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ABSTRACT

To tackle the growing complexity of engineered systems, Model-Driven Engineering (MDE) proposes to
promote models to first-class citizens in the development process. Within MDE, Multi-Paradigm Modelling
(MPM) advocates modelling every relevant aspect of a system explicitly, using the most appropriate for-
malism(s), at the most appropriate level(s) of abstraction, while explicitly modelling the underlying process.
Often, activities of the process require interaction with (domain-specific) engineering and modelling tools.
These interactions are, however, typically captured in scripts and program code, which is ill-suited for de-
scribing the timed, reactive, and concurrent behaviour of these protocols. Additionally, formal analysis of
the overall process is limited due to the incorporation of black-box activities. In this paper, we propose an
approach for the explicit modelling of service interaction protocols in the activities of MDE processes. We
also explicitly model the execution semantics of our process model, to promote reuse and allow for future
analysability. For both purposes, we propose to use SCCD, a Statecharts variant, resulting in a unified and
concise formalism.

Keywords: process modelling, reactive systems, multi-paradigm modelling, service orchestration

1 INTRODUCTION

The complexity of engineered systems is increasing. This is mainly due to their heterogeneity: software
controls hardware components in a feedback loop, and the complete system has to interact (safely) with
the environment. Often, multiple systems are connected in a network and have to communicate to achieve
a task. With the advent of Cyber-Physical Systems (CPS), smart mechatronic systems of the Industry4.0
initiative, and the Internet-of-Things (IoT), engineers are facing challenges of an unprecedented magnitude.

To successfully and efficiently tackle the complexity of the engineered system, modelling- and simulation-
based techniques are increasingly used in the flow of the engineering work. Model-Driven Engineering
(MDE) (Kent 2002) regards models as first-class concepts during system development: before realizing
the system, stakeholders build models of the various aspects of the system, resulting in a virtual product
which can be analysed, simulated and verified. Stakeholder models capture the parts of the virtual product
relevant to the stakeholder (Broman et al. 2012). Often, stakeholders specialize in different domains and,
therefore, their models are domain-specific. Within MDE, Multi-Paradigm Modelling (MPM) (Mosterman
and Vangheluwe 2004) actively promotes this specialization. MPM advocates modeling every relevant
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aspect of the system explicitly, using the most appropriate formalism(s), at the most appropriate level(s) of
abstraction, while explicitly modelling the process.

Such processes aim at depicting how the various domain-specific models are used during development.
Models are passed around in the process and are being worked on within the activities of the process.
These activities are either manual or automated, and typically make use of various services offered by
engineering tools. If modelled in an appropriate formalism, the process can be analysed and subsequently
enacted (Osterweil 1987). The enacted process orchestrates the engineering services, thus enabling a higher
level of automation in the flow of the modelling work in general.

Orchestration requires a detailed specification of the interaction protocol with external services. In man-
ual activities, user input is required, often through a (visual) modelling and simulation tool. In automated
activities, a service (or multiple services) might be invoked and communicated with in an automated way.
Such interaction protocols exhibit timed, reactive, and concurrent behaviour, making their formal analysis
paramount in industrial-scale engineering processes. The analysis of the interaction protocols can improve
its overall process with regards to transit time, scheduling, resource utilization, and overall model consis-
tency. These interactions are, however, typically specified in scripts or program code, which interface with
the API of the tools providing the services. Such an encoding of the interaction protocols inhibits their
formal analysis.

The contributions of this paper are twofold. First, we propose to explicitly model the external service
interaction protocols in the activities of engineering processes using SCCD (Van Mierlo et al. 2016), a
variant of Statecharts (Harel 1987). SCCD is appropriate for modelling timed, reactive, autonomous, and
dynamic-structure behaviour, as it has native constructs available for it. This facilitates the implementation
of the interactions protocols, and enables future analysis of the service orchestration. Second, we provide
execution semantics for the overall process by combining the activities expressed as SCCD models in a
composed SCCD model, augmented with process semantics. This avoids the need to define operational
semantics for activity diagrams, which is non-trivial.

In the remainder of this section, we present a motivating example, used throughout the paper. In Section 2,
we give a brief overview of the background to our work. In Section 3, we review the related work to identify
shortcomings in the state of the art. We present the core of our approach in Section 4 and Section 5, where
we present the modelling of activities and the mapping of the process, respectively. Finally, in Section 6 we
conclude the paper and discuss future work.

Motivating example

Figure 1: Process model of the example.

Our motivating example is the optimization of the
number of traffic signals in a railway system. The
system consists of sequences of railway segments,
each guarded by a single traffic signal. For safety rea-
sons, only one train is allowed on each railway seg-
ment, despite the segment being longer. Adding more
traffic signals increases the throughput of the system,
though also increases the cost of maintenance. The
ideal number of traffic signals is therefore dependent
on the characteristics of the system (e.g., train inter-
arrival time, acceleration, total length of the track).

The optimization is done by modelling the system
with the DEVS formalism (Zeigler, Praehofer, and
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Kim 2000). Our problem requires several atomic DEVS models, such as a generator, collector, railway seg-
ment, and a traffic signal, and a single coupled DEVS model, coupling these atomic models together. This
model is subsequently simulated for a fixed set of parameters, while varying the number of traffic signals
over the total length. All simulation results are collected, the cost function is evaluated for all of them, and
the number of traffic signals with the minimal cost is returned.

This process is shown in Figure 1, where we first design the various atomic models manually, though con-
currently. As such, multiple engineers can model different aspects of the system concurrently. Additionally,
a set of parameters is chosen, for which to simulate the model. Afterwards, the created atomic DEVS
models are used to create the coupled DEVS model. It is this collection of models that is passed on to the
optimization step, which plots out the costs of various configurations.

We implemented this example in the Modelverse (Van Tendeloo and Vangheluwe 2017, Van Tendeloo
2015), our prototype MPM tool. Simulations were performed using the PythonPDEVS (Van Tendeloo and
Vangheluwe 2014) simulator as an external service.

2 BACKGROUND

We first give a brief overview on the background of our work. Our approach builds on the combination of
two formalisms: Formalism Transformation Graph + Process Model (FTG+PM) and Statecharts + Class
Diagrams (SCCD), both of which are explained next.

2.1 Formalism Transformation Graph + Process Model (FTG+PM)

Process modelling is a widely used technique on the business level of a project. Business process modelling
formalisms, however, fall short of capturing the essence of the engineering nature of complex system devel-
opment. The Formalism Transformation Graph + Process Model (FTG+PM) formalism (Lucio et al. 2013)
is designed specifically for depicting model-driven development processes. The two parts of the formalism
depict the two aspects of an MDE process: the formalisms used throughout the process (FTG), and the pro-
cess itself (PM). The FTG depicts the formalisms and the transformations between them, as used during the
engineering process. The PM models the process and the models flowing through that process as artefacts.
As such, the FTG serves as a type system for the PM, with formalisms typing artefacts and transformations
typing activities. The PM allows to use any process modelling formalism, UML Activity Diagrams being the
typical choice for this purpose (Dávid et al. 2017).

2.2 Statecharts + Class Diagrams (SCCD)

Statecharts is a formalism for modelling timed, reactive, autonomous systems, and was introduced by
Harel (Harel 1987). Its main abstractions are states that can be composed hierarchically and orthogonally;
transitions between these states that are either spontaneous, or triggered by an external event (coming from
the environment), an internal event raised by an orthogonal component, or a timeout; and actions that are
executed when a transition is executed.

While Statecharts is an appropriate formalism for describing the timed, reactive, autonomous behaviour
of systems, it does not allow to model a system with dynamically changing structure. In many systems,
objects are continuously created and destroyed. The SCCD formalism (Van Mierlo et al. 2016) extends
the Statecharts formalism with the concepts of the Class Diagrams formalism (classes and relations, which
model structure). Each class in the class diagram is associated with a definition of its behaviour (in the form
of a Statecharts model). At runtime, an object can request for a class to be instantiated as an object, and
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relationships between classes to be instantiated as links between objects. Links serve as communication
channels, over which objects can send and receive events. There is exactly one default class, of which an
instance is created when the system is started by the runtime.

3 RELATED WORK

Process and workflow modelling is an extensively researched domain. Process modelling languages are
primarily geared towards modelling concurrency and synchronisation (van der Aalst et al. 2003). Perti-
nent examples include languages based on the Business Process Modelling Notation (Stiehl 2014), Petri
nets (van der Aalst 2015) and UML Activity Diagrams (Bhattacharjee and Shyamasundar 2009). We focus
on and discuss the most relevant and well-known approaches in terms of the intentions of this paper next.

The Business Process Modelling Notation (BPMN) (Silver and Richard 2009) is a widely used standard
in process modelling. BPMN is used in a wide range of areas, to model processes in non-IT, as well as
IT-intensive organisations. Its main goal is to provide an understandable notation for all stakeholders. The
focus is more on the conceptual modelling of processes, and less on orchestration and execution. In version
2.0, the standard has been extended with support for orchestration, albeit on a non-technical level.

jBPM (Cumberlidge 2007) is an open-source, Java-based framework that supports execution of BPMN
2.0 conform processes. The framework also provides enhanced integration features with external services
in the form of managed Java program snippets. In addition, the process engine is tightly integrated with
a collaboration and management service (Guvnor), a standardized human-task interface (WS-HT), a rule
engine (Drools) and a complex event processing engine (Drools Fusion).

The Business Process Execution Language (BPEL) (Weerawarana et al. 2005) is a standardised language for
specifying activities by means of web services. The standard specifies a BPEL process as XML code, though
graphical notations exist, often based on BPMN. Service interaction can be executable or left abstract.
Analysis tools for BPEL have been developed, for example by formalising BPEL models in terms of Petri
nets as done by Ouyang et al. (2007) and Xia et al. (2012). Kovács, Varró, and Gönczy (2008) use a symbolic
analysis model checker. Fu, Bultan, and Su (2004) and Foster et al. (2003) analyse the communication
between BPEL processes by employing automata. Nevertheless, BPEL is exclusively used for web services
defined using WSDL.

Yet Another Workflow Language (YAWL) (van der Aalst and ter Hofstede 2005) attempts to combine the
functionality of BPMN (business-mindedness) and BPEL (executability). In contrast to other approaches,
YAWL was designed with formal semantics in mind, and is defined as a mapping to Petri nets. Execution
particularly aims to provide insight in data and resources. There is, however, no particular focus on the
integration and orchestration of tools.

Orc (Kitchin et al. 2009) is a formal textual language for the orchestration of service invocation in concurrent
processes. It aims to manage timeouts, task priorities, and failure of services and communication. Orc is
based on trace semantics, which is used to determine whether two Orc programs are interchangeable. The
integration of tools can be achieved by defining sites, which represent units of computation. There is no
support, however, for modelling modal behaviour, and the textual notation does not scale to large processes.

Open Services for Life-cycle Collaboration (OSLC) (OSLC Community 2017) is the de facto standard in
tool integration. It is a specification for the management of software lifecycle models and data, which are
represented as resources. The specification is intended to be used for integration of services and data, and
does not include process modelling.

The Statecharts formalism (Harel 1987) has first-class notions of concurrency, hierarchy, time and com-
munication. It can therefore be viewed as a suitable formalism for integration and orchestration. Because
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Statecharts is state-based, and does not include fork and join constructs, it is less suitable for process mod-
elling. Statecharts has been combined with Class Diagrams in SCCD (Van Mierlo et al. 2016), to provide
structural object-oriented language constructs (i.e., objects with behaviour).

A summary of all approaches and their suitability for our purpose is presented in Table 1. Support for the
following aspects have been investigated.

• Process – the approach is intended to be used to specify processes;
• Service/tool integration – the approach aims at integration of services/tools;
• Executability – the approach supports execution (or enactment);
• Analyzability – the approach provides means for formal analysis;
• Usability – the notation can be considered the most appropriate for the tasks it is intended for.

Approach Process Integration Executability Analysability Usability
Petri nets
Activity Diagrams
BPMN2.0
jBPM
BPEL
YAWL
Orc
OSLC
FTG+PM

SCCD

Table 1: Summary of related work. ( - Supports, - Partially supports, - Does not support)

The main conclusion is that no approach truly unifies process modelling and integration of services. The
approaches that score best in these two aspects (BPEL and Orc) do not have an intuitive, accessible notation,
although in the case of BPEL, graphical notations have been suggested but are not part of the standard. jBPM
overcomes these shortcomings, but does not support analysability of the service interactions.

In the remainder of this paper, we present an approach that scores well in all of the above aspects, by
combining the FTG+PM and the SCCD formalisms.

4 MODELLING ACTIVITIES USING SCCD

We first turn to the definition of an activity. Activities are the atomic actions being executed throughout the
enactment of the process. Up to now, we were agnostic of what is the content of the activity, as we merely
require it to be executable. Most often, it is hardcoded in some programming language. When control is
passed to a specific activity, the activity executes.

4.1 Problem Statement

Activities can be hardcoded, but code is arguably not the optimal formalism to describe an activity. While
activities can be limited to executing some local computation, it frequently requires external tool interaction.
Such external tools can be anything, for example a (highly-optimized) simulator, or a modelling tool. In
such cases, hardcoding the potentially complex interaction protocol is far from ideal. Indeed, the behaviour
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of protocols exhibits timing (e.g., network timeouts, delays), reactivity (e.g., responding to an incoming
message), and concurrency (e.g., orchestrating multiple tools concurrently).

In our running example, we see this exact problem occuring in the “optimize model” activity. In this activity,
we want to optimize the cost for a given set of parameters, varying a single parameter within a given range.
Concretely, we want to vary the number of traffic lights in the simulation, while keeping all other parameters
fixed. In the end, the activity needs to return the optimal solution; that is, it returns the optimal number of
traffic lights for the given set of parameters. In essence, the same simulation is ran with slightly different
parameters. This is, however, embarassingly parallel: each simulation run is independent of every other
simulation run. Therefore, we desire to run some simulations in parallel. Doing this the usual way (i.e., with
code) is non-trivial: concurrency requires threads (which is problematic (Lee 2006)), reactivity requires the
use of a main loop (possibly with polling), and timeouts require interruptable sleep calls.

4.2 Approach

From the previous discussion, it is apparent that code is not ideal to specify timed, reactive, and concurrent
activities, which is the case with service orchestration. We propose to use a formalism equipped with
better support for these requirements: SCCD. Some activities are therefore ideally modelled with SCCD,
where they can automatically make use of its features. On the implementation side, SCCD manages all
concurrency, timing, and reactivity natively. Indeed, concurrency is supported by orthogonal components
and dynamic structure, reactivity is supported by event-based transitions, and timeouts are supported by
after events.

In our running example, we see that these features of SCCD are all required in the “optimize model” activity.
Concurrency is required to spawn several instances of the simulator concurrently, and the number is only
known at runtime, as it depends on the number of possible configurations. Reactivity is required to handle
the results of these individual simulators, which should be aggregated. Timeouts are required to handle
network timeouts and potential infinite simulations.

In Figure 2, we show how the example activity is modelled with SCCD. Thanks to SCCD, we can spawn an
arbitrary number of “Simulation” objects, by sending out an event to the object manager, thereby allowing
for dynamic structure (implementing concurrent). After a simulation is spawned dynamically, for each con-
figuration to evaluate, we wait for results to come in, encoded in events (implementing reactive behaviour).
Each of the spawned simulations serializes the model, and sends it to the actual external simulator, after
which the simulator is started externally. If no response is received from the simulator during initialization
before a timeout occurs, we retry the connection (implementing timing). If the simulation was started suc-
cessfully, but no result comes in before a timeout occurs, we determine that the simulation has crashed, is
stuck in an infinite loop, or ran out of memory. Independent of the reason, we determine that the simulation
result is not the optimum, and subsequently ignore the simulation run. When all simulation results are in, or
we have waited sufficiently long, we return the optimal parameter that we found.

5 MAPPING PROCESSES TO SCCD

Orthogonal to the previous section, where we modelled the contents of the activities using SCCD, we now
look at the process model itself. The process model chains the different activities, dictating the order in
which they should be executed, possibly concurrently. Of specific interest is the fork/join operation, which
executes multiple activities concurrently and synchronizes when both have finished. This is ideal for manual
activities, for which multiple developers might be involved, who can now model concurrently.
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after(10)
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raise simulation_done(result)

simulations

1 *

Figure 2: Automatic activity: protocol implemented to communicate with an external service.

5.1 Problem Statement

Despite the advantages of concurrent manual activities, implementing this in a truly parallel fashion is non-
trivial. Basic implementations merely dictate an arbitrary order between different concurrent activities,
without actually executing them in parallel. This was originally the case in our prototype tool, the Model-
verse, because true concurrency is difficult and relies on many platform characteristics. Questions include:

• Will the activities be executed on separate processes, or separate threads?
• How is their interleaving managed?
• Does the implementation platform support parallel thread execution?
• How is the data (i.e., models) shared by the activities?

These are only a small selection of crucial questions regarding the implementation of process enactment. A
significant investment to implement and maintain this infrastructure is needed if processes are implemented
using traditional (code-based) techniques.

For our running example, this is shown in the concurrent manual activities in the beginning of the process:
creating the various DEVS models. These models are independent, and can easily be created in parallel.
Nonetheless, if there is no support for activities to run concurrently, all work is effectively sequentialised,
significantly increasing the duration of the overall process.

5.2 Approach

The problem arises due to the lacking native support for concurrency in many implementation languages.
As such, implementing process model enactment requires many workarounds to achieve true parallelism.
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We note, however, that languages do exist that natively support notions of concurrency, for example SCCD.
Nonetheless, as mentioned in section 3, SCCD was not designed to model workflows, and is therefore not
suited for direct modelling. In summary, we want users to model using activity diagrams, as they are used
to, but for execution purposes, we transform the modelled process to an SCCD model. This transformation
defines denotational semantics for process models, instead of operational semantics (an executor).

While other languages with native notions of concurrency exist, we favour SCCD, as this allows us to
reuse the SCCD execution engine that we need to execute the activities (explained in the previous section).
Additionally, we see many future opportunities for our approach if both orthogonal dimensions (modelling
activities with SCCD, and mapping the process to SCCD) are combined: both share the same (hierarchical)
formalism, and can therefore potentially be flattened.

Mapping activity diagrams to SCCD can be achieved through the use of model transformations, which are
often referred to as the heart and soul of MDE (Sendall and Kozaczynski 2003). With model transformations,
a Left-Hand Side (LHS) is searched throughout the model, and, when matched, the match is replaced with
a Right-Hand Side (RHS), if the Negative Application Condition (NAC) does not match at the same time.
In our case, the LHS consists of activity diagrams elements, such as the activity construct, while the RHS
copies the activity diagram construct (thereby leaving the activity diagram intact) and creates an equivalent
SCCD construct (i.e., an orthogonal component). Defining such a mapping is significantly less work than
defining operational semantics from scratch, as we will show. Additionally, by mapping to SCCD, there is
only one implementation of an executor for timed, reactive, autonomous, dynamic-structure behaviour that
must be maintained (the SCCD executor).

A basic mapping to SCCD consists of mapping forked activities to orthogonal components, that each spawn
and manage the execution of the activities; joins synchronize the execution by transitioning from the end
states of these components. While intuitive, this mapping can run into problems, as an analysis of all
concurrent regions would be necessary. For example, consider two parallel forks that interleave. Using
the basic mapping, the two forks cannot be independently mapped, as their interaction would need to be
analysed, resulting in a different mapping to orthogonal regions. Therefore, we propose a more generic
mapping, described next.

Our equivalent SCCD model consists of a set of orthogonal components, one for each activity diagrams
construct. The order in which the orthogonal components are enabled, is defined by the condition that
is present in the orthogonal component itself. Each orthogonal component will check whether it has the
“execution token”, and if so, it passes on the token. All orthogonal components are executed concurrently,
meaning that if suddenly multiple tokens exist, due to a fork, multiple orthogonal components can start their
operation concurrently. Depending on the type of construct, the behaviour changes: activities execute and
pass on the token upon completion, a fork splits the token, a join merges tokens, and a decision passes the
token conditionally. In the remainder of this section, we describe our transformation rules for each activity
diagram construct in detail.

5.3 Transformation Rules

The following transformation rules are executed in the presented order. Before we actually start the trans-
lation, however, we first perform a minor optimization step: subsequent fork operations are merged into a
single fork. This is not performed for performance considerations, but makes the mapping slightly easier.
When a fork succeeds another fork, this is equivalent to the first fork also forking to the targets of the second
fork, thereby bypassing the second fork. This optimization thereby removes two chained forks, allowing us
to skip this case in the remainder of the mapping. While this pattern does not occur frequently, it must be
taken care of, as it is a valid construct. The same optimization is performed for join nodes.
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Figure 3: Optimize rules.

Optimization Figure 3 presents the optimization of fork
nodes, as discussed previously. The first (topmost) rule makes
sure that the first fork directly links to all targets of the second
fork, removing the target from the second fork. This rule keeps
the model semantically equivalent, as the second fork now has
no successors. In the second (bottommost) rule, an empty fork
node is removed, as it has no outgoing edges any more. This
rule again maintains semantic equivalence, as the second fork
has no successors left. Similar rules exist for the optimization
of fork nodes.

Orchestrator
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done

running
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Figure 4: Orchestrator rule.

Orchestrator Figure 4 presents the transformation rule for
the orchestrator, which executes once. Each subsequent trans-
formation rule extends a single composite state with an orthog-
onal region. The orthogonal regions execute all elements of the
activity diagram in parallel, waiting for a condition to become
true. The first step consists of creating the composite state and
providing it with an orthogonal region that catches a spawn
event, and performs the spawning of an activity. By defining
this code here, it does not have to be reproduced throughout
the other orthogonal regions, and maximising reuse.

waiting
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:Activity

running

:ProcessNode
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:Activity :ProcessNode

23

4

5

6

78

9
10

12

11

Figure 5: Activity rule.

Activity Figure 5 presents the transformation rule that ex-
ecutes for each activity. Activities are relatively easy to map,
as they merely require the spawning of their associated activity
(which, in our case, is modelled by another SCCD class). This
is achieved by sending a spawn event to the orchestrator, and
transitioning to a “running” state. We stay in this state until
we have determined that the spawned activity has terminated,
after which we mark the current activity as executed (i.e., we
pass on the token).

1

:Fork

waiting
running

2

running

2

3

4
5

681

7

:Fork

Figure 6: Fork rule.

Fork Figure 6 presents the transformation rule that executes
for each fork node. Forking requires a single token to be dis-
tributed among all of its successors, without doing any com-
putation itself. As such, our transformation rule adds an or-
thogonal component which continuously polls whether or not
it has received the token. If it receives the token, it immediately
passes the token to all of it successors simultaneously.

waiting

1
:Join

2

running
5

6
7

8

9

:ProcessNode

3

4

4

running

1
:Join

:ProcessNode

3

2

Figure 7: Join rule.

Join Figure 7 presents the transformation rule that executes
for each join node. Joining is slightly more complex: it has
to check for multiple tokens, before becoming enabled. When
enabled, it consumes all of these tokens and passes on the to-
ken to its own successor, of which there is only one.
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waiting

1

:Decision

running
2

running
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681

:Decision

7

Figure 8: Decision rule.

Decision Figure 8 presents the transformation rule that exe-
cutes for each decision node. The final construct that we have
to map, is the decision node. Similar to all previous nodes,
we check whether we have a token to start execution. Depend-
ing on the input data that we receive, we decide to pass on the
token to either the true- or the false-branch.

6 CONCLUSION AND FUTURE WORK

In the context of MPM, service orchestration is essential for the combination of multiple external tools.
Nonetheless, current approaches do not sufficiently address the challenges it poses: timed, reactive, and
concurrent behaviour. In this paper, we propose an approach for handling these problems by two contribu-
tions, based on SCCD (a Statecharts variant), which has native notions of timing, reactivity, concurrency,
and dynamic structure. First, activities themselves are modelled using SCCD, allowing external service
protocols to be more effectively specified. Second, the process model is transformed into an equivalent
SCCD model for execution. This preserves the modelling abstractions provided by activity diagrams, while
gaining the execution of SCCD.

In future work, we plan to consider the benefits of combining these two orthogonal dimensions of our ap-
proach. Indeed, as both the process and activities are modelled in SCCD, they can be combined into a
single SCCD model. This single SCCD model can subsequently be analysed (Pap et al. 2005) or de-
bugged (Mustafiz and Vangheluwe 2013), without any additional work. To achieve the valid and sound
construction of this combined SCCD interaction/process model, composition rules of the single interaction
SCCD model need to be investigated. Our previous work on process-oriented inconsistency management
in MPM settings (Dávid et al. 2016) is a prime candidate to be augmented with such an approach. Software
Process Improvement (SPI) techniques in general can greatly benefit from our approach as well.
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