
Automated Testing Support for Reactive
Domain-Specific Modelling Languages

Bart Meyers, Joachim Denil, István Dávid
Modelling, Simulation and Design Lab

University of Antwerp, Belgium
bart.meyers@uantwerpen.be
joachim.denil@uantwerpen.be
istvan.david@uantwerpen.be

Hans Vangheluwe
Modelling, Simulation and Design Lab
McGill University, Montréal, Canada

University of Antwerp, Belgium
hv@cs.mcgill.ca

Abstract
Domain-specific modelling languages (DSML) enable do-
main users to model systems in their problem domain, using
concepts and notations they are familiar with. The process of
domain-specific modelling (DSM) consists of two stages: a
language engineering stage where a DSML is created, and a
system modelling stage where the DSML is used. Because
techniques such as metamodelling and model transformation
allow for an efficient creation of DSMLs, and using DSMLs
significantly increases productivity, DSM is very suitable for
early prototyping. Many systems that are modelled using
DSMLs are reactive, meaning that during their execution,
they respond to external input. Because of the complexity
of input and response behaviour of reactive systems, it is
desirable to test models as early as possible. However, while
dedicated testing support for specific DSMLs has been pro-
vided, no systematic support exists for testing DSML models
according to DSM principles.

In this paper, we introduce a technique to automatically
generate a domain-specific testing framework from an anno-
tated DSML definition. In our approach, the DSML defini-
tion consists of a metamodel, a concrete syntax definition
and operational semantics described as a schedule of graph
rewrite rules, thus covering a large class of DSMLs. Currently,
DSMLs with deterministic behaviour are supported, but we
provide an outlook to other (nondeterministic, real-time or
continuous-time) DSMLs. We illustrate the approach with
a DSML for describing an elevator controller. We evaluate
the approach and conclude that compared to the state-of-
the-art, our testing support is significantly less costly, and

similar or better (according to DSM principles) testing sup-
port is achieved. Additionally, the generative nature of the
approach makes testing support for DSMLs less error-prone
while catering the need for early testing.

Categories and Subject Descriptors D.2.2 [Design Tools
and Techniques]: Domain-Specific Modelling; D.2.5 [Test-
ing and Debugging]: Testing for DSM

Keywords Domain-Specific Modelling, Language Engi-
neering, Model Testing

1. Introduction
In domain-specific modelling (DSM) (Kelly and Tolvanen
2008) the general goal is to provide means for domain users
to model systems using concepts and notations they are fa-
miliar with, in their problem domain. Techniques such as
metamodelling and model transformation enable modelling
language engineers and domain experts to create domain-
specific modelling languages (DSMLs) for the domain users.
Because syntax and semantics of DSMLs are precisely de-
fined by means of metamodelling and model transformation,
models can be used for analysis, simulation, optimisation,
documentation and even full code synthesis. This means that
a DSM development process is split into two tasks: (i) the
creation of a DSML known as engineering a language, by
the language engineer, in consultation with a domain expert,
and (ii) modelling the system using this DSML by a prob-
lem domain (but not solution domain) user, referred to as a
domain user. It is shown that DSM significantly improves
productivity, both for language engineering (Kelly and Tolva-
nen 2008) and for system modelling (Safa 2006). This makes
DSM a suitable prototyping technique.

Although DSM prevents users from making certain mis-
takes by restricting the DSML’s syntax, there is a need for test-
ing more complex behaviour of the modelled system (Visser
2007; Safa 2006). DSMLs have been used to enhance test-
ing processes (Kanstrén 2013), and extensive research has
been carried out in testing exogenous model-to-model trans-

This is the author’s version of the work. It is posted here for your personal use. Not for
redistribution. The definitive version was published in the following publication:

SLE’16, October 31 – November 1, 2016, Amsterdam, Netherlands
c© 2016 ACM. 978-1-4503-4447-0/16/10...

http://dx.doi.org/10.1145/2997364.2997367

181



formations (Baudry et al. 2010; Burgueño 2015). However,
no systematic DSM solution exists for testing systems mod-
elled using a DSML. Current resolutions are (a) manually
executing a number of tests by executing the model under
circumstances determined by the test, (b) testing in a differ-
ent, less appropriate, formalism (e.g., creating tests for code
generated from the model) (King et al. 2014; Risoldi 2010),
thus diverting from the user-friendly DSM principle, or (c)
creating a DSML for testing, which needs to be developed
and maintained (Smith et al. 2001; Puolitaival et al. 2011).
All three resolutions severely hamper the usability for DSM
as a domain user-friendly prototyping technique.

Problem statement. No systematic DSM solution exists
for specifying tests at a domain level, matching the domain
at which reactive design models are specified. Such domain-
specific testing approach requires support for executing these
tests, and reporting the test results. Additionally, the approach
should be in line with early prototype development.

Research question. Can we find a systematic DSM solu-
tion with support for testing models in a reactive DSML?
The solution should include the specification of tests, their
execution and result reporting. The domain user should only
be exposed to domain-specific concepts. The solution should
weigh as little as possible on the lightweight DSM process,
and should be an extension of the existing DSM techniques
for design languages.

The contributions of the paper are twofold. Firstly, we
define and generate a testing DSML. This testing DSML uses
similar domain-specific concepts, familiar to domain users.
The testing DSML is generated from the DSML definition,
enriched with annotations (Meyers et al. 2014). These anno-
tations provide sufficient information to generate a testing
DSML. Secondly, annotations on the DSML’s definition en-
able the automatic execution of modelled system and test
model in concert. The approach is generic, and can be ap-
plied to any reactive, non-deterministic DSML of which the
syntax is modelled as a metamodel, and the operational se-
mantics modelled as a rule-based transformation that changes
the system state. Thanks to the expressiveness of graph rewrit-
ing, this covers a large class of systems. The generated testing
DSML and its semantics are explicitly modelled, allowing
users to customise the testing DSML if needed.

This paper uses a DSML for elevator controllers as running
example. We present an informal evaluation of the approach,
discussing execution performance (in terms of computational
complexity), and modelling performance (i.e., how well the
approach evaluates with respect to (a) adhering to DSM
principles, and (b) being adequate as an early prototyping
technique).

We use two different DSMLs in our approach, one for
designing a system and one for modelling tests. Although
these DSMLs are related, they are two separate languages.
Throughout the paper, if confusion may arise about what kind
of DSML or model we refer to, we use the term dDSML

Elevator

doors_open : boolean
going_up : boolean

Button

pressed : boolean

ElevatorButton FloorButton

DownButtonUpButton

Floor

nr : int

requests1 *

elevator_button

*

1

currentfloor

1

*

next
0..1

0..1

Figure 1. The metamodel of the Elevator DSML.

to denote a traditional DSML for designing a system, and
tDSML to denote the related testing DSML that is presented
in this paper. Analogously, we refer to design models and test
models.

The paper is structured as follows. Section 2 introduces
the necessary background and running example. In Section 3
the contribution of this paper is presented: an approach to
automatically generate an operational testing framework from
a DSML definition. The approach is evaluated informally
in Section 4. Related work is discussed in Section 5 and a
conclusion and outlook to future work are given in Section 6.

2. Background and Running Example
This section presents the prerequisites to discuss the approach,
and introduces the running example, a DSML for elevator
controllers.

2.1 DSML Engineering
The three main aspects of a DSML are its abstract syntax
(describing the internal structure of a model, as a typed
abstract syntax graph), the concrete syntax (describing how
a model is represented, e.g., in 2D vector graphics or in
textual form) and its semantics (describing what a model
means) (Mosterman and Vangheluwe 2004).

The Elevator DSML that will be used as running exam-
ple enables modelling a building with floors, elevators and
buttons. Additionally, it defines the operational semantics:
the step-wise (discrete-time) behaviour of an elevator system,
such as moving up or down to a different floor, closing or
opening elevator doors, or pressing buttons.

Syntax. Figure 1 shows the metamodel of the Elevator
DSML which we will call E. Elevators move between Floors,
responding to Button press requests. A Button requests
exactly one Floor. Floors are ordered by the next association
and a derived attribute nr representing the Floor number. At
any time, an Elevator is at exactly one Floor, modelled by the
currentfloor association. An ElevatorButton is a button inside
an Elevator, allowing a passenger to request going to a certain
Floor. At every Floor, there can be an UpButton to request to
go up and a DownButton to request to go down. An Elevator
can have its doors open (in that case it cannot move) and has
a direction (up or down).

Instance models of the DSML are said to conform to the
metamodel. In (Kühne 2006), this relation is referred to as
a linguistic instance of, and throughout this paper, instance

182



Figure 2. An Elevator model, instance of the Elevator
DSML.

Figure 3. Rule schedule of the operational semantics E[[.]]

of the Elevator example.

(of) will refer to this kind of instantiation. Figure 2 shows
an instance model with three floors, one elevator and seven
buttons, that uses the concrete syntax. As defined in the
concrete syntax model (not depicted), pressed buttons have a
blue fill, and they are connected to the floor they request. On
the middle floor, a button is pressed by someone requesting
to go down, and inside the elevator the button to go to the
top floor has been pressed. The elevator is currently at the
bottom floor. Its doors are open and its current direction is
down. Note how all elements, including the links, conform to
the metamodel of Figure 1.

Semantics. In this paper, semantics are described as oper-
ational semantics. Operational semantics capture explicitly
how a model can be executed, which is effectively mapping a
model onto an execution trace. In our approach, operational
semantics are always formalised as transformations, that can
transform (an) input model(s) to (an) output model(s), in-
stances of the same or different languages. Since models are
represented as graphs, a popular way to specify transforma-
tions is by means of graph rewrite rules.

The ordering of rules constituting the operational seman-
tics are captured by the rule schedule of the transformation
language. Rules consist of a left-hand side (LHS) containing a
pattern representing a condition, and a right-hand side (RHS)
containing a pattern representing an action (elements can be
created, removed or updated). LHS and RHS are generic lan-
guage constructs that can contain elements, each displayed as
a differently shaped container. The contained elements form
graph patterns that reuse concrete syntax taken from the input
and output language. When a rule is evaluated, a match for the
LHS is searched for in the input model. If a match is found,
the RHS is applied to the input model, thus changing it. If
the rule fails to match, the input model is left untouched. De-
pending on the outcome (failure or application), the next rule
according to the rule schedule is evaluated. Figure 3 shows

Figure 4. Two rules taken from the operational semantics of
the Elevator example.

the rule schedule specifying the Elevator DSML’s operational
semantics, that determines how different rules are scheduled.
Execution starts at openDoor up (depicted as a rule with thick
black stroke). In the case that a rule was applied, an outgo-
ing success transition in the schedule (depicted as a black
arrow) is followed. If no match is found, the input model is
unchanged and an outgoing notApplicable transition (depicted
as a thin grey arrow) is followed.

Inspired by a real elevator controller, the following rules
implement how the elevator changes floors (one at a time),
and opens and closes its door to honour the requests of users
(modelled as pressed buttons). Two of the rules implementing
this behaviour are shown in Figure 4. When a request for a
floor is made for a different floor than the elevator’s current
floor, the doors close so that the elevator can start moving
(the closeDoor rule). The case where the elevator is moving
up (i.e., changes its currentfloor link) is shown in the moveUp
rule. The number labels on the top left of each pattern element
serve as the relationship between LHS and RHS. Elements in
the RHS with the same label as elements in the LHS, are the
same elements. Differences between LHS and RHS represent
the effects of a rule application. In the moveUp rule, the
RHS depicts that the Elevator is now connected to another
Floor. A condition is shown at the bottom of the LHS, stating
(using EOL syntax (Kolovos et al. 2006), enriched with label
placeholders) that the nr attribute of the Floor with label 0
must be larger than the nr attribute of the Floor with label
1. Related rules (not depicted) are moveDown (the dual of
moveUp), moveUp last (where the lit button is on the next
floor), and moveDown last (the dual of moveUp last). Pressed
buttons unlight when the door opens at a requested floor
and the elevator goes in that direction in the openDoor up
rule (in the case the elevator is going up) and its dual, the

183



openDoor down rule. The elevator only changes its direction
if there are no more requests on its path. This can be seen in
the changeToUp rule, which contains a negative application
condition (NAC) (visualised as a dashed box) in addition to
its LHS. The NAC states that the changeToUp rule matches
only if no button on a lower floor is lit.

If the operational semantics are executed with the instance
model of Figure 2 as input, then the first rule that is appli-
cable is the changeToUp rule. Subsequently, the closeDoor,
moveUp, openDoor, closeDoor, moveUp and openDoor are
applied. If no rule is applicable, the transformation termi-
nates.

A more detailed description of the Elevator running exam-
ple can be found in (Meyers 2016).

2.2 Transformation Models and Higher Order
Transformations

Transformations can be explicitly specified as transformation
models (Bézivin et al. 2006), in a language that combines
generic transformation concepts such as rules and a rule
schedule, and concepts specific to the languages it transforms.
A process called RAMification to generate such a rule-based
domain-specific transformation language for given input and
output DSMLs is presented by Kühne et al. (Kühne et al.
2009).

As can be seen from Figure 4, the modelling language for
rules is composed from some generic language constructs
for LHS, RHS and NAC, each displayed as a different
shape of container. They include a constraint or action,
and domain-specific language constructs that borrow syntax
from the DSML. This transformation language (i.e., its
metamodel and concrete syntax model) can be generated
using a transformation that takes the DSML metamodel and
concrete syntax model as input and produces the metamodel
and concrete syntax model of the transformation language as
output, called the RAMification transformation (Kühne et al.
2009): Since the result of the RAMification transformation
is a language definition with metamodel and concrete syntax
model, the language engineer can adapt the concrete syntax
model to make rules more appealing.

Because transformations themselves are explicitly mod-
elled, and written in a modelling language, transformation
models conform themselves to a transformation language,
that has abstract syntax and concrete syntax as described
above. Consequently, transformation models can be trans-
formed in their own right, or can be generated. The trans-
formations that have transformation models as input and/or
output are called higher order transformations (HOTs). Simi-
larly, abstract syntax and concrete syntax of a language are
modelled as metamodels (in the class diagram language) and
concrete syntax models (in e.g., an icon language) respec-
tively, and can thus be transformed as well.

A more detailed description of domain-specific modelling
and model transformation in the DSM tool AToMPM can be
found in (Mannadiar 2012).

Figure 5. Overview of the ProMoBox approach.

2.3 The ProMoBox Approach for Language
Engineering

The approach presented in this paper builds on the ProMoBox
approach (Meyers et al. 2014, 2013b; Deshayes et al. 2014;
Meyers 2016). ProMoBox stands for “Properties and (design)
Models developed (Boxed) in concert”. The language engi-
neering support of ProMoBox consists of the following three
parts, and is illustrated in Figure 5.

The ProMoBox Sublanguages. ProMoBox replaces the
traditional DSML with five sublanguages (each DSMLs) for
modelling all artifacts that are needed to specify and verify
properties (Meyers et al. 2014). The five sublanguages are
the following:
• A design language (ED in Figure 5) for design modelling

as supported by traditional DSMLs. With this language,
the static structure (i.e., language concepts that do not
change at run-time) of the system is modelled. In case
of Elevator, this includes all Elevator concepts, without
the currentfloor association, nor the doors open, going up
and pressed attributes;

• A run-time language (ER in Figure 5) for run-time state
representation. The run-time language always includes
all elements of the design language, plus dynamic state
information that can change at run-time. Run-time in-
stances are always associated with a design instance with
the same static structure. One design instance possibly
has multiple run-time instances corresponding with it,
representing all possible states of the model. Note that
in traditional DSM, the DSML often includes run-time
concepts, meaning that no distinction is made between
static structure and dynamic state. The running example
was also presented including dynamic state information.
In fact, the metamodel shown in Figure 1 is the same as
Elevator’s run-time language, and its instance Figure 2
is a run-time model in ProMoBox. Hence, throughout
this paper, a dDSML (i.e., a DSML for designing a sys-
tem) will refer to the run-time language in the context of
ProMoBox;

184



Elevator

<<rt>>doors_open : boolean
<<rt>>going_up : boolean

Button

<<ev>>pressed : boolean

ElevatorButton FloorButton

DownButtonUpButton

Floor

nr : int

requests1 *

elevator_button

*

1

currentfloor<<rt>>

1

*

next
0..1

0..1

Figure 6. The annoted metamodel E′ of the Elevator exam-
ple.

Figure 7. Annotated rule schedule of the operational seman-
tics E′

[[.]] of the Elevator example.

• An input language (EI in Figure 5) to model event-based
input (to model the environment in which the system
operates). This language will not be relevant in this paper;

• A trace language (ET in Figure 5) for state-based output
representation (to model an execution trace of the system
or verification counterexample). An execution trace is a
sequence of run-time states connected with transitions
that represent execution steps (i.e., operational semantics’
rule executions). The trace language can be used to
represent execution traces of a simulation. A trace model
is usually generated by a simulator or as a counterexample
by a verification tool.

• A property language (EP in Figure 5) for property
specification (to model temporal or structural properties).
This language will not be relevant in this paper.

Generating the Sublanguages. As the traditional DSML
is replaced by five languages (i.e., DSMLs), it would be time
consuming to keep these intimately related sublanguages pre-
sented above consistent. Therefore, a fully automated method
generates these sublanguages from a single DSML specifica-
tion, keeping the five sublanguages consistent by construc-
tion. To be able to generate these sublanguages, we extend
metamodelling and model transformation languages with an-
notations, to add necessary information for every language
construct and to introduce the concept of a simulation step.
The annotated metamodel of the Elevator example (E′ in
Figure 5) is shown in Figure 6.

Whereas the traditional operational semantics of Figure 3
has a DSML instance as input (i.e., the model in its initial
state), and produces a DSML instance (i.e., the model in its
final state), the operational semantics in ProMoBox (E′

[[.]] in
Figure 5) takes a run-time model (initial state, generated or

Figure 8. Overview of the generation and use of tDSML.

manually created from the design model) and an input model
(input events) as input, and generates a run-time model (the
final state) and a trace model (simulation trace). This means
that the operational semantics have to define when (i.e., at
what point in the rule schedule) a new input event is applied
to the system, and a new state is added to the execution output
trace. This is done by two types of annotations to the rule
schedule in Figure 7: the input star representing a conceptual
step and full or dashed transitions representing (not) writing
to the output trace.

The Verification Backbone. The third part is the mapping
to and from a verification backbone (Verification with Spin in
Figure 5), making model checking automatically available
for DSMLs. This part will not be relevant in this paper. We
present testing as a valuable alternative to model checking,
which suffers from inherent scalability issues. A more de-
tailed description of the ProMoBox approach can be found
in (Meyers 2016).

3. Support for Testing in DSM
In this section we introduce testing support for reactive
DSMLs. In the resulting testing framework, the specifica-
tion of testing scenarios is elevated to the domain-specific
level, according to DSM principles. This way, similarly to de-
signing systems with the dDSML, less technical domain users
gain access to testing. Moreover, because of its generative
nature, our approach does not require significant additional
effort for the language engineer, both in terms of designing
the framework as in keeping it consistent. The generated
framework allows modelling and executing tests, and report-
ing test results. Throughout this section, we use the Elevator
DSML as running example.

Figure 8 shows an overview of the testing framework as an
extension of Figure 5, leaving out models that are irrelevant
to our testing approach. Rectangles represent (meta)models,
ovals represent transformation models. A shaded shape is
manually created, an unshaded shape is automatically gen-
erated. Reflecting the two DSM phases, namely, language
engineering and system modelling, thick arrows represent
transformation input or output at the language engineering
level, and thin arrows represent transformation input or output

185



at the system design level. Starting from the annotated meta-
model E′ (shown in Figure 6) and the dDSML’s concrete syn-
tax model, a testing DSML tDSML is generated. Subsequently,
a testcase can be defined by the domain user as an instance of
tDSML. From this testcase and the DSML’s annotated oper-
ational semantics E′

[[.]] (shown in Figure 7), an instrumented
operational semantics E′

[[.]](testcase) is generated by the in-
strument transformation. The instrument transformation is a
higher order transformation, as it produces a transformation
model. E′

[[.]](testcase) contains the testcase, woven into the
operational semantics. The testcase can now be executed with
a tDSML model config as input, producing the system in its
final state (final) as output after executing the testcase, and
an execution trace. Note how in Figure 8, only the annotated
metamodel E′, operational semantics E′

[[.]], the testcase and
config models are user-defined (shaded). This means that in
comparison to traditional DSM, in our approach, the only ad-
ditional manual step is modelling a testcase. The generation
of a tDSML, including its operational semantics, is automatic.

The remainder of this section is divided as follows. First,
we introduce the tDSML for modelling testcases. Second,
we explain how a tDSML is generated by the genTesting
transformation. Third, we define the operational semantics
of the tDSML. Fourth, we show how these semantics can be
generated using the instrument HOT. Finally, we show how
the generated framework supports execution of test suites
using the generated E′

[[.]](testcase) transformation.

3.1 The Testing Language
The core of the testing framework is the testing language
tDSML. Inspired by unit testing, the purpose of a tDSML is
to provide a scenario, with a test goal (i.e., an assertion). In the
context of reactive systems, the scenario is driven by inputs at
given points in time (i.e., under specified circumstances). In
our framework, a testcase is defined as a series of subsequent
inputs and asserts, which we call phases. A third kind of
phase is a blocking when phase with condition, for which the
test progresses only when the condition is satisfied. Branching
is not allowed in a tDSML, because a testcase with branches
represents in fact multiple testcases. Nevertheless, since the
tDSML is explicitly modelled, such extensions can be made
to the framework, and can be mapped to our syntax and
semantics of a tDSML.

An instance of this tDSML is shown in Figure 9. It models
a testcase called OpeningDoors, that contains four phases,
and should be read from left to right. A testcase is executed
together with the model, meaning that phases can be executed
when the model accepts inputs (i.e., when reaching an input
star as shown in Figure 7). The testcase’s execution semantics
will be explained in more detail below. The first phase is an
input event, depicted as a green circle. The input event models
that the UpButton on the first floor is pressed. Note how the
content of this phase, and all other phases, is a pattern much
like a LHS pattern, and thus needs to be matched. In the case
of an input event, the pattern is by convention matchable.

Execution of this phase will result in setting the pressed
attribute of the matched button to true. The second phase
is a when phase, depicted as a diamond with “WHEN” at
the top left corner. The when phase blocks further execution
of the testcase until the condition is satisfied: the elevator
has reached the first floor. The doors open and going up
icons are greyed out, as their value does not matter for this
condition. As such a condition might never be satisfied, a
time-out is specified at the bottom right of the when phase: the
testcase will fail if the testcase remains in this phase for 100
steps. After satisfying the condition, a new input event occurs
immediately (denoted by the dashed transition), pressing an
ElevatorButton at the second floor. The next time input is
read, an assert phase is triggered. It states that the elevator
must still be at the first floor, but with its doors open. The
condition of the assert phase must be satisfied immediately
upon reaching the phase, or the test case fails. Would the
condition not have to be satisfied immediately, then the user
can specify a time-out that defines the maximum time to
meet the condition. The OpeningDoors testcase passes if the
testcase runs to completion, including meeting the condition
of the assert phase. The testcase fails if a time-out occurs
during the when phase, or if the condition of the assert phase
is not satisfied. Executing the testcase for the instance model
of Figure 2 would result in the following sequence of rule
or test phase applications: (1) the changeToUp rule, (2) the
closeDoor rule, (3) the first phase of the testcase (because
an input star is entered), (4) the moveUp rule, (5) the when
phase of the testcase, (6) the third phase of the testcase, (7)
the openDoor rule, (8) the assert phase, thus successfully
ending the testcase.

Apart from the OpeningDoors testcase, the Elevator
tDSML allows the user to model testcases with other than
four phases, multiple assertions, long input sequences, etc.

Now that we introduced the Elevator tDSML by example,
we introduce its definition. The metamodel of the Elevator
tDSML is shown in Figure 10. It consists of a generic
template (shaded), and a domain-specific part (unshaded).
More in detail, it contains the following parts:
• Test Engine: A TestEngine runs multiple RunningTest-

Cases, that keep track of the progress of testcases at
runtime. The Status of a running testcase can be:
• inprogress: the testcase is still running;
• failed: the testcase finished and failed, either because

of a time-out or a failed assert;
• passed: the testcase finished successfully by passing

the final assert phase;
• error: an unexpected error occurred during execution,

such as not matching an input event pattern;
• notexecuted: the execution of the testcase did not yet

start.
The current phase, and optionally steps spent and
time spent in the current phase are also tracked;

186



Figure 9. The OpeningDoors testcase, an instance of the tDSML.

Elevator

doors_open : Condition = Condition("")
going_up : Condition = Condition("")

PatternElement

id : String
label : String
condition : Condition = Condition("")

Pattern

condition : Condition = Condition("")

pressed : Condition = Condition("")

ButtonFloor

nr : Condition = Condition("")

RunningTestCase

testcase : String
status : Status
phase : Integer
steps_spent : Integer [0..1]
time_spent : Integer [0..1]

LivelockResolution

Timeout

seconds : Integer = 10

<<enumeration>>

Status

notexecuted

inprogress

passed
failed

error

StepTimeout

steps : Integer = 100

BinaryPattern

ImpliesPattern

ElevatorButton

AtomicPatternUnaryPattern

DownButton

FloorButton

TestEngine

TestCase

name : String

AndPattern
NotPattern

OrPattern

Decision

UpButton

Assert

Phase

When

Event

requests0..1 *

onTimeOut
0..1*

running *1

elevator_button

*

0..1

immNext0..1

0..1

pattern

1

1

nodes *1

elements
1..*1

currentfloor
0..1

*

1

*

2

0..1

next

0..10..1

next

0..1

0..1

Figure 10. The generated metamodel of tDSML.

• Testcase: A TestCase contains a number of Phases, that
may be connected with a next link to denote what Phase
should be executed the next time input is read by the
operational semantics. A Phase can be an input Event, an
Assert or a blocking When phase. Assert and When may
be connected to a Phase with a immNext link, denoting
that the next input should be read immediately. Assert
and When may have a LivelockResolution, which may be
a real-time time-out, or a maximum number of steps as
used in Figure 9;

• Pattern: Every Phase contains a Pattern, based on
PaMoMo, a language for defining contracts (Guerra et al.
2010). A condition can be specified, which is by default
the condition created from an empty string, that always
returns true;

• Pattern Elements: the domain-specific part of the tDSML
allows the user to specify patterns that can be matched in
the dDSML model, similar to a transformation rule’s LHS.
All attribute types are Conditions, abstract classes are now
concrete classes, and lower bounds of multiplicities are
relaxed to 0.

Additional static semantics are defined for this metamodel:

• Event patterns are static, thus can always be matched. This
means that they do not use run-time language elements
apart from input language elements. In case of the Eleva-
tor tDSML, no conditions w.r.t. currentfloor, doors open
or going up (all marked with rt in E′) can be included in
the pattern. pressed can be used as it is an input language
element (marked with ev in E′), and has the special mean-
ing of assigning the given value in the dDSML model.

• Phases can have maximally one outgoing and incoming
next or immNext link.

• All Phases are connected, forming a step-by-step test-
case.

• The final Phase is an Assert.

3.2 Generation of a tDSML
The genTesting transformation of Figure 8 generates the
tDSML metamodel from an annotated metamodel using
a template-based approach. The genTesting transformation
takes the following steps to create the tDSML metamodel:
• apply the RAMification transformation (as explained in

Section 2.2) to the dDSML metamodel of Figure 6 to
create a pattern language of the dDSML;

• import the testing template (the shaded part of Figure 10);
• create an inheritance link from all top-level dDSML

superclasses to the PatternElement class.
The generation of the concrete syntax (not visualised

because of spatial constraints) follows a similar process. Step
3 is left out, so that the concrete syntax model of the tDSML
is simply the union of the concrete syntax model of the
RAMified dDSML and the concrete syntax template model.

3.3 The Operational Semantics of a tDSML
After informally introducing the semantics of a testcase in
Section 3.1, conform to the tDSML, we present its complete
operational semantics in this section.

The operational semantics of a testcase are modelled as
an extension of the dDSML’s operational semantics. The
dDSML’s operational semantics (shown in Figure 7) are “in-
strumented” so that the testcase runs in concert with the sys-
tem. The instrumented operational semantics E′

[[.]](testcase)
are shown in Figure 11. The main idea is that the input stars of
Figure 7 are replaced with calls to a ProgressTestCase trans-
formation, which takes one step of the testcase. Additionally,
E′

[[.]](testcase) starts with two new rules. createTestEngine
creates a TestEngine instance if none exists yet. initializeTest-
Case spawns a new RunningTestCase, in this example for

187



Figure 11. Rule schedule of the generated instrumented
operational semantics E′

[[.]](testcase) of the tDSML.

Figure 12. Rule schedule of the generated ProgressTestCase
transformation.

the OpeningDoors testcase of Figure 9, and sets its testcase
attribute to “OpeningDoors”, status to inprogress, phase to
0, and optionally steps spent or time spent to 0.

After completing the above initialisation steps, the instru-
mented operational semantics are executed as usual. Upon en-
tering a ProgressTestCase call, the ProgressTestCase trans-
formation is executed from start to finish. ProgressTestCase
executes one step of the OpeningDoors testcase, depending
on the state (i.e., current status, phase, steps and time spent)
of its associated RunningTestCase. The schedule of the Pro-
gressTestCase transformation is shown in Figure 12. All
transitions are dashed, meaning that the execution of the test-
case should not affect the system’s execution trace. Its rules
are shown in Figure 13:
• Phase1check: This rule checks whether the RunningTest-

Case must execute phase 1 next, corresponding to phase
1 of the OpeningDoors testcase shown in Figure 9. The
LHS contains a TestEngine (visualised as cogwheels),
and a connected RunningTestCase (with label e2). The
condition at the bottom of the LHS states that the testcase
attribute of the matched RunningTestCase instance must
be “OpeningDoors”, making sure that in case of multiple

Figure 13. Generated rules of the ProgressTestCase trans-
formation.

RunningTestCases, the right one is matched. Additionally,
its current phase must be 0. If the rule matches, the first
phase of the OpeningDoors testcase must be executed, so
the success transition is followed and the Phase1event
rule is evaluated. If the rule does not match, the Phase2inc
rule is evaluated which checks whether the RunningTest-
Case is in phase 1.

• Phase1event: This rule implements phase 1 of the Open-
ingDoors testcase. Apart from the TestEngine and Run-
ningTestCase, the LHS also contains a pattern similar
to the first phase of OpeningDoors, thus matching the
UpButton of the first Floor. The UpButton is half-shaded,
to denote that its pressed attribute can have any value. If
the rule matches (which should always be the case), the
UpButton is pressed, and the RunningTestCase phase is
set to 1. In that case, the ProgressTestCase transforma-
tion ends, because there is no outgoing success transition
from Phase1event, and in Figure 11 the outgoing suc-
cess transition of the respective ProgressTestCase call is

188



followed. The testcase has now completed phase 1, and
phase 2 will be executed the next time ProgressTestCase
is called. If the rule is not matched, it means that an erro-
neous pattern was given to the event (thus violating the
tDSML’s static semantics), and the QUIT rule is evaluated
which terminates execution and sets the status to error.
• Phase2inc: This rule, and the next, manage the Livelock-

Resolution (i.e., time-out) of the when phase of Figure 9.
This rule only matches if the current phase is set to 1. In
that case, the steps spent attribute is increased by 1, and
next, the Phase2timeout is evaluated. If this rule is not
matched (i.e., the current phase of RunningTestCase is
not 1), the Phase3event rule is evaluated.

• Phase2timeout: This rule checks whether the time-out
condition of 100 steps has been reached. If so, the test-
case has failed and the QUIT rule is evaluated, which
terminates execution. If not, the Phase2when rule can be
executed.

• Phase2when: This rule is the actual implementation of
the when phase of Figure 9. If it matches (i.e., the elevator
is on the first floor), the RunningTestCase phase is set
to 2 and the steps spent attribute is reset. Then, the
ModelPhase3check rule can be executed, because the
third phase immediately follows the when phase. If no
match is found, the ProgressTestCase ends.

• Phase3check, Phase3event and Phase4check: Similar to
Phase1check and Phase1event, and not shown.

• Phase4assert: This rule implements the assert phase. It
is similar to Phase2when, but if the rule matches, the
RunningTestCase status is set to success. In any case, the
QUIT rule will be evaluated.

• QUIT: This rule (not shown) always matches. If the status
of the RunningTestCase is still inprogress, it sets it to
error or failed (depending on the current phase), and
terminates execution.

3.4 The Generation of a tDSML Operational
Semantics

As explained above, a testcase can be described using oper-
ational semantics, represented as a model (as shown in Fig-
ure 11, Figure 12 and Figure 13). In this section, we describe
how this transformation model can be fully automatically
generated from the tDSML model of Figure 9, using a higher-
order transformation (HOT) named instrument. This HOT is
independent of the DSML for which the instrumented opera-
tional semantics are generated, so it is applicable to testcase
models in any generated tDSML.

Figure 14 shows the rule schedule of the instrument HOT.
In the left part of the instrument HOT, the annotated opera-
tional semantics are instrumented (resulting in Figure 11), the
middle part is responsible for generating the ProgressTest-
Case rule schedule (Figure 12), and the rules (Figure 13) are
generated by the right part. HOT rules with self loops use
“for all” semantics, meaning that the rule should be applied
for all matches. This is in contrast to a regular loop, where

Figure 14. Rule schedule of the instrument HOT.

Figure 15. Rules of the instrument HOT.

after every rule application, the LHS is re-evaluated. The for-
mer can be easily emulated using a NAC that states that the
RHS must not have been applied for the LHS match. Selected
HOT rules are shown in Figure 15. For readability, NACs for
emulating “for all” semantics are not shown. In the remaining
of this section, we explain the rules shown in Figure 151.

GenerateInitialRules (shown in Figure 15): generates calls
to the createTestEngine and initializeTestCase rules in Fig-
ure 11, and connected transitions. As shown in Figure 15, the
initial rule is matched, and two new rule calls are generated,
and connected to the existing rule. The existing rule is not
the initial rule any more, but createTestEngine is;

Assert2Rule: generates the assert phase rules, and is
shown in Figure 15. For example, the Phase4assert rule
of Figure 13 is generated by this HOT rule. For every assert
phase (label 1 in the LHS) in a tDSML testcase (label 0 in
the LHS), a rule is generated consisting of LHS (label 2 in
the RHS) and a RHS (label 3 in the RHS). The rule name and
condition/action are expressed as Epsilon Generation Lan-
guage (EGL) (Rose et al. 2008) code, a template language
extension of EOL. The text should be interpreted as string,

1 A full description of the HOT can be found at
http://msdl.cs.mcgill.ca/people/bart/sle2016.html

189



but the so-called dynamic sections between [%= and %] are
replaced by its evaluated string value. Note that EGL is used
for its simplicity and general applicability, but fully modelled
HOT techniques should be preferred if possible as they take
model conformance into account. The rule name uses a get-

Phase helper function that calculates the phase number:
operation getPhase(phase : Phase) {

return Sequence{phase}.closure(e|A.allInstances()

.select(e2|e2.next=e)).size()+1;

}

The generated LHS condition and RHS action are similarly
specified by EGL templates, including some dynamic sec-
tions. For instance, the statement setting the status to success
is only generated if the assert phase does not have an outgoing
link (i.e., if it is the final phase). The pattern with TestEngine
and RunningTestCase are generated in the generated LHS
and RHS, and their label is set. Note how for these elements,
for readability, the HOT labels are not visualised. Further-
more, the pattern of the matched assert phase (e.g., the assert
phase of Figure 9) needs to appear in the generated LHS and
RHS. However, as the HOT can be applied to any tDSML,
domain-specific concepts are unknown for the HOT. There-
fore, it is impossible to include the pattern of the assert phase
in the HOT rule. Instead, an action in the HOT RHS is added,
stating that the elements in the matched assert phase (label 1)
are copied and added to the elements of the generated LHS
(label 2), and generated RHS (label 3);

3.5 Test Suite Execution
The E′

[[.]](testcase) transformation, generated from the test-
case, can be executed to run the testcase. Optionally, the
current state of a RunningTestCase can be visualised during
execution by highlighting the current phase in the testcase
model.

Multiple testcases can be collected in a test suite. A
test suite consists of (runtime model, testcase) pairs, and
can be executed automatically, by executing the instrument
HOT for every (runtime model, testcase) pair, and executing
the generated E′

[[.]](testcase) transformation. During this
process, multiple RunningTestCases will be created and
connected to one TestEngine, thus collecting all test results
(status, phase, etc.). Individual tests can be inspected, and
execution traces (generated by ProMoBox) can be consulted
for each test case.

We modelled our approach in AToMPM (Syriani et al.
2013), a tool for modelling DSMLs and model transforma-
tions. AToMPM allows generating a fully functional test spec-
ification framework, including a modelling environment and
execution environment, from language definitions and trans-
formation models such as those described in this section.

4. Analysis of the Approach
In this section we analyse the approach by discussing the
execution performance and the modelling process. Next, the
prerequisites for implementing the framework are presented.

Finally, assumptions and limitations of the approach are
discussed.

4.1 Performance
We evaluated the performance of the approach in two ways:
execution performance and modelling performance. Execu-
tion performance is evaluated in terms of computational
complexity of the test execution process. Modelling perfor-
mance is evaluated in terms of (a) adhering to DSM principles
(i.e., domain user-friendliness), and (b) increasing produc-
tivity, in order for the approach to be adequate as an early
prototyping technique.

Execution performance. With n the number of test cases,
s the number of steps (i.e., rule evaluations) in the operational
semantics of the dDSML and t the number of phases in the
test model, executing a test suite as presented in this paper
is in O(n · s · t). The complexity can be lowered easily
to O(n · s · log(t)) if searching for the current test phase
is implemented as a binary search. If the transformation
schedule language allows transitions with guards, executing
a test suite is in O(n · s) (i.e., the same complexity class as
executing the operational semantics n times without testing),
because the correct test phase can be chosen independently
of the test model’s number of steps or any other variable.
Additionally, the performance of matching the testcase rules
of Figure 13 can greatly benefit from using pivots (Kühne et al.
2009), which is a mechanism to pass variables (i.e., previously
matched objects) between rules. It can be concluded that
our testing support is complementary to the model checking
support presented in (Meyers et al. 2014), which has its
limitations in scalability.

Modelling performance. The approach is designed to
keep the manual language engineering input (creating a
tDSML) as low as possible, as well as to support the domain
user’s work (using the tDSML). Comparing to state-of-the-
art resolutions for testing design models (see Section 1), it
can be concluded that our approach improves the modelling
performance. In comparison to manual testing: When cre-
ating a DSML (in our approach this included the creation of a
dDSML and a tDSML), the amount of manual work is slightly
increased, since the metamodel and the operational semantics
have to be annotated. This annotation process only requires a
minimal amount of time, and has to be completed only once
per DSML. When using a tDSML, the amount of manual
work is decreased significantly as tests can be created in a
dedicated language, automatically translated and executed.
Regression testing is thus facilitated. In comparison to test-
ing using a different formalism: When creating a DSML,
the amount of manual work is decreased, because no mapping
to a different formalism (i.e., testing platform) needs to be im-
plemented. In using a testing DSML, the difference in amount
of manual work is difficult to assess. However, when testing
is done in a different, already existing formalism (e.g., in CO-
OPN (Risoldi 2010)), it can be argued that this is not the most
appropriate formalism for testing, as the dDSML’s domain

190



concepts are not integrated in the language. This violates the
very DSM principles that were followed when creating the
dDSML. In comparison to creating a DSML for testing:
When creating a DSML, the amount of manual work is dra-
matically decreased, as the tDSML is generated. When using
a tDSML, it can be argued that the amount of manual work
slightly increases, because a manually created DSML for test-
ing can be tailored perfectly to the tester’s needs whereas our
tDSML covers generic testing needs. This gap can be closed
however because the generated tDSML can be tailored itself,
and might thus serve as a valuable starting point for a more
specific testing DSML. In summary, our approach has clear
advantages compared to the identified existing approaches
in terms of creating and using a DSML for testing. As our
approach focuses on automating the design of a tDSML, it is
especially useful in quick prototyping of DSMLs.

4.2 Implementation Prerequisites
We presented a modelling approach in this paper that can be
implemented in any modelling tool, provided some prereq-
uisites. We aimed to limit the prerequisites for our approach,
and identified the following:
• Metamodelling and rule-based model transformation has

to be supported by the modelling tool, which is the
case for most DSML modelling tools. Concrete syntax
modelling, and explicit transformation rule schedules are
not a strict prerequisite. Rule schedules can be emulated
in rules by using variables, which might decrease the
execution performance of the approach. The approach
is currently only applicable for rule-based operational
semantics, but the approach can be extended to other
transformation tools if transformations can be generated.
This requires a re-interpretation of the manual annotation
step in order to identify conceptual steps in the DSML’s
behaviour (see Section 2.3. This is out of scope of this
paper however.

• Metamodels and model transformations must be explicitly
modelled, so that they can be input and/or output of
model transformations themselves. This is a common
prerequisite in modelling language engineering and is
therefore one of the core features of AToMPM (Syriani
et al. 2013).

• The technique of RAMification (Kühne et al. 2009),
i.e., generating a transformation language from (a) given
metamodel(s), is a prerequisite. It can however be imple-
mented in any tool that supports metamodelling, as illus-
trated by (Denil et al. 2014; Van Mierlo and Vangheluwe
2012).

• Not standard in graph rewrite rules, a copy operator
must be available that allows you to copy an existing
element in the RHS of a rule. The copy operator is used
to generate the LHS as well as the RHS of a testing rule
(see Figure 15).
• Not standard in graph rewrite rules, support for changing

the type of an object to an equivalent (i.e., structurally

equivalent according to type theory (Pierce 2002), com-
monly known as “duck typing”) type is a prerequisite.
This technical requirement is used to migrate patterns
that conform to the tDSML metamodel to the dDSML
transformation language (see Figure 15). A pragmatic so-
lution is a script that replaces the type name in the textual,
saved model (e.g., in xml-format).

4.3 Assumptions and Limitations
If the above prerequisites are met, a number of limitations
apply. Firstly, nondeterministic dDSMLs are not supported.
Our approach supports testing of nondeterministic models,
as they are tested as regular models, which makes the test
outcome nondeterministic. However, in case of nondetermin-
ism in a design model, a tester is often interested in knowing
whether the test passes for all possible execution paths of
the system, or for at least one execution path. Model check-
ing techniques as presented in (Meyers et al. 2014) can be
used to verify all/any possible execution path(s) in the system.
As an explicit input scenario is provided rather than having
to cover all possible input scenarios, scalability will be less
problematic as in (Meyers et al. 2014).

Secondly, real-time dDSMLs are not supported. Real-time
models are models with discrete, timed events. In order to
tackle this, time-outs may be added to rule transitions in the
operational semantics (as e.g., done in (Ölveczky 2014)), and
time-out annotations may be added to next transitions in the
test metamodel template. To execute both timed models (the
design model and the test model) in concert, time calculus
can be used (Boulanger et al. 2012).

Thirdly, continuous-time dDSMLs are not supported.
Continuous-time models are models whose state continu-
ously change over time. Graph rewriting is not appropriate
for representing continuous-time behaviour. Therefore, the
behaviour of the dDSML and the tDSML, represented by
differential equations, needs to be combined. The technique
of semantic adaptation may be used to combine these mod-
els (Meyers et al. 2013a).

In conclusion, we argue that variations of our approach
can be applied to support different classes of reactive DSMLs.
Still, because of the expressiveness of graph rewriting, the
currently supported DSMLs cover a large class of reactive
systems.

In comparison to the model checking approach in (Meyers
et al. 2014) the limitations of boundedness and scalability are
lifted. On the other hand, nondeterminism is not supported
whereas it is supported in (Meyers et al. 2014), and the model
checking approach provides certainty over a declarative
property that spans several test cases, where in this approach,
explicit test cases have to be modelled.

5. Related Work
Domain-specific modelling has been used in model-based
testing (Kanstrén 2013). To address the needs of an agile
development process, King et al. present Legend, a toolset of
textual testing DSMLs (King et al. 2014). Similarly, Santiago

191



et al. use a textual DSML to tackle the inherent complexity
of testing domain-intensive cloud applications (Santiago et al.
2013). In (Kloos and Eschbach 2010), Kloos and Eschbach
use a DSML as domain experts need to describe tests for
network-structured safety-critical systems.

Kanstrén and Puolitaival present a framework that involves
the generation of a DSML from a test model to guide domain
experts in creating test cases (Kanstrén and Puolitaival 2012).
The generated DSML, or GUI alternative, can be used to
express one test case, or multiple test cases. Similarly to our
approach, the framework is generic, supporting languages
with “transitions” and “guards”, thus covering control-flow
and data-flow test models. Contrary to our approach, the
framework is textual, and a test model (that serves as meta-
model) needs to be provided that acts as an API of the system
under test. Moreover, the framework does not support asser-
tions that are as complex as in our approach. The main focus
is on providing input models.

In his master’s thesis, ten Buuren introduces a generic
approach for testing domain-specific models (ten Buuren
2015). Although the focus is on test case generation, the goal
is similar: provide a generic framework for testing domain-
specific models. In contrary to our work, ten Buuren assumes
that Java code is generated from domain-specific models,
and generates Java tests. This means that testing is done at
the code level, meaning that unexpected behaviour has to be
inspected at the code level. In our work, the testing process is
completely pulled up to the domain-specific level, according
to DSM principles.

Testing has been extensively researched in the context of
model transformations. Al Mallah introduced a generic frame-
work for model transformation testing (Al Mallah 2010).
Guerra and Soeken introduced a generic visual language for
testing model transformations (Guerra et al. 2010). Gener-
ating adequate input models from metamodels, which is of
paramount importance for testing model transformations, is
presented by Ehrig et al. (Ehrig et al. 2009), and a survey on
the topic is given by (Wu et al. 2012). As this specific topic
is well researched, covering all work is beyond the scope
of this paper. Therefore, we redirect to a survey by Selim et
al. (Selim et al. 2012) and challenges presented by Baudry
et al. (Baudry et al. 2010). Contrary to our work, all of these
approaches test model-to-model transformations. These can
be considered functions that are expected to terminate, of
which the output is tested using pre- and postconditions, and
invariants. In our approach however, models with behaviour
(i.e., operational semantics implemented as transformation)
are tested, meaning that tests cannot be simply expressed
in terms of pre- and postconditions and invariants because
behaviour is monitored at run-time.

Comparing the ProMoBox approach, Combemale et
al. (Combemale et al. 2012) argue that executable DSMLs
require languages similar to our design, runtime, input and
trace languages. However, in their approach, the different

metamodels must be specified explicitly by the language en-
gineer, rather than using a generative approach that requires
minimal annotation of the metamodel. Zalila et al. (Zalila
et al. 2013) extend the approach by providing support for
verification. Similar to the ProMoBox approach, the approach
automatically verifies properties by mapping to a verification
backbone, and also translates counterexamples to the domain-
specific level. Contrary to our approach, a transformation for
the latter has to be built by hand. Additionally, instead of
using patterns as predicates like we propose, helper functions
have to be written (requiring knowledge of OCL), while
temporal properties in TOCL use these helper functions. No
specific approach for testing is defined in this work.

Similar to our testing language, Runge et al. (Runge et al.
2013) use a visual language for testing. This language allows
the user to model contracts to specify pre- and postconditions,
from which test cases can be generated.

Geiger and Zündorf (Geiger and Zündorf 2005) introduce
a generic testing language that can be used in a modelling
context. Although this language is not domain-specific, its
visual syntax can inspire to tailor the generic testing template
of our approach (i.e., the shaded part of Figure 10).

In the context of DSM, the so-called oracle issue (Mottu
et al. 2008) needs to be resolved. It states that in model-driven
engineering, a simple oracle model is hard to obtain and
often insufficient. Three possible representations for oracles
are introduced: model comparison, contracts and pattern
matching. In light of this work, we employ pattern matching,
which can also support model comparison. Contracts can be
emulated in our language, but are not the main focus of our
work because we focus on operational semantics rather than
model-to-model transformations that behave like functions.

6. Conclusion and Future Work
In this paper, we presented a DSM solution for testing
models that conform to a reactive DSML. From an annotated
DSML specification, our solution generates a testing DSML,
allowing domain users to specify tests using concepts and
notations they are familiar with. Our approach includes
generic support for executing the test models. Automation is
key in our approach. We conducted an informal evaluation
and concluded that with our approach, DSM can be used as
an early prototyping technique that includes testing.

The main threads of future work are twofold. First, the
approach can be extended to different classes of DSMLs, as
discussed in Section 4.3. Second, we intend to extend the
approach so that more declarative prototypes as defined in
(Meyers et al. 2014) that span several test cases can be used
to generate test models. This would result in a framework
where domain users can model properties like “whenever I
press a button, the elevator eventually arrives at the requested
floor”, which can be fully automatically verified using (a)
model checking, or, in case model checking is infeasible, (b)
model testing, according to some coverage criteria.

192



References
A. Al Mallah. Model-based testing of model transformations.

Master’s thesis, McGill University, Canada, 2010.

B. Baudry, S. Ghosh, F. Fleurey, R. B. France, Y. L. Traon, and
J. Mottu. Barriers to systematic model transformation testing.
Commun. ACM, 53(6):139–143, 2010.

J. Bézivin, F. Büttner, M. Gogolla, F. Jouault, I. Kurtev, and A. Lin-
dow. Model transformations? transformation models! In Lecture
Notes in Computer Science, volume 4199, pages 440–453, 2006.

F. Boulanger, C. Hardebolle, C. Jacquet, and I. Prodan. Modeling
time for the execution of heterogeneous models. Technical report
2013-09-03-DI-FBO, Supélec E3S, 2012.

L. Burgueño. Testing M2M/M2T/T2M transformations. In Pro-
ceedings of the ACM Student Research Competition at MODELS
2015, Ottawa, Canada, September 29, 2015., pages 7–12, 2015.

B. Combemale, X. Crégut, and M. Pantel. A design pattern to
build executable dsmls and associated v&v tools. In K. R. P. H.
Leung and P. Muenchaisri, editors, 19th Asia-Pacific Software
Engineering Conference, APSEC 2012, Hong Kong, China, De-
cember 4-7, 2012, pages 282–287. IEEE, 2012. ISBN 978-
0-7695-4922-4. doi: 10.1109/APSEC.2012.79. URL http:
//dx.doi.org/10.1109/APSEC.2012.79.

J. Denil, P. J. Mosterman, and H. Vangheluwe. Rule-based model
transformation for, and in simulink. In Proceedings of the
Symposium on Theory of Modeling and Simulation - DEVS
Integrative M&S Symposium, page 4, 2014.

R. Deshayes, B. Meyers, T. Mens, and H. Vangheluwe. ProMoBox
in practice : A case study on the GISMO domain-specific mod-
elling language. In CEUR Workshop Proceedings, volume 1237,
pages 21–30, 2014.

K. Ehrig, J. M. Küster, and G. Taentzer. Generating instance models
from meta models. Software and System Modeling, 8(4):479–500,
2009.

L. Geiger and A. Zündorf. Story driven testing - SDT. ACM
SIGSOFT Software Engineering Notes, 30(4):1–6, 2005. doi:
10.1145/1082983.1083186. URL http://doi.acm.org/
10.1145/1082983.1083186.

E. Guerra, J. de Lara, D. S. Kolovos, and R. F. Paige. A Visual
Specification Language for Model-to-Model Transformations. In
VL/HCC, pages 119–126, 2010.

T. Kanstrén. A review of domain-specific modelling and software
testing. In The Eighth International Multi-Conference on Comput-
ing in the Global Information Technology (ICCGI 2013), pages
51–56, 2013.

T. Kanstrén and O. Puolitaival. Using built-in domain-specific
modeling support to guide model-based test generation. In
EPTCS, pages 58–72, 2012.

S. Kelly and J.-P. Tolvanen. Domain-Specific Modeling: Enabling
Full Code Generation. John Wiley & Sons, March 2008. ISBN
0470036664.

T. M. King, G. Nunez, D. Santiago, A. Cando, and C. Mack. Legend:
an agile DSL toolset for web acceptance testing. In International
Symposium on Software Testing and Analysis, ISSTA ’14, San
Jose, CA, USA - July 21 - 26, 2014, pages 409–412, 2014.

J. Kloos and R. Eschbach. A systematic approach to construct
compositional behaviour models for network-structured safety-
critical systems. Electr. Notes Theor. Comput. Sci., 263:145–160,
2010.

D. S. Kolovos, R. F. Paige, and F. Polack. The epsilon object
language (EOL). In Lecture Notes in Computer Science, volume
4066, pages 128–142, 2006.

T. Kühne. Matters of (meta-)modeling. Software and
System Modeling, 5(4):369–385, 2006. doi: 10.1007/
s10270-006-0017-9. URL http://dx.doi.org/10.
1007/s10270-006-0017-9.

T. Kühne, G. Mezei, E. Syriani, H. Vangheluwe, and M. Wimmer.
Explicit transformation modeling. In Models in Software Engi-
neering, Workshops and Symposia at MODELS 2009, Denver,
CO, USA, October 4-9, 2009, Reports and Revised Selected Pa-
pers, volume 6002 of Lecture Notes in Computer Science, pages
240–255, 2009.

R. Mannadiar. Multi-Paradigm Modelling Approach to the Founda-
tions of Domain-Specific Modelling. PhD thesis, McGill Univer-
sity, 6 2012.

B. Meyers. A Multi-Paradigm Modelling Approach to the Design
and Evolution of Domain-Specific Modelling Languages. PhD
thesis, University of Antwerp, 2 2016.

B. Meyers, J. Denil, F. Boulanger, C. Hardebolle, C. Jacquet, and
H. Vangheluwe. A DSL for explicit semantic adaptation. In
Proceedings of the 7th Workshop on Multi-Paradigm Modeling
co-located with the 16th International Conference on Model
Driven Engineering Languages and Systems, MPM@MoDELS
2013, Miami, Florida, September 30, 2013., volume 1112 of
CEUR Workshop Proceedings, pages 47–56, 2013a.

B. Meyers, M. Wimmer, and H. Vangheluwe. Towards domain-
specific property languages: The ProMoBox approach. In Pro-
ceedings of the 2013 ACM Workshop on Domain-specific Model-
ing, pages 39–44. ACM New York, NY, USA, 2013b.

B. Meyers, R. Deshayes, L. Lucio, E. Syriani, H. Vangheluwe, and
M. Wimmer. ProMoBox: A framework for generating domain-
specific property languages. In Software Language Engineering,
volume 8706 of Lecture Notes in Computer Science, pages 1–20.
Springer International Publishing, 2014.

P. J. Mosterman and H. Vangheluwe. Computer automated multi-
paradigm modeling: An introduction. Simulation, 80(9):433–450,
2004.

J. Mottu, B. Baudry, and Y. L. Traon. Model transformation testing:
oracle issue. In First International Conference on Software
Testing Verification and Validation, ICST 2008, Lillehammer,
Norway, April 9-11, 2008, Workshops Proceedings, pages 105–
112, 2008.

P. C. Ölveczky. Real-time maude and its applications. In Lecture
Notes in Computer Science, volume 8663, pages 42–79, 2014.

B. C. Pierce. Types and programming languages. MIT Press, 2002.
ISBN 978-0-262-16209-8.

O. Puolitaival, T. Kanstrén, V. matti Rytky, and A. Saarela. Utilizing
domain-specific modelling for software testing. In The Third
International Conference on Advances in System Testing and
Validation Lifecycle - VALID 2011, pages 115–120. IARIA XPS
Press, 2011.

193



M. Risoldi. A Methodology For The Development Of Complex
Domain Specific Languages. PhD thesis, University of Geneva,
2010.

L. M. Rose, R. F. Paige, D. S. Kolovos, and F. Polack. The epsilon
generation language. In Lecture Notes in Computer Science,
volume 5095, pages 1–16, 2008.

O. Runge, T. A. Khan, and R. Heckel. Test case generation using
visual contracts. ECEASST, 58, 2013. URL http://journal.
ub.tu-berlin.de/eceasst/article/view/847.

L. Safa. The practice of deploying DSM Report from a Japanese ap-
pliance maker trenches. In J. Gray, J.-P. Tolvanen, and J. Sprinkle,
editors, Sixth Object-Oriented Programming, Systems, Languages
and Applications Workshop on Domain-Specific Modeling, pages
185–196. University of Jyväskylä, October 2006.

D. Santiago, A. Cando, C. Mack, G. Nunez, T. Thomas, and T. M.
King. Towards domain-specific testing languages for software-as-
a-service. In CEUR Workshop Proceedings, volume 1118, pages
43–52, 2013.

G. M. K. Selim, J. R. Cordy, and J. Dingel. Model transformation
testing: The state of the art. In Proceedings of the First Workshop
on the Analysis of Model Transformations, pages 21–26, 2012.

M. H. Smith, G. J. Holzmann, and K. Etessami. Events and
constraints: A graphical editor for capturing logic requirements of
programs. In 5th IEEE International Symposium on Requirements
Engineering (RE 2001), 27-31 August 2001, Toronto, Canada,
pages 14–22, 2001.

E. Syriani, H. Vangheluwe, R. Mannadiar, C. Hansen, S. V. Mierlo,
and H. Ergin. AToMPM: A web-based modeling environment. In

Joint Proceedings of MODELS’13 Invited Talks, Demonstration
Session, Poster Session, and ACM Student Research Competition
co-located with the 16th International Conference on Model
Driven Engineering Languages and Systems (MODELS 2013),
Miami, USA, September 29 - October 4, 2013., pages 21–25,
2013.

R. ten Buuren. Domain-specific language testing framework.
Master’s thesis, University of Twente, the Netherlands, 2015.

S. Van Mierlo and H. Vangheluwe. Adding rule-based model
transformation to modelling languages in metaedit+. ECEASST,
54, 2012.

E. Visser. WebDSL: A case study in domain-specific language
engineering. In Lecture Notes in Computer Science, volume
5235, pages 291–373, 2007.

H. Wu, R. Monahan, and J. F. Power. Metamodel instance gen-
eration: A systematic literature review. CoRR, abs/1211.6322,
2012.

F. Zalila, X. Crégut, and M. Pantel. Formal verification integra-
tion approach for DSML. In A. Moreira, B. Schätz, J. Gray,
A. Vallecillo, and P. J. Clarke, editors, Model-Driven Engineer-
ing Languages and Systems - 16th International Conference,
MODELS 2013, Miami, FL, USA, September 29 - October 4,
2013. Proceedings, volume 8107 of Lecture Notes in Computer
Science, pages 336–351. Springer, 2013. ISBN 978-3-642-
41532-6. doi: 10.1007/978-3-642-41533-3 21. URL http:
//dx.doi.org/10.1007/978-3-642-41533-3_21.

194


