
A Generated Property Specification Language

for Resilient Multirobot Missions

Swaib Dragule1,4, Bart Meyers2,3, and Patrizio Pelliccione1

1 Dep. of Computer Science and Engineering

Chalmers University of Technology | University of Gothenburg

Göteborg, Sweden

dragule@chalmers.se, patrizio.pelliccione@gu.se
2 Antwerp Systems and Software Modelling

University of Antwerp

Antwerpen, Belgium

bart.meyers@uantwerpen.be
3 Flanders Make vzw

4 Makerere University, Uganda

Abstract The use of robots is gaining considerable traction in several

domains, since they are capable of assisting and replacing humans for

everyday tasks. To harvest the full potential of robots, it must be possible

to define missions for robots that are domain-specific, resilient, and col-

laborative. Currently, robot vendors provide low-level APIs to program

such missions, making mission definition a task-specific and error-prone

activity. There is a need for quick definition of new missions, by users that

lack programming expertise, such as farmers and emergency workers. In

this paper, we extend the existing FLYAQ platform to support the high-

level specification of adaptive and highly-resilient missions. We present

an extensible specification language that allows users to declaratively

specify domain-specific constraints as properties of missions, thus com-

plementing the existing FLYAQ mission language. This permits to move

at runtime, the actual generation of low-level operations to satisfy the

declaratively specified mission. We show how this specification language

can be automatically generated from a domain-specific FLYAQ mission

language by using the generative ProMoBox approach. Next, we show

how mission goals are achieved taking mission properties into account,

and how missions may change due to unexpected circumstances.

Keywords: Domain-Specific Languages, Robotics, Model-Driven Engineering,

Resilient Systems, Cyber-Physical Systems.

1 Introduction

The use of multirobot systems in civilian missions requires high variability due

to the diversity of domains [4,21]. Moreover, robotic systems are defined through

a craftsmanship instead of established engineering processes. Programming mis-

sions for robots requires high knowledge of robotic programming and robot

2 Swaib Dragule, Bart Meyers, and Patrizio Pelliccione

mechatronics. While domain users are experts in their domains (e.g., emergency,

commercial and agriculture) they are not trained to program missions for mul-

tirobot execution in their domains using the low-level APIs provided by robot

vendors. Not much has been done to enable domain experts to easily use robots

to execute missions in the respective domains.

To address this problem, Di Ruscio et al. introduced FLYAQ [3,18]. FLYAQ

is a platform designed to enable non-expert domain users to program missions for

a team of multicopters. The platform has been then generalized to different types

of robots in [4,6]. The platform is extensible, so that domain-specific robots and

missions can be defined. Unfortunately, this platform can only define missions at

design time. This is unrealistic since most missions will be faced by unforeseeable

and emergent situations during mission execution, and, consequently, robots

should be resilient to these unforeseeable and emergent situations. For example,

one robot may malfunction calling for re-planning so that another robot can take

the roles this robot was executing. This need for run-time adaptation is clearly

described in the Robotics Multi-Annual Roadmap 2020 [21]. In this context, the

document describes the degree in which models can be used in robotics in three

steps ([21] § Section 5.2). Step 1 assumes that models are used to define missions

by people at design time. Step 2 requires robots to use models at run-time to

interact and explain what they are doing. Step 3 means that robots adapt and

improve models to redefine what they are doing based on artificial intelligence.

The FLYAQ platform uses models according to step 1. In this line of research,

we intend to improve FLYAQ to support self-adaptive robots at the mission

level, thus achieving step 3. This means that robots can change their behaviour

to successfully carry out missions under unforeseen circumstances. We achieve

this by introducing a declarative language for describing mission goals and

constraints. In this research we exclusively focus on the high-level strategic,

domain-specific, collaborative aspects of self-adaptation. To this end, we specify

mission objectives in a declarative way, as properties, using a language we call

the Mission Specification Language (MSL). We present a technique that allows

the generation of such a MSL for a specific FLYAQ extension (e.g., emergency,

commercial, agriculture). As MSL is declarative, it does not specify how the

mission is planned for a team of robots, but instead specifies what goals must be

achieved and what constraints cannot be violated. This way, missions become

fully specified only at run-time and they can be re-planned at run-time.

Paper structure: Section 2 discusses the background of this research. Sec-

tion 3 introduces the property specification language. Section 4 evaluates the

approach by showing an implementation of the property specification language.

Section 5 discusses related work. Section 6 concludes the paper with opportunities

for future works.

2 Background

In this section, we briefly explain domain-specific modelling, and the FLYAQ

platform, on which we build our research.

A Generated Property Specification Language 3

Figure 1. The family of FLYAQ DSMLs (adapted from [6]).

Domain Specific Modelling In Domain-Specific Modelling (DSM) [13], a

methodology in model-driven software engineering, the general goal is to provide

means for domain users to model systems in their problem domain. Model-driven

techniques such as metamodelling and model transformation enable the creation

of Domain-Specific Modelling Languages (DSMLs). These DSMLs can be used by

domain experts, to specify, for example, missions for a team of robots. Current

DSM techniques allow domain users to model at the domain level and simulate,

optimise, and transform the model to other formalisms, synthesise code, generate

documentation, etc.

FLYAQ platform The FLYAQ platform [18,3,4] employs domain-specific mod-

elling to take care of the various domains involved in mission definition and

specification. The approach proposes a family of DSMLs for the specification of

missions of multirobot systems (MMRSs), as shown in Figure 1:

– Monitoring Mission Language (MML): this DSML consists of the context

layer and mission layer. This DSML is meant to be used by domain users, to

model missions. Missions are represented in the mission layer as sequences of

tasks on a map, as shown in Figure 2. The context layer provides additional

constrains over the mission area, such as obstacles and no-fly zones;

– Robot Language (RL): using this DSML, types of robots or individual robots

can be defined by a robot engineer, mapping out their capabilities and

characteristics;

– Behaviour Language (BL): this language allows the definition of sequential

atomic movements and actions of each robot that are used to instruct the

individual robots. The BL serves as the low-level language, to which high-

4 Swaib Dragule, Bart Meyers, and Patrizio Pelliccione

Figure 2. A screenshot of the FLYAQ tool (from [18]).

level missions defined in MML can be transformed automatically using

the MML2BL transformation. This transformation takes care of low-level

planning, such as path finding, covering areas, etc. while achieving the high-

level goals. Code can be easily generated from the generated BL models, and

then it can be uploaded to the individual robots.

Mission goals, robot characteristics, and actions should be customised to the

application domains. Therefore, extensions can be defined on MML, RL and BL,

as shown in Figure 1. In case of MML, extensions may define a task to “scan an

area by taking pictures”. Example extensions to RL may include domain-specific

notions like “number of propellers”, “launch type” (horizontal or vertical takeoff),

“maximum altitude”, etc. BL may be extended with movements like “take off”

and “land”, and a “go to strategy” (move first over the horizontal or vertical axis,

or move diagonally?), “take a picture”, “start recording a video”, etc.

For example, it is possible to define extensions in FLYAQ to allow flying

robots to take pictures of areas. Using this extension, one can specify missions to

e.g., survey an area where a public event is being held. Another example is in the

domain of agriculture. One multicopter is able to detect pests by taking pictures

and using image recognition techniques. If a pest is detected, another multicopter

that is able to spray insecticide must spray the infected plants. It should only

spray plants that are infected. We use these examples throughout the paper.

Despite its extension mechanism, FLYAQ does not support (a) advanced

temporal constraints (other than order, fork or join) over various tasks or robots

in MML, e.g., a certain task can only start if another robot is surveying the

task area (for safety reasons), or video recording can only start after clearance

(for privacy reasons); and (b) run-time adaptation of a mission due to some

A Generated Property Specification Language 5

Monitoring Mission Language (MML)

Context Layer
Mission Layer

Property
Template

Mission
Specification

Language
(MSL)

annotations

Extension
1

Extension
n

Behavioural Language (BL)

Robot
Language

(RL)

MSL2BL

extendsextends

refersTo

Extension
1

Extension
n

extends extends

Extension
1

Extension
n

extends extends

refersTo

Figure 3. Overview of the approach as an extension of the FLYAQ platform.

information at run-time, e.g., taking pictures of areas where high temperature

was detected by another robot, or reacting to a loss of signal of a robot. The

research presented in this paper addresses these shortcomings.

3 Mission Specification Language

Our approach extends the FLYAQ platform as shown in Figure 3. The mission

layer of MML is annotated, and as a consequence aMission Specification Language

(MSL) can be generated automatically from MML and a Property Template to

better match the platform extensions of MML. MSL extends MML with language

constructs to define temporal properties for robot missions. Our approach ensures

that, when an extension is defined as done in FLYAQ, no additional effort is

required to generate MSL.

3.1 Mission Specification Language

The mission specification language (MSL) is intended to specify properties of

a mission that allows users to define temporal mission constraints in a highly

declarative way. This complements MML, where areas are selected, and specific

tasks, obstacles and no-fly zones are plotted on the map. MSL replaces the order,

fork and join of MML, supporting more expressive constraints. We use a number

of temporal patterns, taken from Dwyer et al. [7] and Autili et al. [1], as a basis

for the Property Template from which MSL is generated. According to this work,

properties consist of a temporal pattern in a scope, over some propositions P , Q,

R and S (i.e., occurrences of something, e.g., spraying, entering an area, etc.).

Temporal patterns can be absence (something should never occur), universality

6 Swaib Dragule, Bart Meyers, and Patrizio Pelliccione

(something should always occur), existence (something should eventually occur),

bounded existence (something should occur at most n times), precedence (an

occurrence of P must be preceded by an occurrence of Q), or response (an

occurrence of P must be followed by an occurrence of Q). Scopes can be globally,

after the occurrence of R, before the occurrence of S, between occurrences of R
and S, or after an occurrence of R until an occurrence of S (after until).

The declarative constraint specification shields the user from the actual

planning. For example, if pests are detected, the corresponding areas are sprayed.

This is an example of a response pattern with global scope. The user may use a

precedence pattern to say that a pest needs to be detected at a location before

this point is sprayed. This constraint can be met in a number of equally valid

ways. A first option would be that one robot first detects all locations, then

returns to the base where its data is downloaded and locations of infected plants

are uploaded to a second robot, who goes out to spray the infected plants. A

second option would be that two robots perform the task in parallel: one robot

sends coordinates of detected pests to the other robot, which only sprays infected

points. The second robot may follow a preplanned path, or may plan its path

at run-time, according to the received coordinates. Collisions may occur, or

may be avoided by flying at different altitudes. A third option would be that

multiple robots detect pests, and multiple robots spray. If robots can adapt their

mission at run-time, this may involve advanced scheduling, employing run-time

monitors [5]. This shows that a declarative language can be supported by very

simple to very advanced algorithms. The goal of MSL is that the domain user is

shielded from such advanced planning algorithms.

To further illustrate MSL, we give some more examples of properties.

– Between entering and exiting an area, a robot can never exceed a given

altitude. According to Dwyer et al. [7], this is an absence pattern with between

scope. Note that this between scope may be more intuitively expressed as

“during” or “while”.

– Between receiving a “stop” message and a “start” message, pictures cannot

be taken.

– A robot can only start its activity if another robot is in a given position to

monitor this activity.

3.2 Run-time Adaptation of Multirobot Missions

In its current state, the MML platform generates robot missions at design time.

This means that robot missions cannot be adapted at run-time. We intend to

support the run-time recalculation of BL models (i.e., robot commands) from

a declarative mission description; this is needed in case information at run-

time prompts the robots to change the mission. Our approach is applicable to

various implementation techniques: for example, the mission recalculation may

be achieved by the robot or by the ground station, and may be specified off-line

or at run-time, or a mix of these.

A Generated Property Specification Language 7

<<rt>>concrete : boolean

Task

Robot

type : String
returnHome : boolean

RelativeCoordinate

x : float
y : float
z : float

GeoCoordinate

latitude : float
longitude : float
altitude : float
depth : float

NamedElement

name : String

ControlTask SpatialTask Coordinate

Mission

crs : String

Polygon

Shape

Team

LinePoint

JoinFork

in<<rt>>

*

performingAction<<rt>>

0..1

coveredTasks<<rt>>*

todoTasks<<rt>>*

finishedTasks<<rt>>*

currentTask<<rt>>0..1

initialPosition

1

shell

3..*

finishedPoints<<rt>> *

todoPoints<<rt>> *
coveredPoints<<rt>> *

currentPosition<<rt>>

0..1
home

1

robots 1..*

point

1

reference

1

team 1

points

1..*

initialPosition

1taskArea 1

tasks
1..*

Figure 4. The annotated class diagram of the MML mission layer (context layer remains

unchanged and is not shown).

In order to allow run-time information in a mission specification in MSL, we

altered the existing MML mission layer from [4], as shown in Figure 4. We have

changed the metamodel in several ways:

– We have extracted a Shape class (and Polygon, Point, Line subclasses) from

the original PolygonTask, LineTask, and PointTask. In particular, the new

Polygon class serves now as superclass of Area in the context layer of MML

in [6]. This new Shape class will allow users to specify new shapes on the

map that may trigger rules like: do not record within a specific area.

– The meaning of Task has been extended. At mission specification time, a

task may be addressed by multiple robots. After mission generation, tasks

are split up into multiple concrete tasks, each for one robot.

– TaskDependency has been removed from MML and its functionality will be

subsumed by the specification language.

– We added run-time language constructs (annotated with rt), so that specifi-

cations can be defined in terms of the current state of the mission in terms

of tasks and position. We added the following run-time information in terms

of tasks:

• currentTask: the task a robot is currently working on;

• coveredTasks: the concrete tasks that are planned for a robot;

• todoTasks: the concrete tasks that a robot still needs to perform;

• finishedTasks: the concrete tasks that a robot has done;

8 Swaib Dragule, Bart Meyers, and Patrizio Pelliccione

• performingAction: the action (defined in the task) a robot is currently

performing. It may be none if e.g., the robot is moving and the action is

instantaneous (e.g., taking a picture).

We added the following run-time information in terms of position:

• currentPosition: the current position of a robot;

• coveredPoints: the points of a concrete task that are defined by the cover

function;

• todoPoints: the points of a concrete task that still need to be visited;

• finishedPoints: the points of a concrete task that have been visited;

• in: the shapes the robot is currently in.

As is usual in FLYAQ, extensions can be defined for specific application

domains, as shown in Figure 3. Note that for brevity, we do not show the MML

context layer and RL (which can be extended in its own right).

3.3 Generation of the Property Specification Language

As shown in Figure 3, a domain-specific MSL can be generated from the annotated

MML (as shown in Figure 3), with defined extensions (e.g., to enable detection

of pests in an area, and spraying certain plants). This means that extensions

have to be defined only once, and can be used for specifying missions in the

original MML as well as in MSL. The metamodel of MSL, which results from

the language generation process without an extension, is shown in Figure 5. It

consists of three parts:

– Mission layer: the upper part (unshaded) represents our variant to the original

MML mission layer, which allows the user to define missions at design-time

like in the original MML. For example, “pictures should be taken in an area,

with a distance of x from each other”. Additionally, shapes can be defined,

that can be used in MSL properties. In case of an MML extension, extensions

will also appear in this part.

– Temporal pattern layer: the middle part (shaded) represents the temporal

patterns, which allow the user to define temporal constraints based on the

patterns by Dwyer et al. [7]. For example, “after R happens, P must be

followed by Q”.

– Proposition layer: the bottom part (unshaded) represents the language frag-

ment to define propositions P , Q, R, and S of temporal patterns. More

specifically, it allows the user to specify a condition on the state of a mission

(i.e., a structural pattern). For example, “a robot is in a specific area”, or

“a task is completed”. In case of an MML extension, pattern versions of

extensions will also appear in this part.

With MSL, a mission can be specified by plotting an area on the map, and defining

a DetectPest and Spray task in this area, using the MSL mission layer, which

is extended with language concepts from agriculture. With the MSL temporal

pattern and MSL proposition layer, a property can be specified that states that

detecting a pest at a location must result in spraying that location.

A Generated Property Speci�cation Language 	

Figure � . The generated metamodel of MSL without extensions.

�� Swaib Dragule, Bart Meyers, and Patrizio Pelliccione

The MSL metamodel of Figure � is generated fully automatically from an
annotated (and possibly extended) MML metamodel (Figure �) and the generic
property template (shaded part of Figure �). Why do we need to automatically
generate an MSL metamodel? Please note that, if there was no generative
approach, each of the domain-speci�c language constructs (e.g., spraying a pest,
maximum altitude of a robot, etc.) would have had to be modelled a second
time in MSL. With our approach, the extension mechanisms of FLYAQ can be
reused as described in [�], and a domain-speci�c MSL is generated without any
additional e�ort.

We use techniques from the ProMoBox framework [�� ,��] to achieve this. First,
the MSL mission layer is generated by taking the annotated MML metamodel
and removing all run-time language constructs, which are annotated withrt , thus
creating the unshaded upper part of Figure� . Next, the property template is
merged into this model by adding an association calledspeci�cation from Mission
to Speci�cation. Finally, the annotated MML metamodel is taken for a second
time, and the run-time language constructs are kept (by removing the annotation).
This time, the metamodel is converted into a structural pattern language by
using the RAMi�cation process [��]: relaxing all lower multiplicities, making
all abstract classes concrete, and changing all attribute types to Condition, as
can be seen in the proposition layer of Figure� . This RAMi�ed metamodel is
merged into MSL by generating inheritance links from all top-level classes to
PropertyElement.

� .� Transforming MSL to BL

Transforming MSL to BL (see MSL� BL in Figure �) can be done according to
several stategies. Given the tight relation between MSL and MML, the transfor-
mation algorithms of MML � BL [��] (i.e., path �nding, covering areas) can be
reused. Moreover, various implementation strategies as mentioned in Section� .�
can be covered by MSL� BL: mission recalculation may be achieved by a mix of
the robot or the ground station, o�-line or at run-time. These strategies may
requiring enhancement of BL to e.g., explicitly support data communication or
monitoring. As this paper focuses on the de�nition and generation of MSL, this
is left as future work.

� Evaluation: Implementation of MSL as Textual DSL
In this section, we evaluate the MSL by introducing an implementation as a
textual language in Xtext [�], and show how missions can be expressed in this
language.

� .� A Concrete Syntax for MSL

According to what described in [�], temporal properties (the shaded part of
Figure �) might be pro�tably described using a structured English grammar. For
instance, we can devise a textual syntax for the MSL proposition layer (the bottom

A Generated Property Speci�cation Language ��

part of Figure �), where each of the associations can form a subsentence with
the two attached instances. For example, �a Robot currently on a GeoCoordinate�
denotes the presence of an instance of Robot and an instance of GeoCoordinate,
with a currentPosition link in between. More intricate, � a Robot r currently on
a GeoCoordinate with latitude lower than��� � denotes additional conditions on
the robot, etc. A structured English grammar to represent a subsentence for one
association is de�ned as follows (id, Label, Value, Attribute, Class, Association
are terminals):

Proposition ::= Proposition (and also Proposition)+

j Proposition (or Proposition)+

j Proposition (implies Proposition)+ | AtomicProposition

AtomicProposition ::= Expression [Association Expression]

Expression ::= Instance [InstanceCondition]

InstanceCondition ::= with (ValueCondition j BooleanCondition (and ValueCondition j BooleanCondition)*)

ValueCondition ::= {Attribute} (as j less than j greater than) {Value}

BooleanCondition ::= [not] {Attribute}

Instance ::= {id} j {Label} j a {Class} [{Label}]

Association ::= (that is a task of j that is a team of j that is in j [currently] doing j that has

scheduled j that has planned in the future j that has �nished j [currently] performing j in j

[currently] on j with as home j with task area j which visits j which will visit in the future

j which has visited j with points j with initial position j which references j {Association})

The above grammar is combined with the grammar for temporal properties
presented in [�] so that temporal properties can be described in standard LTL or
CTL. This might enable the use of model checking approaches, like UPPAAL� .
With this grammar, temporal patterns involving multiple links can be expressed
with AndPatterns. MML extensions can be used by instantiating classes de�ned
by the extension. This is illustrated below in the examples.

Our current implementation in Xtext includes variable name resolution, parse
error visualisation, auto-completion and syntax highlighting� . A screenshot of
the MSL editor is shown in Figure � . Since both the FLYAQ platform and MSL
are implemented on top of the Ecore platform, they can be easily merged at the
EMF layer [�].

� .� Examples of MSL

This section presents examples of temporal properties de�ned in MSL, while
illustrating the relation between the grammar presented above and the MSL
metamodel presented in Figure� . For these examples, we de�ne a MML extension
in the agricultural domain as shown in Figure � , with:

� DetectPest: scanning for a pest in an area and in case of detection, send some
coordinates;

� http://www.uppaal.org/
� An implementation of this grammar can be found at

http://msdl.cs.mcgill.ca/people/bart/�yaq/�yaq.html .

