
A Generated Property Specification Language

for Resilient Multirobot Missions

Swaib Dragule1,4, Bart Meyers2,3, and Patrizio Pelliccione1

1 Dep. of Computer Science and Engineering

Chalmers University of Technology | University of Gothenburg

Göteborg, Sweden

dragule@chalmers.se, patrizio.pelliccione@gu.se
2 Antwerp Systems and Software Modelling

University of Antwerp

Antwerpen, Belgium

bart.meyers@uantwerpen.be
3 Flanders Make vzw

4 Makerere University, Uganda

Abstract The use of robots is gaining considerable traction in several

domains, since they are capable of assisting and replacing humans for

everyday tasks. To harvest the full potential of robots, it must be possible

to define missions for robots that are domain-specific, resilient, and col-

laborative. Currently, robot vendors provide low-level APIs to program

such missions, making mission definition a task-specific and error-prone

activity. There is a need for quick definition of new missions, by users that

lack programming expertise, such as farmers and emergency workers. In

this paper, we extend the existing FLYAQ platform to support the high-

level specification of adaptive and highly-resilient missions. We present

an extensible specification language that allows users to declaratively

specify domain-specific constraints as properties of missions, thus com-

plementing the existing FLYAQ mission language. This permits to move

at runtime, the actual generation of low-level operations to satisfy the

declaratively specified mission. We show how this specification language

can be automatically generated from a domain-specific FLYAQ mission

language by using the generative ProMoBox approach. Next, we show

how mission goals are achieved taking mission properties into account,

and how missions may change due to unexpected circumstances.

Keywords: Domain-Specific Languages, Robotics, Model-Driven Engineering,

Resilient Systems, Cyber-Physical Systems.

1 Introduction

The use of multirobot systems in civilian missions requires high variability due

to the diversity of domains [4,21]. Moreover, robotic systems are defined through

a craftsmanship instead of established engineering processes. Programming mis-

sions for robots requires high knowledge of robotic programming and robot

2 Swaib Dragule, Bart Meyers, and Patrizio Pelliccione

mechatronics. While domain users are experts in their domains (e.g., emergency,

commercial and agriculture) they are not trained to program missions for mul-

tirobot execution in their domains using the low-level APIs provided by robot

vendors. Not much has been done to enable domain experts to easily use robots

to execute missions in the respective domains.

To address this problem, Di Ruscio et al. introduced FLYAQ [3,18]. FLYAQ

is a platform designed to enable non-expert domain users to program missions for

a team of multicopters. The platform has been then generalized to different types

of robots in [4,6]. The platform is extensible, so that domain-specific robots and

missions can be defined. Unfortunately, this platform can only define missions at

design time. This is unrealistic since most missions will be faced by unforeseeable

and emergent situations during mission execution, and, consequently, robots

should be resilient to these unforeseeable and emergent situations. For example,

one robot may malfunction calling for re-planning so that another robot can take

the roles this robot was executing. This need for run-time adaptation is clearly

described in the Robotics Multi-Annual Roadmap 2020 [21]. In this context, the

document describes the degree in which models can be used in robotics in three

steps ([21] § Section 5.2). Step 1 assumes that models are used to define missions

by people at design time. Step 2 requires robots to use models at run-time to

interact and explain what they are doing. Step 3 means that robots adapt and

improve models to redefine what they are doing based on artificial intelligence.

The FLYAQ platform uses models according to step 1. In this line of research,

we intend to improve FLYAQ to support self-adaptive robots at the mission

level, thus achieving step 3. This means that robots can change their behaviour

to successfully carry out missions under unforeseen circumstances. We achieve

this by introducing a declarative language for describing mission goals and

constraints. In this research we exclusively focus on the high-level strategic,

domain-specific, collaborative aspects of self-adaptation. To this end, we specify

mission objectives in a declarative way, as properties, using a language we call

the Mission Specification Language (MSL). We present a technique that allows

the generation of such a MSL for a specific FLYAQ extension (e.g., emergency,

commercial, agriculture). As MSL is declarative, it does not specify how the

mission is planned for a team of robots, but instead specifies what goals must be

achieved and what constraints cannot be violated. This way, missions become

fully specified only at run-time and they can be re-planned at run-time.

Paper structure: Section 2 discusses the background of this research. Sec-

tion 3 introduces the property specification language. Section 4 evaluates the

approach by showing an implementation of the property specification language.

Section 5 discusses related work. Section 6 concludes the paper with opportunities

for future works.

2 Background

In this section, we briefly explain domain-specific modelling, and the FLYAQ

platform, on which we build our research.

A Generated Property Specification Language 3

Figure 1. The family of FLYAQ DSMLs (adapted from [6]).

Domain Specific Modelling In Domain-Specific Modelling (DSM) [13], a

methodology in model-driven software engineering, the general goal is to provide

means for domain users to model systems in their problem domain. Model-driven

techniques such as metamodelling and model transformation enable the creation

of Domain-Specific Modelling Languages (DSMLs). These DSMLs can be used by

domain experts, to specify, for example, missions for a team of robots. Current

DSM techniques allow domain users to model at the domain level and simulate,

optimise, and transform the model to other formalisms, synthesise code, generate

documentation, etc.

FLYAQ platform The FLYAQ platform [18,3,4] employs domain-specific mod-

elling to take care of the various domains involved in mission definition and

specification. The approach proposes a family of DSMLs for the specification of

missions of multirobot systems (MMRSs), as shown in Figure 1:

– Monitoring Mission Language (MML): this DSML consists of the context

layer and mission layer. This DSML is meant to be used by domain users, to

model missions. Missions are represented in the mission layer as sequences of

tasks on a map, as shown in Figure 2. The context layer provides additional

constrains over the mission area, such as obstacles and no-fly zones;

– Robot Language (RL): using this DSML, types of robots or individual robots

can be defined by a robot engineer, mapping out their capabilities and

characteristics;

– Behaviour Language (BL): this language allows the definition of sequential

atomic movements and actions of each robot that are used to instruct the

individual robots. The BL serves as the low-level language, to which high-

4 Swaib Dragule, Bart Meyers, and Patrizio Pelliccione

Figure 2. A screenshot of the FLYAQ tool (from [18]).

level missions defined in MML can be transformed automatically using

the MML2BL transformation. This transformation takes care of low-level

planning, such as path finding, covering areas, etc. while achieving the high-

level goals. Code can be easily generated from the generated BL models, and

then it can be uploaded to the individual robots.

Mission goals, robot characteristics, and actions should be customised to the

application domains. Therefore, extensions can be defined on MML, RL and BL,

as shown in Figure 1. In case of MML, extensions may define a task to “scan an

area by taking pictures”. Example extensions to RL may include domain-specific

notions like “number of propellers”, “launch type” (horizontal or vertical takeoff),

“maximum altitude”, etc. BL may be extended with movements like “take off”

and “land”, and a “go to strategy” (move first over the horizontal or vertical axis,

or move diagonally?), “take a picture”, “start recording a video”, etc.

For example, it is possible to define extensions in FLYAQ to allow flying

robots to take pictures of areas. Using this extension, one can specify missions to

e.g., survey an area where a public event is being held. Another example is in the

domain of agriculture. One multicopter is able to detect pests by taking pictures

and using image recognition techniques. If a pest is detected, another multicopter

that is able to spray insecticide must spray the infected plants. It should only

spray plants that are infected. We use these examples throughout the paper.

Despite its extension mechanism, FLYAQ does not support (a) advanced

temporal constraints (other than order, fork or join) over various tasks or robots

in MML, e.g., a certain task can only start if another robot is surveying the

task area (for safety reasons), or video recording can only start after clearance

(for privacy reasons); and (b) run-time adaptation of a mission due to some

A Generated Property Specification Language 5

Monitoring Mission Language (MML)

Context Layer
Mission Layer

Property
Template

Mission
Specification

Language
(MSL)

annotations

Extension
1

Extension
n

Behavioural Language (BL)

Robot
Language

(RL)

MSL2BL

extendsextends

refersTo

Extension
1

Extension
n

extends extends

Extension
1

Extension
n

extends extends

refersTo

Figure 3. Overview of the approach as an extension of the FLYAQ platform.

information at run-time, e.g., taking pictures of areas where high temperature

was detected by another robot, or reacting to a loss of signal of a robot. The

research presented in this paper addresses these shortcomings.

3 Mission Specification Language

Our approach extends the FLYAQ platform as shown in Figure 3. The mission

layer of MML is annotated, and as a consequence aMission Specification Language

(MSL) can be generated automatically from MML and a Property Template to

better match the platform extensions of MML. MSL extends MML with language

constructs to define temporal properties for robot missions. Our approach ensures

that, when an extension is defined as done in FLYAQ, no additional effort is

required to generate MSL.

3.1 Mission Specification Language

The mission specification language (MSL) is intended to specify properties of

a mission that allows users to define temporal mission constraints in a highly

declarative way. This complements MML, where areas are selected, and specific

tasks, obstacles and no-fly zones are plotted on the map. MSL replaces the order,

fork and join of MML, supporting more expressive constraints. We use a number

of temporal patterns, taken from Dwyer et al. [7] and Autili et al. [1], as a basis

for the Property Template from which MSL is generated. According to this work,

properties consist of a temporal pattern in a scope, over some propositions P , Q,

R and S (i.e., occurrences of something, e.g., spraying, entering an area, etc.).

Temporal patterns can be absence (something should never occur), universality

6 Swaib Dragule, Bart Meyers, and Patrizio Pelliccione

(something should always occur), existence (something should eventually occur),

bounded existence (something should occur at most n times), precedence (an

occurrence of P must be preceded by an occurrence of Q), or response (an

occurrence of P must be followed by an occurrence of Q). Scopes can be globally,

after the occurrence of R, before the occurrence of S, between occurrences of R
and S, or after an occurrence of R until an occurrence of S (after until).

The declarative constraint specification shields the user from the actual

planning. For example, if pests are detected, the corresponding areas are sprayed.

This is an example of a response pattern with global scope. The user may use a

precedence pattern to say that a pest needs to be detected at a location before

this point is sprayed. This constraint can be met in a number of equally valid

ways. A first option would be that one robot first detects all locations, then

returns to the base where its data is downloaded and locations of infected plants

are uploaded to a second robot, who goes out to spray the infected plants. A

second option would be that two robots perform the task in parallel: one robot

sends coordinates of detected pests to the other robot, which only sprays infected

points. The second robot may follow a preplanned path, or may plan its path

at run-time, according to the received coordinates. Collisions may occur, or

may be avoided by flying at different altitudes. A third option would be that

multiple robots detect pests, and multiple robots spray. If robots can adapt their

mission at run-time, this may involve advanced scheduling, employing run-time

monitors [5]. This shows that a declarative language can be supported by very

simple to very advanced algorithms. The goal of MSL is that the domain user is

shielded from such advanced planning algorithms.

To further illustrate MSL, we give some more examples of properties.

– Between entering and exiting an area, a robot can never exceed a given

altitude. According to Dwyer et al. [7], this is an absence pattern with between

scope. Note that this between scope may be more intuitively expressed as

“during” or “while”.

– Between receiving a “stop” message and a “start” message, pictures cannot

be taken.

– A robot can only start its activity if another robot is in a given position to

monitor this activity.

3.2 Run-time Adaptation of Multirobot Missions

In its current state, the MML platform generates robot missions at design time.

This means that robot missions cannot be adapted at run-time. We intend to

support the run-time recalculation of BL models (i.e., robot commands) from

a declarative mission description; this is needed in case information at run-

time prompts the robots to change the mission. Our approach is applicable to

various implementation techniques: for example, the mission recalculation may

be achieved by the robot or by the ground station, and may be specified off-line

or at run-time, or a mix of these.

A Generated Property Specification Language 7

<<rt>>concrete : boolean

Task

Robot

type : String
returnHome : boolean

RelativeCoordinate

x : float
y : float
z : float

GeoCoordinate

latitude : float
longitude : float
altitude : float
depth : float

NamedElement

name : String

ControlTask SpatialTask Coordinate

Mission

crs : String

Polygon

Shape

Team

LinePoint

JoinFork

in<<rt>>

*

performingAction<<rt>>

0..1

coveredTasks<<rt>>*

todoTasks<<rt>>*

finishedTasks<<rt>>*

currentTask<<rt>>0..1

initialPosition

1

shell

3..*

finishedPoints<<rt>> *

todoPoints<<rt>> *
coveredPoints<<rt>> *

currentPosition<<rt>>

0..1
home

1

robots 1..*

point

1

reference

1

team 1

points

1..*

initialPosition

1taskArea 1

tasks
1..*

Figure 4. The annotated class diagram of the MML mission layer (context layer remains

unchanged and is not shown).

In order to allow run-time information in a mission specification in MSL, we

altered the existing MML mission layer from [4], as shown in Figure 4. We have

changed the metamodel in several ways:

– We have extracted a Shape class (and Polygon, Point, Line subclasses) from

the original PolygonTask, LineTask, and PointTask. In particular, the new

Polygon class serves now as superclass of Area in the context layer of MML

in [6]. This new Shape class will allow users to specify new shapes on the

map that may trigger rules like: do not record within a specific area.

– The meaning of Task has been extended. At mission specification time, a

task may be addressed by multiple robots. After mission generation, tasks

are split up into multiple concrete tasks, each for one robot.

– TaskDependency has been removed from MML and its functionality will be

subsumed by the specification language.

– We added run-time language constructs (annotated with rt), so that specifi-

cations can be defined in terms of the current state of the mission in terms

of tasks and position. We added the following run-time information in terms

of tasks:

• currentTask: the task a robot is currently working on;

• coveredTasks: the concrete tasks that are planned for a robot;

• todoTasks: the concrete tasks that a robot still needs to perform;

• finishedTasks: the concrete tasks that a robot has done;

8 Swaib Dragule, Bart Meyers, and Patrizio Pelliccione

• performingAction: the action (defined in the task) a robot is currently

performing. It may be none if e.g., the robot is moving and the action is

instantaneous (e.g., taking a picture).

We added the following run-time information in terms of position:

• currentPosition: the current position of a robot;

• coveredPoints: the points of a concrete task that are defined by the cover

function;

• todoPoints: the points of a concrete task that still need to be visited;

• finishedPoints: the points of a concrete task that have been visited;

• in: the shapes the robot is currently in.

As is usual in FLYAQ, extensions can be defined for specific application

domains, as shown in Figure 3. Note that for brevity, we do not show the MML

context layer and RL (which can be extended in its own right).

3.3 Generation of the Property Specification Language

As shown in Figure 3, a domain-specific MSL can be generated from the annotated

MML (as shown in Figure 3), with defined extensions (e.g., to enable detection

of pests in an area, and spraying certain plants). This means that extensions

have to be defined only once, and can be used for specifying missions in the

original MML as well as in MSL. The metamodel of MSL, which results from

the language generation process without an extension, is shown in Figure 5. It

consists of three parts:

– Mission layer: the upper part (unshaded) represents our variant to the original

MML mission layer, which allows the user to define missions at design-time

like in the original MML. For example, “pictures should be taken in an area,

with a distance of x from each other”. Additionally, shapes can be defined,

that can be used in MSL properties. In case of an MML extension, extensions

will also appear in this part.

– Temporal pattern layer: the middle part (shaded) represents the temporal

patterns, which allow the user to define temporal constraints based on the

patterns by Dwyer et al. [7]. For example, “after R happens, P must be

followed by Q”.

– Proposition layer: the bottom part (unshaded) represents the language frag-

ment to define propositions P , Q, R, and S of temporal patterns. More

specifically, it allows the user to specify a condition on the state of a mission

(i.e., a structural pattern). For example, “a robot is in a specific area”, or

“a task is completed”. In case of an MML extension, pattern versions of

extensions will also appear in this part.

With MSL, a mission can be specified by plotting an area on the map, and defining

a DetectPest and Spray task in this area, using the MSL mission layer, which

is extended with language concepts from agriculture. With the MSL temporal

pattern and MSL proposition layer, a property can be specified that states that

detecting a pest at a location must result in spraying that location.

A Generated Property Specification Language 9

StructuralPattern

name : String
condition : Condition = return True
dynamic : boolean

PropertyElement

id : String
label : String
condition : Condition = return True

OrderedTemporalPattern

Robot

type : Condition
returnHome : Condition

RelativeCoordinate

x : float
y : float
z : float

RelativeCoordinate

x : Condition
y : Condition
z : Condition

BoundedExistence

n : Integer

Robot

type : String
returnHome : boolean

TemporalPattern

Task

concrete : Condition

GeoCoordinate

latitude : Condition
longitude : Condition
altitude : Condition
depth : Condition

UpperBoundedLowerBounded

<<enumeration>>

Quantifier

exists
forAll

GeoCoordinate

latitude : float
longitude : float
altitude : float
depth : float

NamedElement

name : String

NamedElement

name : Condition

BinaryPattern

ImpliesPattern

AtomicPatternUnaryPattern

ControlTask SpatialTask

SpatialTask

Specification

name : String

ControlTask

Mission

crs : Condition

Coordinate

Coordinate

Precedence

Universality

AndPatternNotPattern

Response

OrPattern

Existence

Mission

crs : String

AfterUntil

Absence

Between

Polygon

Polygon

Globally

Shape

Scope

Before

Shape

Team

Team

Task

Fork

Line

Join

LinePoint

After

Fork

Join

Point

in

*

specification

0..1

1

performingAction

0..1

0..1

1

1
1

todoTasks*

finishedTasks*

currentTask0..1

coveredTasks*

initialPosition

1

initialPosition

0..1

1

1

shell

*

shell

3..*

todoPoints *

finishedPoints *

coveredPoints *

currentPosition

0..1
home

0..1

robots *

robots 1..*

0..1

1

point

1

point

0..1

reference

1

0..1

1

team 1

points

1..*

team0..1

points

*

home

1

initialPosition

0..1

initialPosition

1taskArea 1

taskArea 0..1

11..*

1

tasks

1..*

reference

1

0..1

2

tasks

*

Figure 5. The generated metamodel of MSL without extensions.

10 Swaib Dragule, Bart Meyers, and Patrizio Pelliccione

The MSL metamodel of Figure 5 is generated fully automatically from an

annotated (and possibly extended) MML metamodel (Figure 4) and the generic

property template (shaded part of Figure 5). Why do we need to automatically

generate an MSL metamodel? Please note that, if there was no generative

approach, each of the domain-specific language constructs (e.g., spraying a pest,

maximum altitude of a robot, etc.) would have had to be modelled a second

time in MSL. With our approach, the extension mechanisms of FLYAQ can be

reused as described in [4], and a domain-specific MSL is generated without any

additional effort.

We use techniques from the ProMoBox framework [17,16] to achieve this. First,

the MSL mission layer is generated by taking the annotated MML metamodel

and removing all run-time language constructs, which are annotated with rt, thus

creating the unshaded upper part of Figure 5. Next, the property template is

merged into this model by adding an association called specification from Mission

to Specification. Finally, the annotated MML metamodel is taken for a second

time, and the run-time language constructs are kept (by removing the annotation).

This time, the metamodel is converted into a structural pattern language by

using the RAMification process [15]: relaxing all lower multiplicities, making

all abstract classes concrete, and changing all attribute types to Condition, as

can be seen in the proposition layer of Figure 5. This RAMified metamodel is

merged into MSL by generating inheritance links from all top-level classes to

PropertyElement.

3.4 Transforming MSL to BL

Transforming MSL to BL (see MSL2BL in Figure 3) can be done according to

several stategies. Given the tight relation between MSL and MML, the transfor-

mation algorithms of MML2BL [18] (i.e., path finding, covering areas) can be

reused. Moreover, various implementation strategies as mentioned in Section 3.1

can be covered by MSL2BL: mission recalculation may be achieved by a mix of

the robot or the ground station, off-line or at run-time. These strategies may

requiring enhancement of BL to e.g., explicitly support data communication or

monitoring. As this paper focuses on the definition and generation of MSL, this

is left as future work.

4 Evaluation: Implementation of MSL as Textual DSL

In this section, we evaluate the MSL by introducing an implementation as a

textual language in Xtext [8], and show how missions can be expressed in this

language.

4.1 A Concrete Syntax for MSL

According to what described in [1], temporal properties (the shaded part of

Figure 5) might be profitably described using a structured English grammar. For

instance, we can devise a textual syntax for the MSL proposition layer (the bottom

A Generated Property Specification Language 11

part of Figure 5), where each of the associations can form a subsentence with

the two attached instances. For example, “a Robot currently on a GeoCoordinate”

denotes the presence of an instance of Robot and an instance of GeoCoordinate,

with a currentPosition link in between. More intricate, “a Robot r currently on

a GeoCoordinate with latitude lower than 100” denotes additional conditions on

the robot, etc. A structured English grammar to represent a subsentence for one

association is defined as follows (id, Label, Value, Attribute, Class, Association

are terminals):

Proposition ::= Proposition (and also Proposition)+

| Proposition (or Proposition)+

| Proposition (implies Proposition)+ | AtomicProposition

AtomicProposition ::= Expression [Association Expression]

Expression ::= Instance [InstanceCondition]

InstanceCondition ::=with (ValueCondition | BooleanCondition (and ValueCondition | BooleanCondition)*)

ValueCondition ::= {Attribute} (as | less than | greater than) {Value}

BooleanCondition ::= [not] {Attribute}

Instance ::= {id} | {Label} | a {Class} [{Label}]

Association ::= (that is a task of | that is a team of | that is in | [currently] doing | that has
scheduled | that has planned in the future | that has finished | [currently] performing | in |

[currently] on | with as home | with task area | which visits | which will visit in the future
| which has visited | with points | with initial position | which references | {Association})

The above grammar is combined with the grammar for temporal properties

presented in [1] so that temporal properties can be described in standard LTL or

CTL. This might enable the use of model checking approaches, like UPPAAL5.

With this grammar, temporal patterns involving multiple links can be expressed

with AndPatterns. MML extensions can be used by instantiating classes defined

by the extension. This is illustrated below in the examples.

Our current implementation in Xtext includes variable name resolution, parse

error visualisation, auto-completion and syntax highlighting6. A screenshot of

the MSL editor is shown in Figure 6. Since both the FLYAQ platform and MSL

are implemented on top of the Ecore platform, they can be easily merged at the

EMF layer [19].

4.2 Examples of MSL

This section presents examples of temporal properties defined in MSL, while

illustrating the relation between the grammar presented above and the MSL

metamodel presented in Figure 5. For these examples, we define a MML extension

in the agricultural domain as shown in Figure 7, with:

– DetectPest: scanning for a pest in an area and in case of detection, send some

coordinates;

5 http://www.uppaal.org/
6 An implementation of this grammar can be found at

http://msdl.cs.mcgill.ca/people/bart/flyaq/flyaq.html.

http://www.uppaal.org/
http://msdl.cs.mcgill.ca/people/bart/flyaq/flyaq.html

12 Swaib Dragule, Bart Meyers, and Patrizio Pelliccione

Figure 6. Screenshot of the MSL in Xtext.

ReceiveCoordinates

SpatialTask Coordinate

DetectPest Spray at

1

Figure 7. The MML extension.

– Spray: spraying pesticides at a point;

– ReceiveCoordinates: receiving coordinates where a pest has been detected,

with the “at” association referring to the received coordinates.

Note that, after generation of MSL, these additional language constructs will

occur twice in MSL, namely in the MSL mission layer and in the MSL proposition

layer.

The example of Figure 8 (top) shows the abstract syntax of the MSL prop-

erty “a robot only sprays at a location if it has received these coordinates to

spray at that location” as an object diagram. The Specification consists of a

Precedence pattern. The left AtomicPattern states the condition Q, saying that

a ReceiveCoordinates task is executed at a coordinate p. Note how the “at”

association is used. The right AtomicPattern P describes a robot r, spraying at

aforementioned point p. Note that the coveredPoints link is superfluous, because

if the robot is currently performing an action of a task, it must be inside the

task area. In structured English grammar, the temporal specification is as follows

(leaving out the superfluous quantification and coveredPoints link): “Globally,

if a SprayRobot r performing a Spray and r on a Coordinate p, then it must

have been the case that a ReceiveCoordinates at p beforehand”. Note how “at” is

automatically resolved to an instance of the “at” association.

The example of Figure 8 (bottom left) represents “in a certain area, a robot

can never exceed a given altitude”. Note that the Area class (now a subclass

of Polygon) is part of the MML context layer and is not shown in Figure 5. In

A Generated Property Specification Language 13

:ReceiveCoordinates

Q:AtomicPattern P:AtomicPattern

:Specification

p:Coordinate

p:Coordinate

:Precedence

r:Robot:Spray :performingAction

:currentPosition

:at

:coveredPoints

:Area

name == "lowflyzone"

P:AtomicPattern

:GeoCoordinate

:Specification

:Absence

:Robot

:currentPosition

:in

altitude > 20

:RelativeCoordinate

x == 100
y == 200
z == 10

P1:AtomicPattern P2:AtomicPattern

:ImpliesPattern

:Specification

:Universality

r1:Robot r2:Robot

:Task

currentPositionperformingAction

Figure 8. Three examples of temporal specifications as instances of MSL.

structured English grammar, the temporal specification is as follows: “Globally,

it is never the case that a Robot r in an Area with name as “lowflyzone” and also

r on a GeoCoordinate with altitude more than 20”.

The example of Figure 8 (botton right) represents “a robot can only perform

a certain task if another robot is at a certain position”. In structured English

grammar, the temporal specification is as follows: “Globally, it is always the case

that a Robot performing a Task implies a Robot on a RelativeCoordinate with x
as 100 and y as 200 and z as 10”. Note that, since spatial constraints are at the

very core of FLYAQ, it is interesting to introduce syntactic sugar for a robot

being at a coordinate, e.g., by allowing syntax like “a robot on (100, 200, 10)”.

5 Related Work

In this section, we present related works on run-time adaptation of multirobot

missions. There are several works that focus on robotics and self-adaptation,

14 Swaib Dragule, Bart Meyers, and Patrizio Pelliccione

like [10,20,9]. For the sake of space in this section we focus on related works in

run-time adaptation of (robot) missions, with a focus on MDE approaches. While

most of the mission specification tools (e.g., [23]) and the FLYAQ platform [3,6]

provide for specification of multirobot missions at design time, there is need to

have specification and recalculation of missions at run-time for missions executed

under uncertain environments.

In an effort to leverage run-time adaptation for UAV based systems, the work

in [2] uses an ensemble concept to aggregate teams collaborating in a mission

at run-time. This platform focuses on the aggregation of agents but on not the

high-level expressiveness of the mission properties. Using run-time models for

automatic reorganization of multirobot system, the work in [24] focuses more

on techniques for task distribution based on the goals and organisation of the

teams, but not how goals are expressed so that adaptation at run-time is made

easy. In [11] robots adapt models at run time, but configurations are made by an

expert programmer, not domain experts declaratively. The work in [14] focuses

on the behavioural model and how it auto-validates at run-time, yet we employ

a generative approach. The work in [22] focuses on design-time to run-time

explication of models, however this work does not really deal with adaptation

triggered by run-time uncertainties. The work in [12] proposes an approach

that uses models at design-time and run-time for collaboration. The proposed

approach is specific to a particular domain without a clear path to adapt it for

working in other domains.

6 Conclusion and Future Work

In this paper, we extended the FLYAQ platform with MSL, a highly declarative

language that allows users to describe robot missions with temporal properties

as constraints. The declarative nature of MSL allows run-time adaptation of

these missions in case of unforeseen circumstances. We showed how MSL can be

automatically tailored with domain-specific extensions by a generative approach.

Additionally we presented a structured English grammar for MSL.

Future work will mainly focus on the mapping from MSL to BL (a language for

describing individual robot movements and actions), allowing run-time adaptation

and exploring different execution strategies. We intend to model communication

between robots and/or the ground station explicitly in BL to achieve this.

Furthermore, we are planning to incorporate real-time constraints in missions.

Moreover, since our approach for enabling run-time adaptation of missions is

model-driven and relies on code generation, we intend to analyse the feasibility

of generating code in real-time.

Acknowledgement

This research is partially supported by Flanders Make vzw. This research is

also partially funded by the COST action IC1404 “MPM4CPS". This work has

been carried out within the framework of the MBSE4Mechatronics project (grant

A Generated Property Specification Language 15

nr.130013) of the agency for Innovation by Science and Technology in Flanders

(IWT-Vlaanderen). More support for this work was from the SIDA Bright 317

project. Finally, this work is partially supported from the EU H2020 Research

and Innovation Programme under GA No. 731869 (Co4Robots).

References

1. Autili, M., Grunske, L., Lumpe, M., Pelliccione, P., Tang, A.: Aligning qualitative,

real-time, and probabilistic property specification patterns using a structured english

grammar. IEEE Trans. Software Eng. 41(7), 620–638 (2015), http://dx.doi.org/

10.1109/TSE.2015.2398877

2. Bozhinoski, D., Bucchiarone, A., Malavolta, I., Marconi, A., Pelliccione, P.: Leverag-

ing Collective Run-Time Adaptation for UAV-Based Systems. 2016 42th Euromicro

Conference on Software Engineering and Advanced Applications (SEAA) pp. 214–

221 (2016), http://ieeexplore.ieee.org/document/7592799/

3. Bozhinoski, D., Di Ruscio, D., Malavolta, I., Pelliccione, P., Tivoli, M.: FLYAQ: En-

abling non-expert users to specify and generate missions of autonomous multicopters.

Proceedings - 2015 30th IEEE/ACM International Conference on Automated Soft-

ware Engineering, ASE 2015 pp. 801–806 (2015)

4. Ciccozzi, F., Di Ruscio, D., Malavolta, I., Pelliccione, P.: Adopting MDE for

Specifying and Executing Civilian Missions of Mobile Multi-Robot Systems. IEEE

Access 3536(c), 1–1 (2016), http://ieeexplore.ieee.org/document/7576686/

5. Cohen, D., Feather, M.S., Narayanaswamy, K., Fickas, S.: Automatic monitoring of

software requirements. In: Adrion, W.R., Fuggetta, A., Taylor, R.N., Wasserman,

A.I. (eds.) Pulling Together, Proceedings of the 19th International Conference on

Software Engineering, Boston, Massachusetts, USA, May 17-23, 1997. pp. 602–603.

ACM (1997), http://doi.acm.org/10.1145/253228.253493

6. Di Ruscio, D., Malavolta, I., Pelliccione, P.: A family of domain-specific languages

for specifying civilian missions of multi-robot systems. CEUR Workshop Proceedings

1319, 16–29 (2014)

7. Dwyer, M.B., Avrunin, G.S., Corbett, J.C.: Patterns in property specifications for

finite-state verification. In: Boehm, B.W., Garlan, D., Kramer, J. (eds.) Proceedings

of the 1999 International Conference on Software Engineering, ICSE’ 99, Los

Angeles, CA, USA, May 16-22, 1999. pp. 411–420. ACM (1999), http://portal.acm.

org/citation.cfm?id=302405.302672

8. Eysholdt, M., Behrens, H.: Xtext: implement your language faster than the quick

and dirty way. In: Cook, W.R., Clarke, S., Rinard, M.C. (eds.) Companion to

the 25th Annual ACM SIGPLAN Conference on Object-Oriented Programming,

Systems, Languages, and Applications, SPLASH/OOPSLA 2010, October 17-21,

2010, Reno/Tahoe, Nevada, USA. pp. 307–309. ACM (2010), http://doi.acm.org/

10.1145/1869542.1869625

9. Filieri, A., Tamburrelli, G., Ghezzi, C.: Supporting self-adaptation via quantitative

verification and sensitivity analysis at run time. IEEE Transactions on Software

Engineering 42(1), 75–99 (Jan 2016)

10. Franco, J.M., Correia, F., Barbosa, R., Zenha-Rela, M., Schmerl, B., Garlan, D.:

Improving self-adaptation planning through software architecture-based stochastic

modeling. Journal of Systems and Software 115, 42 – 60 (2016), http://www.

sciencedirect.com/science/article/pii/S0164121216000212

http://dx.doi.org/10.1109/TSE.2015.2398877
http://dx.doi.org/10.1109/TSE.2015.2398877
http://ieeexplore.ieee.org/document/7592799/
http://ieeexplore.ieee.org/document/7576686/
http://doi.acm.org/10.1145/253228.253493
http://portal.acm.org/citation.cfm?id=302405.302672
http://portal.acm.org/citation.cfm?id=302405.302672
http://doi.acm.org/10.1145/1869542.1869625
http://doi.acm.org/10.1145/1869542.1869625
http://www.sciencedirect.com/science/article/pii/S0164121216000212
http://www.sciencedirect.com/science/article/pii/S0164121216000212

16 Swaib Dragule, Bart Meyers, and Patrizio Pelliccione

11. Gherardi, L., Hochgeschwender, N.: RRA: Models and tools for robotics run-time

adaptation. IEEE International Conference on Intelligent Robots and Systems

2015-Decem, 1777–1784 (2015)
12. Götz, S., Leuthäuser, M., Reimann, J., Schroeter, J., Wende, C., Wilke, C., Aßmann,

U.: A role-based language for collaborative robot applications. Communications in

Computer and Information Science 336 CCIS(1), 1–15 (2012)
13. Gray, J., Neema, S., Tolvanen, J., Gokhale, A.S., Kelly, S., Sprinkle, J.: Domain-

specific modeling. In: Fishwick, P.A. (ed.) Handbook of Dynamic System Modeling.

Chapman and Hall/CRC (2007), http://dx.doi.org/10.1201/9781420010855.pt2

14. Kim, Y., Jung, J.W., Gallagher, J.C., Matson, E.T.: An Adaptive Goal-Based

Model for Autonomous Multi-Robot Using HARMS and NuSMV. The International

Journal of Fuzzy Logic and Intelligent Systems 16(2), 95–103 (2016), http://www.

ijfis.org/journal/view.html?doi=10.5391/IJFIS.2016.16.2.95

15. Kühne, T., Mezei, G., Syriani, E., Vangheluwe, H., Wimmer, M.: Explicit transfor-

mation modeling. In: Ghosh, S. (ed.) Models in Software Engineering, Workshops

and Symposia at MODELS 2009, Denver, CO, USA, October 4-9, 2009, Reports

and Revised Selected Papers. Lecture Notes in Computer Science, vol. 6002, pp.

240–255. Springer (2009), http://dx.doi.org/10.1007/978-3-642-12261-3_23

16. Meyers, B., Denil, J., Dávid, I., Vangheluwe, H.: Automated testing support for

reactive domain-specific modelling languages. In: Proceedings of the 2016 ACM

SIGPLAN International Conference on Software Language Engineering - SLE 2016.

pp. 181–194. ACM Press, New York, New York, USA (2016), http://dl.acm.org/

citation.cfm?doid=2997364.2997367

17. Meyers, B., Deshayes, R., Lucio, L., Syriani, E., Vangheluwe, H., Wimmer, M.:

ProMoBox: A Framework for Generating Domain-Specific Property Languages. In:

International Conference on Software Language Engineering (SLE). vol. 8706, pp.

1–20. Springer, Cham (2014), http://link.springer.com/10.1007/978-3-319-11245-

9{_}1

18. Ruscio, D.D., Malavolta, I., Pelliccione, P., Tivoli, M.: Automatic generation of

detailed flight plans from high-level mission descriptions. In: Proceedings of the

ACM/IEEE 19th International Conference on Model Driven Engineering Languages

and Systems - MODELS ’16. pp. 45–55. ACM Press, New York, New York, USA

(2016), http://dl.acm.org/citation.cfm?doid=2976767.2976794

19. Schätz, B.: Formalization and rule-based transformation of EMF ecore-based models.

In: Gasevic, D., Lämmel, R., Wyk, E.V. (eds.) Software Language Engineering,

First International Conference, SLE 2008, Toulouse, France, September 29-30,

2008. Revised Selected Papers. Lecture Notes in Computer Science, vol. 5452, pp.

227–244. Springer (2008), https://doi.org/10.1007/978-3-642-00434-6_15

20. Shevtsov, S., Weyns, D.: Keep it simplex: Satisfying multiple goals with guarantees

in control-based self-adaptive systems. In: Proceedings of the 2016 24th ACM

SIGSOFT International Symposium on Foundations of Software Engineering. pp.

229–241. FSE 2016, ACM, New York, NY, USA (2016), http://doi.acm.org/10.

1145/2950290.2950301

21. SPARC: Robotics 2020 Multi-Annual Roadmap 2016, 325 (2015)
22. Steck, A., Lotz, A., Schlegel, C.: Model-driven engineering and run-time model-

usage in service robotics. Proceedings of the 10th ACM international conference

on Generative programming and component engineering - GPCE ’11 p. 73 (2011),

http://dl.acm.org/citation.cfm?doid=2047862.2047875

23. Ulam, P., Endo, Y., Wagner, A., Arkin, R.: Integrated mission specification and

task allocation for robot teams - Design and implementation. In: Proceedings -

IEEE International Conference on Robotics and Automation. pp. 4428–4435 (2007)

http://dx.doi.org/10.1201/9781420010855.pt2
http://www.ijfis.org/journal/view.html?doi=10.5391/IJFIS.2016.16.2.95
http://www.ijfis.org/journal/view.html?doi=10.5391/IJFIS.2016.16.2.95
http://dx.doi.org/10.1007/978-3-642-12261-3_23
http://dl.acm.org/citation.cfm?doid=2997364.2997367
http://dl.acm.org/citation.cfm?doid=2997364.2997367
http://link.springer.com/10.1007/978-3-319-11245-9{_}1
http://link.springer.com/10.1007/978-3-319-11245-9{_}1
http://dl.acm.org/citation.cfm?doid=2976767.2976794
https://doi.org/10.1007/978-3-642-00434-6_15
http://doi.acm.org/10.1145/2950290.2950301
http://doi.acm.org/10.1145/2950290.2950301
http://dl.acm.org/citation.cfm?doid=2047862.2047875

A Generated Property Specification Language 17

24. Zhong, C., DeLoach, S.A.: Runtime models for automatic reorganization of multi-

robot systems. In: Proceeding of the 6th international symposium on Software

engineering for adaptive and self-managing systems - SEAMS ’11. p. 20. ACM

Press, New York, New York, USA (2011), http://portal.acm.org/citation.cfm?

doid=1988008.1988012

http://portal.acm.org/citation.cfm?doid=1988008.1988012
http://portal.acm.org/citation.cfm?doid=1988008.1988012

