
domain and the solution domain.

1.1 Case Study

In this chapter, we explain the necessary steps for developing a system using the
DSM approach, applied to the nuclear power plant control interface case study. We
build this human-computer interaction interface incrementally throughout the chap-
ter. The system consists of two parts:

1. The nuclear power plant, which takes actions as input (e.g., “lower the control
rods”), and outputs events in case of warning and error situations. Each nuclear
power plant component is built according to its specification, which lists a series
of requirements (e.g., “the reactor can only hold 450 bar pressure for 1 minute”).
These are specified in the model of each component. Components send warning
messages in case their limits are almost reached, such that the user can take
control and alleviate the problem. When the user is unable to bring the reactor
to a stable state, however, the component sends an error message, indicating that
an emergency shutdown is required to prevent a nuclear meltdown. There is a
distinction between two types of components:

a. Monitoring components, which monitor the values of their sensors and send
messages to the controller depending on the current state of the component.
An example is the generator, which measures the amount of electricity gener-
ated. Their state indicates the status of the sensors: normal, warning, or error.

b. Executing components, which receive messages from the controller and ex-
ecute the desired operation. An valve, for example, is either open or closed.
Their state indicates the physical state of the component, for example open or
closed.

2. The controller, which acts as the interface between the plant and the user. Users
can send messages to the controller by pressing buttons. It is, however, up to the
controller to pass on this request to the actual component(s), or choose to ignore
it (possibly sending other messages to components, depending on the state of the
reactor core). We implement a controller which has three main modes:

a. Normal operation, where the user is unrestricted and all messages are passed.
b. Restricted operation, where the user can only perform actions which lower

the pressure in the reactor. This mode is entered when any of the components
sends out a warning message. When all components are back to normal, full
control is returned to the user.

Domain-Specific Modelling for Human-Computer Interaction 3

c. Emergency operation, where control is taken away from the user, and the con-
troller takes over. This mode is entered when any of the components sends
out an error message. The controller will forcefully shut down the reactor and
ignore further input from the user. As there is likely damage to the power
plant’s components, it is impossible to go back to normal operation without a
full reboot.

We construct a DSML which allows to model the configuration of a nuclear
power plant, and express the behaviour of each component, as well as the con-
troller. We intend to automatically synthesize code, which behaves as specified in
the model. Additionally, we use the ProMoBox approach [17] to verify that all of the
desired (safety) properties are fulfilled by the modelled human-computer interface.

We use the open-source metamodelling tool AToMPM [29] (“A Tool for Multi-
Paradigm Modelling”) throughout this chapter, though the approach can be applied
in other metamodelling tools with similar capabilities. All aspects of defining a new
language are supported: creating an abstract syntax, defining custom concrete syn-
tax, and defining semantics through the use of model transformations.

1.2 Terminology

Concrete
syntax

Abstract
syntax

Semantic
domain

transformation

Graph

Semantic
mapping

m

M(m)

K(m)

Formalism

Syntax Semantics

Concrete Abstract
Semantic
Mapping

Semantic
Domain

Fig. 1 Terminology.

The first step in the DSM approach when modelling in a new domain is, after a
domain analysis, creating an appropriate DSML. A DSML is fully defined [13] by:

1. Its abstract syntax, defining the DSML constructs and their allowed combina-
tions. This information is typically captured in a metamodel.

2. Its concrete syntax, specifying the visual representation of the different con-
structs. This visual representation can either be graphical (using icons), or tex-
tual.

4 Simon Van Mierlo, Yentl Van Tendeloo, Bart Meyers, and Hans Vangheluwe

3. Its semantics, defining the meaning of models created in the domain [10]. This
encompasses both the semantic domain (what is its meaning), and the semantic
mapping (how to give it meaning).

For example, 1+2 and (+ 1 2) can both be seen as textual concrete syntax (i.e.,
a visualization) for the abstract syntax concept “addition of 1 and 2” (i.e., what
construct it is). The semantic domain of this operation is the set of natural numbers
(i.e., what it evaluates to), with the semantic mapping being the execution of the
operation (i.e., how it is evaluated). Therefore, the semantics, or “meaning”, of 1+2
is 3.

This definition of terminology can be seen in Figure 1. Each aspect of a for-
malism is modelled explicitly, as well as relations between different formalisms.
Throughout the remainder of this paper, we present these four aspects in detail, and
present the model(s) related to the use case for each.

Aside from the language definition, properties are defined that should hold for
models defined in the language and can be checked. Whereas such properties are
normally expressed in property languages, such as LTL [23], we will use the Pro-
MoBox [17] approach. With LTL, we would revert back to the original problem:
the conceptual gap between the problem domain and the implementation level is
reintroduced. With the ProMoBox approach, properties are modelled using a syntax
similar to that of the original DSML. Thus, the modeller specifies both the require-
ments, or properties, and design models in a familiar notation, lifting both to the
problem domain. In case a property doesn’t hold, feedback is furthermore given by
the system at the domain-specific level.

1.3 Outline

The remainder of this chapter is structured as follows. Section 2 presents the differ-
ent aspects of syntax: both abstract and concrete. Section 3 presents an introduction
to the definition of semantics, and how we apply this to our case study. Section 4
explains the need for properties at the same level as the domain-specific language,
and presents the ProMoBox approach. Section 5 concludes. Throughout the chapter,
we use the nuclear power plant case study to illustrate how each concept is applied
in practice.

2 Syntax

A syntax defines whether elements are valid in a specified language or not. It does
not, however, concern itself with what the constructs mean. With syntax only, it
would be possible to specify whether a construct is valid, but it might have invalid
semantics. A simple, textual example is the expression 1

0 . It is perfectly valid to write
this, as it follows all structural rules: a fraction symbol separates two recursively

Domain-Specific Modelling for Human-Computer Interaction 5

parsed expressions. However, its semantics is undefined, since it is a division by
zero.

2.1 Abstract Syntax

The abstract syntax of a language specifies its constructs and their allowed combi-
nations, and can be compared to grammars specifying parsing rules. Such defini-
tions are captured in a metamodel, which itself is again a model of the metameta-
model [14]. Most commonly, the metametamodel is similar to UML Class Dia-
grams, as is also the case in our case study. The metametamodel used in the ex-
amples allows to define classes, associations between classes (with incoming and
outgoing multiplicities), and attributes.

While the abstract syntax reasons about the allowable constructs, it does not state
anything about how they are presented to the user. In this way, it is distinct from
textual grammars, as they already offer the keywords to use [13]. It merely states
the concepts that are usable in the domain.

A possible abstract syntax definition for the nuclear power plant use case is
shown in Figure 2. It defines the language constructs, such as a reactor, pumps,
and valves, which can have attributes defining its state (e.g., a valve can be open or
closed). It also lists the allowed associations between abstract syntax elements (e.g.,
a generator cannot be directly connected to a steam valve).

The constructs for modelling the behaviour of the elements are also present. The
abstract syntax requires all components to have exactly one behavioural definition.
In this definition, the component is in a specific state which has transitions to other
states. For each transition, it is possible to define cardinalities, to limit the number of
outgoing links of each type. For example, the metamodel forbids a single state from
having two outgoing transitions of certain types. While we don’t yet give semantics
to our language, we already limit the set of valid models (i.e., for which semantics
need to be defined). By preventing ambiguous situations in the abstract syntax, we
do not need to take them into account in the semantic definition, as they represent
invalid configurations.

This language definition, together with the concrete syntax definition, is used
by AToMPM to generate a domain-specific syntax-directed modelling environment,
which means that only valid instances can be created. For example, if the abstract
syntax model specifies that there can only be a single SCRAM transition, then draw-
ing a second one will give an error. This maximally constrains the modeller and
ensures the models are (syntactically) correct by construction.

6 Simon Van Mierlo, Yentl Van Tendeloo, Bart Meyers, and Hans Vangheluwe

ElementWithBehaviour

OrthogonalComponent

name1:1String1=1OC_

water_level1:1int
pressure1:1int
rods_down1:1boolean

ReactorCore

SafetyValve

name1:1String
open1:1boolean1=1true

Pipe

CompositeState

State

current1:1boolean
initial1:1boolean

Condensor

water_level1:1int
pressure1:1int

WaterSource

WaterPump

flow_rate1:1int
name1:1String

output1:1int

Generator

TJunction

Turbine

Straight Bend
contain *

*
-ocContain

*

-containOC

*

-next_diverging

0..1

-diverging

0..1

-s_out

1 -s_in_

0..1

turbine

1

1

-c_out

1

-c_in

0..1

-w_out

1

-s_in

0..1

behaviour
1*

-s_out

1

-w_in

0..1

SCRAM

0..1 *

PumpOffState

PumpOnState

PumpState

on

0..1*

off
0..1*

after

seconds1:1int

after

*

*

GeneratorNormalState

GeneratorState

condition1:1String

onLoad

onLoad

* *

next
0..1

0..1

ControllerRestrictedState

ControllerAutomaticState

ControllerNormalState

ControllerState

normal

0..1*

error
0..1*

warning
0..1

*

ReactorOverpressureState

ReactorNormalState

RodsLoweringState

RodsDownState

ReactorState

condition1:1String

onPressure
onPressure

*

*

lower_rods

0..1*

condition1:1String

onWater
onWater

*

*

raise_rods0..1*

CondensorOverpressureState

CondensorNormalState

CondensorState

condition1:1String

onPressure

onPressure*

*

condition1:1String

onWater

onWater

**

ValveClosedState

ValveOpenState

ValveState

-open

0..1*

close
0..1

*

... ...

......
Fig. 2 Abstract syntax definition for the nuclear power plant domain (some subclasses omitted).

Domain-Specific Modelling for Human-Computer Interaction 7

2.2 Concrete Syntax

The concrete syntax of a model specifies how elements from the abstract syntax are
visually represented. The relation between abstract and concrete syntax elements
is also modelled: each representable abstract syntax concept has exactly one con-
crete syntax construct, and vice versa. As such, the mapping between abstract and
concrete syntax needs to be a bijective function. This does not, however, limit the
number of distinct concrete syntax definitions, as long as each combination of con-
crete and abstract syntax has a bijective mapping. The definition of the concrete
syntax is a determining factor in the usability of the DSML [1].

Multiple types of concrete syntaxes exist, though the main distinction is between
textual and graphical languages. Both have their advantages and disadvantages:
textual languages are more similar to programming languages, making it easier for
programmers to start using the DSML. On the other hand, visual languages can rep-
resent the problem domain better, due to the use of standardized symbols, despite
them being generally less efficient [22]. An overview of different types of graphical
languages is given in [4]. Different tools have different options for concrete syn-
tax, depending on the expected target audience of the tool. For example, standard
parsers always use a textual language, as their target audience consists of computer
programmers who specify a system in (textual) code.

While the possibilities with textual languages are rather restricted, graphical lan-
guages have an almost infinite number of possibilities. In [20], several “rules” are
identified for handling this large number of possibilities. As indicated beforehand, a
single model can have different concrete syntax representations, so it is possible for
one to be textual, and another to be graphical.

An excerpt of a possible visual concrete syntax definition for the nuclear power
plant use case is shown in Figure 3. Each of the constructs presented in the concrete
syntax model corresponds to the abstract syntax element with the same name. Every
construct receives a visual representation that is similar to the one defined in the
case study. In case of standardized icons or symbols, it would be trivial to define a
new concrete syntax model. Furthermore, a specific concrete syntax was created for
the definition of the states. Each state is a graphical representation of the state of
the physical component, making it easier for users to determine what happens. We
chose to attach the graphical representation given in the case study to represent the
normal functioning of the reactor core; this results in an identical representation of
the ‘normal reactor state’ and the ‘rods down state’.

Now that we have a fully defined syntax for our model, we create an instance of
the use case in AToMPM, of which a screenshot is shown in Figure 4. A domain-
specific modelling environment, generated from the language definition, is loaded
into AToMPM, as displayed by the icon toolbar at the top, below AToMPM’s gen-
eral purpose toolbars. This example instance shows a model very similar to the one
in the case study. Each component additionally has a specification of its dynamic
behaviour. This behaviour definition specifies when to send out messages, using the
state of the underlying system, as well as timeouts. The controller is also constructed
as per our presented case study.

8 Simon Van Mierlo, Yentl Van Tendeloo, Bart Meyers, and Hans Vangheluwe

GeneratorNormalState

GeneratorOverloadedState

GeneratorEmergencyState

CondensorNormalState

CondensorOverpressureState

CondensorHighWaterStateIcon

ReactorNormalStateIcon

ReactorOverpressureState

ReactorHighWaterState

RodsDownState

RodsLoweringState

RodsUpState

Fig. 3 Concrete syntax definition for the nuclear power plant domain (excerpt).

While the meaning of this model might be intuitively clear, this model does not
yet have any meaning, as there is no semantics defined. Defining the semantics of
this model is the topic of the next section.

3 Semantics

Since the syntax only defines what a valid model looks like, we need to give a mean-
ing to the models. Even though models might be syntactically valid, their meaning
might be useless or even invalid.

It is possible for humans to come up with intuitive semantics for the visual no-
tations used (e.g., an arrow between two states means that the state changes from
the source to the destination if a certain condition is satisfied). There is, however, a
need to make the semantics explicit for two main reasons:

1. Computers cannot use intuition, and therefore there needs to be some operation
defined to convey the meaning to the machine level.

2. Intuition might only take us that far, and can cause some subtle differences in
border cases. Having semantics explicitly defined makes different interpretations
impossible, as there will always be a “reference implementation”.

Semantics consists of two parts: the domain it maps to, and the mapping itself.
Both will be covered in the next subsections.

Domain-Specific Modelling for Human-Computer Interaction 9

Fig. 4 Screenshot of AToMPM with an example nuclear power plant instance.

10 Simon Van Mierlo, Yentl Van Tendeloo, Bart Meyers, and Hans Vangheluwe

3.1 Semantic Domain

The semantic domain is the target of the semantic mapping. As such, the seman-
tic mapping will map every valid language instance to a (not necessarily unique)
instance of the semantic domain. Many semantic domains exist, as basically ev-
ery language with semantics of its own can act as a semantic domain. The choice
of semantic domain depends on which properties need to be conserved. For exam-
ple, DEVS [31] can be used for simulation, Petri nets [21] for verification, Stat-
echarts [8] for code synthesis, and Causal Block Diagrams [3] for continuous
systems using differential equations. A single model might even have different se-
mantic domains, each targeted at a specific goal.

For our case study, we use Statecharts as the semantic domain, as we are inter-
ested in the timed, reactive, autonomous behaviour of the system, as well as code
synthesis. Statecharts were introduced by David Harel [8] as an extension of state
machines and state diagrams with hierarchy, orthogonality, and broadcast communi-
cation. It is used for the specification and design of complex discrete-event systems,
and is popular for the modelling of reactive systems, such as graphical user inter-
faces. The Statecharts language consists of the following elements:

• states, either basic, orthogonal, or hierarchical;
• transitions between states, either event-based or time-based;
• actions, executed when a state is entered and/or exited;
• guards on transitions, modelling conditions that need to be satisfied in order for

the transition to “fire”;
• history states, a memory element that allows the state of the Statechart to be

restored.

Figure 5 presents a Statecharts model which is equivalent to the model in our
DSML, at least with respect to the properties we are interested in. Parts of the struc-
ture can be recognized, though information was added to make the model compli-
ant to the Statecharts formalism. Additions include the sending and receiving of
events, and the expansion of forwarding states such as in the controller. The seman-
tic mapping also merged the different behavioural parts into a single Statechart.
There are two types of events in the resulting Statecharts model: discrete events
coming from the operator (e.g., lower control rods), and events coming from the
environment, corresponding to sensor readings (e.g., water level in reactor). These
discrete values are changed into boundary crossing checks, which cannot be easily
modelled using Statecharts. Instead, to model these, a more suitable formalism
should be chosen, such as Causal-Block Diagrams [3] (CBDs). These CBD mod-
els then need to be embedded into the Statecharts model. This requires to connect
both formalisms semantically, such that, for example, a signal value in the CBD
model translates to an event in the Statecharts model [2]. This is out of scope for
this paper, and does not influence the properties we are interested in. We assume the
sensor readings are updated correctly and communicated to our Statecharts model.

Domain-Specific Modelling for Human-Computer Interaction 11

As is usually the case, the DSML instance is more compact and intuitive, com-
pared to the resulting Statechart instance. The Statecharts language itself also
needs to have its semantics defined, as done in [9].

In the following subsection, we define one semantic mapping that maps onto
the Statecharts language (called “translational semantics”) and one mapping that
maps the language onto itself (called “operational semantics”).

3.2 Semantic Mapping

While many categories of semantic mapping exist, as presented in [32], we only
focus on the two main categories relevant to our case study:

1. Translational semantics, where the semantic mapping translates the model from
one formalism to another, while maintaining an equivalent model with respect
to the properties under study. The target formalism has semantics (again, either
translational or operational), meaning that the semantics is “transferred” to the
original model.

2. Operational semantics, where the semantic mapping effectively executes, or
simulates, the model being mapped. Operational semantics can be implemented
with an external simulator, or through model transformations that simulate the
model by modifying its state. The advantage of in-place model transformations
is that semantics are also defined completely in the problem domain, making it
suitable for use by domain experts. For our case study, this means implementing
a simulator using model transformations.

Due to the possibly many semantic mappings, their chaining can be explicitly
modelled in a Formalism Transformation Graph + Process Model (FTG+PM) [16].
An FTG+PM can encompass both automatic transformations (i.e., through model
transformations) and manual transformations (i.e., through a user creating a related
model).

The semantic mapping, which translates between a source and target model, is
commonly expressed using model transformations, which are often called the heart
and soul of Model-Driven Engineering [25]. A model transformation is defined us-
ing a set of transformation rules, and a schedule.

A rule consists of a Left-Hand Side (LHS) pattern (transformation pre-condition),
Right-Hand Side (RHS) pattern (transformation post-condition), and possible Neg-
ative Application Condition (NAC) patterns (patterns which, if found, stop rule ap-
plication). The rule is applicable on a graph (the host graph), if each element in the
LHS can be matched in the model, without being able to match any of the NAC
patterns. When applying a rule, the elements matched by the LHS are replaced by
elements of the RHS in the host graph. Elements of the LHS that don’t appear in
the RHS are removed, and elements of the RHS that don’t appear in the LHS are
created. Elements can be labelled in order to correctly link elements from the LHS
and RHS.

12 Simon Van Mierlo, Yentl Van Tendeloo, Bart Meyers, and Hans Vangheluwe

Normal

Overload

Emergency

[pressure > 100] /
warn(pressure)

[pressure > 120] /
error(pressure)

tm(30s) /
error(pressure)

[pressure < 100] /
normal(pressure)

Normal

High

Emergency

[water > 4500] /
warn(water)

[water > 5000] /
error(water)

[water < 4500] /
normal(water)

Low

[water < 500] /
warn(water)

[water > 500] /
normal(water)

[water < 300] /
error(water)

Condensor

Normal

Overload

Emergency

[pressure > 400] /
warn(pressure)

[pressure > 450] /
error(pressure)

tm(30s) /
error(pressure)

[pressure < 400] /
normal(pressure)

Normal

High

Emergency

[water > 2200] /
warn(water)

[water > 2400] /
error(water)

[water < 2200] /
normal(water)

Low

[water < 1700] /
warn(water)

[water > 1700] /
normal(water)

[water < 1500] /
error(water)

Up Lowering

Lifting Down

rods_lower

SCRAM

rods_lift

[rods_down]

[rods_up]

SCRAM

rods_lift

rods_lower

Reactor core

Normal Restricted Shutdown

H*

open_SV2 / SV2_open
open_WV1 / WV1_open
open_WV2 / WV2_open

close_SV1 / SV1_close

start_WP1 / WP1_start
start_WP2 / WP2_start

lower_rods / rods_lower
start_CP / CP_start

open_SV1 / SV1_open
close_SV2 / SV2_close
close_WV2 / WV2_close
close_WV1 / WV1_close

stop_WP1 / WP1_stop
stop_WP2 / WP2_stop

lift_rods / rods_lift
stop_CP / CP_stop

warn

normal

error

Controller

Normal

Overload

Emergency

[output > 750] /
warn(generator)

[output > 800] /
error(generator)

tm(30s) /
error(generator)

[output < 750] /
warn(generator)

Generator

Close

Open

SV1_close

SV1_open

SCRAM

Steam Valve 1

Close

Open

WV1_close
WV1_open SCRAM

Water Valve 1

Off

On

WP1_stop
WP1_start SCRAM

Water Pump 1

Off

On

WP2_stop
WP2_start SCRAM

Water Pump 2

Off

On

CP_stop
CP_start SCRAM

Condensor Pump

Close

Open

WV2_close
WV2_open SCRAM

Water Valve 2

Close

Open

SV2_close
SV2_open SCRAM

Steam Valve 2

Fig. 5 Statechart equivalent to the behaviour shown in Figure 4.

Domain-Specific Modelling for Human-Computer Interaction 13

A schedule determines the order in which transformation rules are applied. For
our purpose, we use MoTiF [28], which defines a set of basic building blocks for
transformation rule scheduling. We limit ourself to three types of rules: the ARule
(apply a rule once), the FRule (apply a rule for all matches simultaneously), and the
CRule (for nesting transformation schedules).

In the following subsections, we define both the operational and translational
semantics of our modelling language.

3.2.1 Translational Semantics

With translational semantics, the source model is translated to a target model, ex-
pressed in a different formalism, which has its own semantic definition. The (par-
tial) semantics of the source model then correspond to the semantics of the target
model. As the rule uses both concepts of the problem domain and the target domain
(Statecharts in our case), the modeller should be familiar with both domains. The
Statecharts language, however, is still much more intuitive and, in the case of a
real-time, reactive, autonomous system, more appropriate to use than the average
programming language.

The schedule of our transformation is shown in Figure 6, where we see that each
component is translated in turn. Each of these blocks are composite rules, meaning
that they invoke other schedules. One of these schedules is shown in Figure 7, where
the valves are translated. The blocks in the schedule are connected using arrows
to denote the flow of control: green arrows are followed when the rule executed
successfully, while red arrows are followed when an error occurred. Three pseudo-
states denote the start, the succesful termination, and the unsuccesful termination
of the transformation. Our schedule consists of a series of FRules, which translate
all different valve states to the corresponding Statecharts states. After these are
mapped, the transitions between them are also translated, as shown in the example
rule in Figure 8. In this rule, we look up the Statecharts states generated from
the domain-specific states, and create a link between them if there was one in the
domain-specific language. For each kind of link, there needs to be such a rule. In
this case, we map the SCRAM message to a Statecharts transition which takes
a specific kind of event. Note that we do not remove the original model, ensuring
traceability.

The generated Statechart can be coupled to a user interface, to allow user inter-
action. Figure 9 presents an example interface, created with Python TkInter. To the
left, the user is presented with a colour-coded overview of the system. The states
of operational elements (valves, for example) are marked in grey, and elements that
can emit a warning or error message are marked in either green, orange, or red. On
top, an overview of the current state of the system is shown, indicating what level of
responsiveness the user can expect. At the bottom is a SCRAM button, which, when
pressed, will simply emit the “SCRAM” event to the Statecharts model. The visual
representation at the right labels all parts, and provides more in-depth information
about each component. Elements can be clicked to interact with them. For example,

14 Simon Van Mierlo, Yentl Van Tendeloo, Bart Meyers, and Hans Vangheluwe

Fig. 6 Top-level transformation schedule. Fig. 7 Transformation schedule for valves.

0

1

2

<coded>

3

4

5

6

0

__pValveStateIcon

1

__pValveStateIcon

2

3

6

5

4

7
__pValveStateIcon

__pValveStateIcon

<
co
d
ed
>

<coded><coded>

<coded>

Fig. 8 Example transformation rule for translational semantics.

a pump can be enabled or disabled by clicking on it in the figure. As previously
mentioned, this interface is only a minimal example to illustrate the applicability of
our approach.

After creating this interface, it needs to be coupled to the Statecharts model.
This is done through the use of events: the interface uses the interface of the model
to raise and catch events to and from the Statecharts model. For example, press-
ing the “SCRAM” button raises the “SCRAM” event. Similarly, when the interface
catches the event “warning high core pressure”, it visualizes this change by chang-
ing the color of the pressure reading. As such, the interface doesn’t implement any
autonomous behaviour, but relies fully on the Statecharts model. Different inter-
faces can be coupled, as long as they adhere to the interface of the model.

Domain-Specific Modelling for Human-Computer Interaction 15

Fig. 9 Example interface in Python TkInter.

3.2.2 Operational Semantics

A formalism is operationalized by defining a simulator for that formalism. This
simulator can be modelled as a model transformation that executes the model by
continuously updating its state (effectively defining a “stepping” function). The next
state of the model is computed from the current state, the information captured in
the model (such as state transitions and conditions), and the current state of the
environment. Contrary to translational semantics, the source model of operational
semantics is often augmented with runtime information. This requires the creation
of both a “design formalism” and a “runtime formalism”. In our case study, for
example, the runtime formalism is equivalent to the design formalism augmented
with information on the current state and the simulated time, as well as a list of
inputs from the environment.

An example rule is shown in Figure 10. The rule changes the current state by
following the “onPressure” transition. The left hand side of the rule matches the
current state, the value of the sensor, and the destination of the transition. It is only
applicable if the condition on the transition (e.g., > 450) is satisfied (by comparing it
to the value of the sensor reading). We use abstract states for both source and target
of the transition, as we do not want to limit the application of the rule to a specific

16 Simon Van Mierlo, Yentl Van Tendeloo, Bart Meyers, and Hans Vangheluwe

combination of states: the rule should be applicable for all pairs of reactor states that
have an “onPressure” transition. The right hand side then changes the current state
to the target of the transition.

The schedule has the form of a “simulation loop”, but is otherwise similar to the
one for translational semantics and is therefore not shown here.

0 1

2

T...
T...

3

4
4

7

<
<
b
eh
avio

r>
>

8

9

0 1

3

8

7

2
10

<coded>

__pReactorStateIcon __pReactorStateIcon

<
<
b
eh
avio

r>
>

<coded>

__pReactorStateIcon __pReactorStateIcon

T...
T...

Fig. 10 Example transformation rule for operational semantics.

4 Verification of Properties

DSM mainly focuses on the design of software systems, but can also greatly help in
formal verification of these systems. Requirements can be made explicit in the form
of properties; questions one can ask of the system, and for which the answer is either
“yes” or “no”. Depending on the nature of the verification problem, these properties
can be checked using model checking, symbolic execution, constraint satisfaction,
solving systems of equations, etc.

The general verification process is shown in Figure 11, where a formal model
and properties are fed into a verification engine. If no counterexample is found, the
system satisfies the property. If a counterexample is found, it needs to be visualised
to be able to correct the formal model, after which the verification process can be
restarted.

In the context of DSM, model-to-model transformations can be used to trans-
form the DSML instance to a formal model, on which model checking can be ap-

Domain-Specific Modelling for Human-Computer Interaction 17

Fig. 11 Verification of formally specified systems

plied [24]. In this case the modeller needs to specify and check the properties di-
rectly on the formal model, often in a notation as LTL [23], and needs to transform
the verification results back to the DSM level. Having to work with such intricate
notations contradicts the philosophy of DSM, where models should be specified in
terms of the problem domain.

One solution is to create a DSML for property specification in the same man-
ner as the DSML for designing systems. An example is TimeLine [26]: a visual
DSML for specifying temporal constraints for event-based systems. Developing and
maintaining yet another DSML comes at a great cost, again contradicting the DSM
philosophy of fast language engineering. Possible counterexamples also need to be
visualised somehow, possibly requiring yet another DSML.

In this section we apply the ProMoBox approach [17, 18, 19] which resolves the
above issues to the nuclear power plant DSML. The ProMoBox approach for the Nu-
clear Power Plant Control (NPPC) is laid out in Figure 12. Minimal abstraction and
annotation of the NPPC’ DSML is required to generate the ProMoBox—a family of
five DSMLs that cover all tasks of the verification process:

• The design language NPPCD allows DSM engineers to design the static structure
of the system, similarly to traditional DSM approaches as described earlier in this
chapter.

• The runtime language NPPCR enables modellers to define a state of the system,
such as an initial state as input of a simulation, or a particular “snapshot” or state
during runtime.

• The input language NPPCI lets the DSM engineer model the behaviour of the
system environment, for example by modelling an input scenario as an ordered
sequence of events containing one or more input elements.

• The output language NPPCO is used to represent execution traces (expressed as
ordered sequences of states and transitions) of a simulation or to show verifica-
tion results in the form of a counterexample. Output models can also be created
manually as part of an oracle for a test case.

• The property language NPPCP is used to express properties based on modal
temporal logic, including structural logic and quantification.

18 Simon Van Mierlo, Yentl Van Tendeloo, Bart Meyers, and Hans Vangheluwe

Fig. 12 The ProMoBox approach applied to the nuclear power plant control (NPPC) DSML

The bottom side of Figure 12 reflects one instance using the SPIN model checker
of the verification process shown in Figure 11. The modeller uses the ProMoBox to
model not only the nuclear power plant system, but also temporal properties. The
ProMoBox approach supports fully automatic compilation to LTL and Promela, ver-
ification using the SPIN Model Checker [11], and subsequent visualisation of coun-
terexamples. In conclusion, by using the ProMoBox approach the user can specify
or inspect all relevant models at the domain-specific level, while the development
overhead is kept to a minimum.

4.1 Abstraction and Annotation Phase

Since model checking techniques will be applied, a simplification step might be
necessary to reduce the combinatorial search space of the model, to avoid long ver-
ification time or extensive memory usage. This scalability problem is inherent to
model checking: typical culprits for state space explosion are the number of vari-
ables and the size of variable’s domains. Attributes in the metamodel must therefore
be simplified by abstracting the domain of some relevant language constructs (see
Figure 13).

• All attributes of type integer are reduced to booleans or enumerations. We use
system information to find the enumeration values, meaning that the DSML is
reduced to an even smaller domain: the enumeration values represent ranges of
integer values (for example, high, low, or normal water levels abstract away the

Domain-Specific Modelling for Human-Computer Interaction 19

ReactorCore

<<tr>>water_levelx:x5V
<<tr>>pressurex:x3V
<<rt>>rods_downx:xboolean

SafetyValve

namex:xString
<<rt>>openx:xbooleanx=xtrue

WaterPump

<<rt>>flow_ratex:xboolean
namex:xString

Condensor

<<tr>>water_levelx:x5V
<<tr>>pressurex:x3V

<<enumeration>>
5V

warning_high

warning_low

critical_high

critical_low

normal

Pipe

<<enumeration>>
3V

warning
normal

critical

Generator

<<tr>>outputx:x3V

WaterSource

TJunction

Straight

Turbine

Bend

-next_diverging

0..1

-diverging

0..1

-s_out

1 -s_in_

0..1

turbine

1

1

-w_out

1

-s_in

0..1

-c_out

1

-c_in

0..1

-s_out

1

-w_in

0..1

next
0..1

0..1

Fig. 13 The simplified and annotated metamodel (excerpt)

actual value of the water level, but can still be used for analysis, as we are only
interested in what ‘state’ the water level is in).

• Conditions on transitions are reduced to denote which of the enumeration values
yields true (as a set of enumeration literals).

• The attribute denoting number of seconds in the after attribute of the association
is removed, since no concept of real time will be used in the properties.

Other simplifications to reduce the state space, such as rearranging the transfor-
mation schedule and breaking down metamodel hierarchy, are beyond the scope of
this chapter. The ProMoBox approach includes guidelines for simplification.

Once all necessary simplifications are performed, annotations need to be added
to the DSML’s metamodel. Annotations add semantics to elements in the metamodel
(classes, associations and attributes), denoting whether elements are static (do not
change at runtime), dynamic (change at runtime, thus reflect the state of the sys-
tem), or are part of the environment. To achieve this, annotations mark in which
of the five languages these elements should be available. By default, elements are
not annotated, meaning that they appear in the design, runtime, output, and property
languages, but not in the input language.

Three annotations are provided:

• «rt»: runtime, annotates a dynamic concept that serves as output (e.g., a state
variable);

• «ev»: an event, annotates a dynamic concept that serves as input only (e.g., a
marking);

• «tr»: a trigger, annotates a static or dynamic concept that also serves as input
(e.g., a transition event).

20 Simon Van Mierlo, Yentl Van Tendeloo, Bart Meyers, and Hans Vangheluwe

<<enumeration>>
5V

warning_high

warning_low

critical_high

critical_low

normal

Pipe

DesignElement

<<enumeration>>
3V

warning
normal

critical

Condensor

water_leveld:d5V
pressured:d3V

ReactorCore

water_leveld:d5V
pressured:d3V

WaterSource

SafetyValve

named:dString

WaterPump

named:dString

outputd:d3V

Generator

TJunction

Turbine

Straight Bend

-s_out

1

-w_in

0..1

-next_diverging

0..1

-diverging

0..1

-s_out

1 -s_in_

0..1

turbine

1

1

-w_out

1

-s_in

0..1

-c_out

1

-c_in

0..1

next
0..1

0..1

Fig. 14 The generated NPPC design language NPPCD (excerpt).

Other annotations can be added to the annotations model, as long as certain con-
straints are met (e.g., availability in the design language implies availability in the
runtime language).

In Figure 13 we show some attribute annotations. The attributes flow_rate, open,
rods_down and current represent the observable state of the nuclear power plant
and are therefore annotated with «rt». The attributes water_level and pressure can
be changed by the environment and are therefore annotated with «tr». Classes, as-
sociations, and attributes such as name and initial are not annotated, meaning that
they are only part of the static structure of the model.

The concrete syntax of the simplified DSML requires slight adaptation, such that
the enumeration values are shown instead of the integers. The simplified and an-
notated metamodel, of which an excerpt is shown in Figure 13, contains sufficient
information to generate the ProMoBox consisting of five languages.

4.2 ProMoBox Generation Phase

A family of five languages is generated from the annotated metamodel using a
template-based approach. For every language, the elements of the annotated meta-
model according to the annotations are combined with a predefined template.

For example, Figure 14 shows the metamodel of the generated design language
NPPCD. Generic template elements (shown as grey rectangles in Figure 15) are

Domain-Specific Modelling for Human-Computer Interaction 21

Transition

rule_executionm:mRuleExecutionm[0..1]
input_eventm:mEventm[0..1]

water_levelm:m5V
pressurem:m3V
rods_downm:mboolean

ReactorCore

<<enumeration>>
5V

warning_high

warning_low

critical_high

critical_low

normal

WaterPump

flow_ratem:mboolean
namem:mString

Pipe

OutputElement

idm:mString

<<enumeration>>
3V

warning
normal

critical

Condensor

water_levelm:m5V
pressurem:m3V

WaterSource

SafetyValve

namem:mString
openm:mboolean

outputm:m3V

Generator

TJunction

Straight

Turbine

Trace

Bend

State

elementmm-

nextState1 0..1

nextTransition 0..11

currentState

10..1

state
{ordered}

-1

-s_out

1

-w_in

0..1

-next_diverging

0..1

-diverging

0..1

-s_out

1 -s_in_

0..1

turbine

1

1

-w_out

1

-s_in

0..1

-c_out

1

-c_in

0..1

next
0..1

0..1

Fig. 15 The generated NPPC output language NPPCO (excerpt), shaded elements are part of the
template.

combined with the DSL metamodel elements through the use of inheritance. The
template consists of one simple class DesignElement with an attribute id, used for
traceability. All DSML classes transitively inherit from this single class. Some at-
tributes, such as flow_rate, open, rods_down and current, are left out of the design
language. They represent state information that is only part of the running system,
and not of the static structure of the system. Since the design language consists
solely of static information, attribute values of the above attributes are not visible,
nor available, in the design language’s instance.

The metamodel of the runtime language NPPCR (not shown) is similar. It does,
however, include the aforementioned attributes such that the state of the system can
be represented with this language. An instance of the runtime language looks similar
to an instance of the design DSML (shown in Figure 4), where the current state is
marked and attribute values are shown.

Figure 15 shows the metamodel of the generated output language NPPCO. The
template represents an output Trace with Transitions between system States. These
States contain OutputElements representing a runtime state of the modelled system,
such that a Trace represents a step-by-step execution trace. As the annotations dic-
tate, all elements of the annotated metamodel are present in NPPCO. Instances of
the input (NPPCI) and output (NPPCO) languages (not shown) look like a sequence
of runtime language instances, but can also be left implicit due to spatial constraints.

22 Simon Van Mierlo, Yentl Van Tendeloo, Bart Meyers, and Hans Vangheluwe

StructuralPattern

name>:>String
condition>:>Condition>=>return>True
dynamic>:>boolean

OrderedTemporalPattern

ReactorCore

water_level>:>Condition
pressure>:>Condition
rods_down>:>Condition

Condensor

water_level>:>Condition
pressure>:>Condition

BoundedExistence

n>:>Integer

QuantifiedPattern

quantifier>:>Quantifier

WaterPump

flow_rate>:>Condition
name>:>Condition

PropertyElement

id>:>String
label>:>String
condition>:>Condition

Pipe

LowerBounded

UpperBounded

<<enumeration>>
Quantifier

exists
forAll

BinaryPattern

output>:>Condition

Generator

ImpliesPattern

AtomicPattern

SafetyValve

name>:>Condition
open>:>Condition

UnaryPattern

WaterSource

Specification

name>:>String

Precedence

Universality

AndPatternNotPattern

Response

TJunction

Existence

OrPattern

AfterUntilBetween

Absence

Pattern

Turbine

Straight

Globally

Before

Scope

After

Bend

1

1
1

1

1

-s_out

0..1

-w_in

0..1

-s_out

0..1 -s_in_

0..1

-next_diverging

0..1

-diverging

0..1

1..*

1

turbine

0..1

0..1

1

1

-w_out

0..1

-s_in

0..1

-c_out

0..1

-c_in

0..1

2

next
0..1

0..1

1

TemporalPattern

Fig. 16 The generated NPPC properties language NPPCP (excerpt), shaded elements are part of
the template.

They can be “played out” step by step on the modelled system to replay the execu-
tion it represents.

Domain-Specific Modelling for Human-Computer Interaction 23

Fig. 17 Property 1: if the generator is in the error state, the rods will eventually be lowered.

The generated metamodel of property language NPPCP, shown in Figure 16,
allows the definition of temporal properties over the system behaviour by means of
four constructs:

• quantification (∀ or ∃) allows the user to specify whether the following temporal
property should apply to all or at least one match of a given pattern over the
design model;

• temporal patterns (based on [5]) allow the user to choose from a number of in-
tuitive temporal operators over occurrences of a given pattern in a state of the
modelled system, such as after the reactor is in the low water state, it should
eventually go back to the normal state. These temporal patterns can be scoped
(i.e., should only be checked) within certain occurrences of a given pattern;

• structural patterns (based on [6, 7]) allow the user to specify patterns over a
single state of the modelled system, such as a component is in warning state.
Structural patterns can be composed, but are always evaluated on a single state
of the modelled system;

• instead of (a subset of) the DSML, a pattern language of the DSML (generated
using the RAMification process [15, 27]) is used, such that domain-specific pat-
terns rather than models can be specified. The effects of this are reflected in
NPPCP, where all attribute types are now Conditions (expressions that return a
boolean), all abstract classes are concrete, and the lower bounds of association
cardinalities is relaxed.

The resulting language has a concrete syntax similar to the DSML, and the quan-
tification and temporal patterns (instead of LTL operators) are raised to a more in-
tuitive level through the use of natural language.

4.3 Specifying and Checking Properties Using ProMoBox

Figures 17 and 18 show properties specified in the property language NPPCP. These
patterns reuse domain-specific language elements to allow the specification of pat-
terns, and ultimately properties in a domain-specific syntax. Figure 17 shows a Re-

24 Simon Van Mierlo, Yentl Van Tendeloo, Bart Meyers, and Hans Vangheluwe

Fig. 18 Property 2: if the generator is in the warning state, the rods can only become raised if the
generator passed through the normal state.

sponse pattern, and Figure 18 shows an Existence pattern, bounded by an Upper and
Lower bound.

As shown in Figure 12, properties specified in the property language are com-
piled to LTL, and the compiler produces a Promela model [11] that includes a
translation of the initialised system, the environment, and the rule-based operational
semantics of the system. This translation is generic, and thus independent of the
DSML. The properties are checked by the SPIN model checker, which evaluates ev-
ery possible execution path of the system. In case of Figure 17, no counterexample
is found, meaning that the system satisfies this property in every situation.

For the property modelled Figure 18, however, a counterexample is found which
we’ll discuss in more detail. The property is translated to the following LTL formula:
[](Q && !R -> (!R W (P && !R))) where:

• P = generator.state == normal
• Q = generator.state == warning && reactor.state == rods_down
• R = generator.state == warning && reactor.state == rods_up
• Operator W is “weak until” and defined as p W q = ([]p) || (p U q)

The counterexample found shows it is possible for two different components to go
into the warning state, after which only one of them goes back to the normal state.
If that happens, the controller will go back to the normal state, as there is no counter
to store how many components are in the warning state. In this normal state, it is
possible to raise the rods further, without having the generator go to the normal state
again, causing the property to be violated. This counterexample can be played out
with SPIN to produce a textual execution trace, which is translated back to the DSM
level as an instance of the output language. This execution trace can be played out
on the modelled system, by visualising the states of the traces in the correct order.

The limitations of the framework are related to the mapping to Promela, as ex-
plained in [17]. In its current state, ProMoBox does not allow dynamic structure
models. Because of the nature of Promela and the compiler’s design, boundedness
of the state space is ensured in the generated Promela model.

Domain-Specific Modelling for Human-Computer Interaction 25

5 Conclusion

In this chapter, we motivated the use of Domain-Specific Modelling (DSM) for the
development of complex, reactive, real-time, software-intensive systems. Model-
Driven Engineering, and in particular DSM, closes the conceptual gap between the
problem domain and solution (implementation) domain.

We presented the different aspects of a Domain-Specific Modelling Language:

1. abstract syntax to define the allowable constructs;
2. concrete syntax to define the visual representation of abstract syntax constructs;
3. semantic domain to define the domain in which the semantics is expressed;
4. semantic mapping to define the mapping to a model in the semantic domain that

defines the (partial) semantics of the domain-specific model.

Each of these aspects was explained and applied to our case study: modelling the
behaviour of a nuclear power plant controller and its subcomponents. The behaviour
of the nuclear power plant interface is defined using both operational semantics
(“simulation”) and translational semantics (“mapping”).

We extended our discussion to property checking, which was also lifted to the
level of the problem domain. This enables domain experts to not only create models
and reason about them, but also to specify properties on them. Errors, or any other
kind of feedback, are also mapped back onto the problem domain, meaning that the
domain expert never has to leave his domain. All aspects of modelling were thus
pulled up from the solution domain, up to the problem domain, closing any concep-
tual gaps. Moreover, a generative approach is used, in order to limit development
overhead.

Acknowledgments. This work was partly funded by a PhD fellowship from the
Research Foundation - Flanders (FWO) and the Agency for Innovation by Science
and Technology in Flanders (IWT). Partial support by the Flanders Make strategic
research centre for the manufacturing industry is also gratefully acknowledged.

References

1. Ankica Barišić, Vasco Amaral, Miguel Goulão, and Bruno Barroca. Quality in use of
domain-specific languages: A case study. In Proceedings of the 3rd ACM SIGPLAN
Workshop on Evaluation and Usability of Programming Languages and Tools, PLATEAU
’11, pages 65–72. ACM, 2011.

2. F. Boulanger, C. Hardebolle, C. Jacquet, and D. Marcadet. Semantic adaptation for models of
computation. In Application of Concurrency to System Design (ACSD), 2011 11th
International Conference on, pages 153–162, June 2011.

3. F. E. Cellier. Continuous system modeling. Springer-Verlag, 1991.
4. Gennaro Costagliola, Vincenzo Deufemia, and Giuseppe Polese. A framework for modeling

and implementing visual notations with applications to software engineering. ACM
Transactions on Software Engineering Methodology, 13(4):431–487, 2004.

26 Simon Van Mierlo, Yentl Van Tendeloo, Bart Meyers, and Hans Vangheluwe

5. Matthew B. Dwyer, George S. Avrunin, and James C. Corbett. Patterns in property
specifications for finite-state verification. In Int’l Conf. Software Engineering, pages
411–420, 1999.

6. Esther Guerra, Juan de Lara, Dimitrios S. Kolovos, and Richard F. Paige. A Visual
Specification Language for Model-to-Model Transformations. In VL/HCC, 2010.

7. Esther Guerra, Juan de Lara, Manuel Wimmer, Gerti Kappel, Angelika Kusel, Werner
Retschitzegger, Johannes Schönböck, and Wieland Schwinger. Automated verification of
model transformations based on visual contracts. Automated Software Engineering,
20(1):5–46, 2013.

8. David Harel. Statecharts: A visual formalism for complex systems. Science of Computer
Programming, 8(3):231–274, 1987.

9. David Harel and Amnon Naamad. The STATEMATE semantics of statecharts. ACM
Transactions on Software Engineering Methodology, 5(4):293–333, 1996.

10. David Harel and Bernhard Rumpe. Meaningful modeling: What’s the semantics of
“semantics”? Computer, 37(10):64–72, 2004.

11. Gerard J. Holzmann. The Model Checker SPIN. Transactions on Software Engineering,
23(5):279–295, 1997.

12. Steven Kelly and Juha-Pekka Tolvanen. Domain-Specific Modeling: Enabling Full Code
Generation. Wiley, 2008.

13. Anneke Kleppe. A language description is more than a metamodel. In Fourth International
Workshop on Software Language Engineering, 2007.

14. Thomas Kühne. Matters of (Meta-)Modeling. Software and System Modeling, 5:369–385,
2006.

15. Thomas Kühne, Gergely Mezei, Eugene Syriani, Hans Vangheluwe, and Manuel Wimmer.
Explicit transformation modeling. In MoDELS Workshops, volume 6002 of Lecture Notes in
Computer Science, pages 240–255. Springer, 2009.

16. Levi Lucio, Sadaf Mustafiz, Joachim Denil, Hans Vangheluwe, and Maris Jukss. FTG+PM:
An integrated framework for investigating model transformation chains. In SDL 2013:
Model-Driven Dependability Engineering, volume 7916 of Lecture Notes in Computer
Science, pages 182–202. Springer, 2013.

17. Bart Meyers, Romuald Deshayes, Levi Lucio, Eugene Syriani, Hans Vangheluwe, and
Manuel Wimmer. ProMoBox: A framework for generating domain-specific property
languages. In Software Language Engineering, volume 8706 of Lecture Notes in Computer
Science, pages 1–20. Springer International Publishing, 2014.

18. Bart Meyers and Hans Vangheluwe. A multi-paradigm modelling approach for the
engineering of modelling languages. In Proceedings of the Doctoral Symposium of the
ACM/IEEE 17th International Conference on Model Driven Engineering Languages and
Systems, CEUR Workshop Proceedings, pages 1–8, 2014.

19. Bart Meyers, Manuel Wimmer, Hans Vangheluwe, and Joachim Denil. Towards
domain-specific property languages: The ProMoBox approach. In Proceedings of the 2013
ACM Workshop on Domain-specific Modeling, DSM ’13, pages 39–44, New York, NY, USA,
2013. ACM.

20. Daniel Moody. The “physics” of notations: Toward a scientific basis for constructing visual
notations in software engineering. IEEE Transactions on Software Engineering,
35(6):756–779, 2009.

21. Tadao Murata. Petri nets: Properties, analysis and applications. Proceedings of the IEEE,
77(4):541–580, 1989.

22. Marian Petre. Why looking isn’t always seeing: Readership skills and graphical
programming. Communications of the ACM, 38(6):33–44, 1995.

23. Amir Pnueli. The temporal logic of programs. In Proceedings of the 18th Annual Symposium
on Foundations of Computer Science, SFCS ’77, pages 46–57, Washington, DC, USA, 1977.
IEEE Computer Society.

24. Matteo Risoldi. A methodology for the development of complex domain-specific languages.
PhD thesis, University of Geneva, 2010.

Domain-Specific Modelling for Human-Computer Interaction 27

25. Shane Sendall and Wojtek Kozaczynski. Model transformation: The heart and soul of
model-driven software development. IEEE Software, 20(5):42–45, 2003.

26. Margaret H. Smith, Gerard J. Holzmann, and Kousha Etessami. Events and constraints: A
graphical editor for capturing logic requirements of programs. In Proceedings of the Fifth
IEEE International Symposium on Requirements Engineering, RE ’01, pages 14–22,
Washington, DC, USA, 2001. IEEE Computer Society.

27. Eugene Syriani. A Multi-Paradigm Foundation for Model Transformation Language
Engineering. PhD thesis, McGill University, Canada, 2011.

28. Eugene Syriani and Hans Vangheluwe. A modular timed graph transformation language for
simulation-based design. Software and System Modeling, 12(2):387–414, 2013.

29. Eugene Syriani, Hans Vangheluwe, Raphael Mannadiar, Conner Hansen, Simon Van Mierlo,
and Hüseyin Ergin. AToMPM: A web-based modeling environment. In Proceedings of
MODELS’13 Demonstration Session, pages 21–25, 2013.

30. Hans Vangheluwe. Foundations of modelling and simulation of complex systems. ECEASST,
10, 2008.

31. Bernard P. Zeigler, Herbert Praehofer, and Tag Gon Kim. Theory of Modeling and
Simulation. Academic Press, second edition, 2000.

32. Yingzhou Zhang and Baowen Xu. A survey of semantic description frameworks for
programming languages. SIGPLAN Notices, 39(3):14–30, 2004.

