
Evolution of Modelling Languages

Bart Meyers, Hans Vangheluwe

Modelling, Simulation and Design Lab (MSDL), University of Antwerp, Middelheimlaan 1, B-2020 Antwerp, Belgium

Abstract

In model-driven engineering, evolution is inevitable over the course of the complete life cycle of complex software-
intensive systems and more importantly of entire product families. Not only instance models, but also entire modelling
languages are subject to change. This is in particular true for domain-specific languages. Up to this day, modelling
languages are evolved manually, with tedious and error-prone migration of for example instance models as a result.
This position paper discusses the different evolution scenarios for various kinds of modelling artifacts, such as in-
stance models, meta-models and transformation models. Subsequently, evolution is de-composed into four primitive
scenarios such that all possible evolutions can be covered. We suggest that our structured approach will enable the
design of (semi-)automatic model evolution solutions1.

1. Introduction

In software engineering, the evolution of software artifacts is ubiquitous. These artifacts can be programs, data,
requirements, documentation, but also languages. Language evolution applies in particular to domain-specific mod-
elling (DSM), where domain-specific languages (DSLs) are specifically designed to minimize accidental complexity
by using constructs closely coupled with their domain. This results in a reported productivity increase of a factor 5 to
10 [9]. DSLs must be quickly built and used, and grow incrementally. A formal underpinning for DSM is given by
multi-paradigm modelling (MPM) [12].

The high dependence on their domains and the need for instant deployment make DSLs highly susceptible to
change. Such an evolution of a language can have substantial consequences, which will be explained throughout
this paper. Early adopters of the model-driven engineering paradigm dealt with this evolution problem manually.
However, such a pragmatic approach is tedious and error-prone. Without proper methods, techniques and tools to
support evolution, model-driven engineering in general and domain-specific modelling specifically will not scale to
industrial use.

1.1. Modelling Languages
To allow for a precise discussion of language evolution, we briefly introduce the concepts fundamental to mod-

elling languages, in the context of multi-paradigm modelling [5].
The two main aspects of a model are its syntax (how it is represented) and its semantics (what it means).
Firstly, the syntax comprises concrete syntax and abstract syntax. The concrete syntax describes how the model

is represented (in 2D vector graphical form for example), which can be used for model input as well as visualization.
The abstract syntax contains the essence of the structure of the model (as an abstract syntax graph), which can be used
as a basis for semantic anchoring [2]. A single abstract syntax may be represented by multiple concrete syntaxes.
There exists a mapping between a concrete syntax and its abstract syntax, called the parsing mapping function. There
is also an inverse mapping, called the pretty printing mapping function. Mappings are usually implemented, or can be
at least represented, as model transformations.

1An early version of this work was previously presented at the Fujaba Days ’09 workshop in Eindhoven, The Netherlands
Email addresses: Bart.Meyers@ua.ac.be (Bart Meyers), Hans.Vangheluwe@ua.ac.be (Hans Vangheluwe)

Preprint submitted to Benevol 2009 November 30, 2009



Figure 1: A model and its relations in MPM.

Secondly, the semantics of a model are defined by a complete, total and unique semantic mapping function which
maps every model in a language onto an element in a semantic domain, such as differential equations, Petri Nets, or
the set of all behaviour traces. Semantic mapping functions are performed on the abstract syntax for convenience.

A meta-model is the finite and explicit description of the abstract syntax of a language. Often, the concrete syntax
is also described by (another) meta-model. Semantics are however not covered by the meta-model. The abstract
syntax of the semantic domain itself will of course conform to a meta-model in its own right.

Figure 1 shows the different kinds of relations a model m is involved in. Relations are visualized by arrows,
“conform to”-relationships are dotted arrows. The abstract syntax model m conforms to its meta-model MM. There
is a bidirectional relationship κi (parsing mapping function and pretty printing mapping function) between m and a
concrete syntax κi(m). κi(m) conforms to its meta-model MMκi . Semantics are described by the semantic mapping
function M, and map m to a model M(m). M(m) has syntax which conforms to MMM . Additionally, there may be
other transformations Ti defined for m.

2. Related Work

In order to be able to model evolution in-the-large, one should be able to model differences between two versions
of a model [1, 13, 11, 18, 4]. Difference can be computed by traversing both graphs in parallel, and match either by
using unique identifiers [1, 13], or by using a number of heuristics [11, 18]. These differences can then be represented
as a so-called delta model. The difference can be represented by the edit operations that were performed on the model
[1, 7] or by structurally decorating the metamodel with the changes through colouring [13, 18, 11, 14] or by using a
designated meta-model that includes concepts of evolution [4, 15].

The most obvious side-effect of language evolution is the co-evolution of the instance models. This co-evolution is
represented as a model transformation [19, 10, 15, 8, 6, 17, 16, 3, 7], which we will call the migration transformation.
This migration transformation can be created manually [19, 8, 6], automatically [3] or a combination of both [17, 7].

3. Evolution for MPM

While model co-evolution as described above implements automation to some extent, there are other artifacts that
might have to co-evolve. This section presents an exhaustive survey of possible evolutions and co-evolutions.

3.1. Syntactic Evolution

To get a general idea of the consequences of evolution, let us go back to Figure 1. When MM evolves, all models
m have to co-evolve, which was discussed in Section 2. However, as the relations of Figure 1 suggest, the evolution of
MM might affect other artifacts. First, similar to m, (the domain and/or image of) transformations such as κi, Ti and
M might no longer conform to the new version of the metamodel. As a consequence, they too have to co-evolve. This
makes all relations (syntactically) valid once again, which means that the system is syntactically consistent again. In
short, meta-model evolutions can only be useful when both their model instances and related transformation models
can co-evolve.

2



MM

m T(m)T

IMMD

(c)

MMD'

mE

1
ΔMMD

E

2

T'
3

E-1

Figure 2: Co-evolution in (a) model evolution, (b) image evolution, (c) domain evolution and (d) transformation evolution.

However, there are more scenarios. Firstly, it is possible that the meta-model changes in such a way that the co-
evolved models become structurally different, for example by removing a language construct. This means that each
transformation defined for each co-evolved model has to be re-executed. The resulting co-evolved models can also be
structurally different, so a chain of required evolution transformation executions may be required.

Secondly, changes made to one meta-model can reflect on another meta-model. For example, when a meta-element
is added to a meta-model, a new meta-element is often also added to the meta-model of the concrete syntax(es) in
order to be able to visualize this new construct. A similar effect can occur between any two related (by transformation)
meta-models. In this sense, a chain of meta-model changes is again possible.

Thirdly, until now, we only discussed meta-model evolution as the driving force. Evolution of other artifacts, such
as instance models and transformation models should also be taken into account. The case of the evolution of a model
is trivial: related models can co-evolve by executing the respective transformations. Note however that a co-evolved
model may be a meta-model, so that might trigger a number of co-evolutions of its own.

The case of the evolution of a transformation model can get complicated. In many cases though, the evolved
transformation simply has to be executed again on each model it is defined for. However, this would restrict a trans-
formation evolution to remain compliant to its source and target metamodels, which is not always what we want. For
example, it might be possible that a new language is created by mapping rules for each language construct of an exist-
ing language. This is in particular convenient for creating a concrete syntax. On top of this, there are two additional
special cases of transformation evolution. Firstly, the evolution of the parsing mapping function or the pretty printing
mapping function requires the other one to co-evolve in order to maintain a meaningful relation between abstract and
concrete syntax. Such a co-evolution can be generalized to any bidirectional transformation. Secondly, the evolution
of the semantic mapping function requires a means to reason about semantics in order to trigger co-evolution, which
brings us to the concept of semantic evolution.

3.2. Semantic Evolution
As mentioned above, semantics of a model are defined by its semantic mapping function to a semantic domain.

Some analysis can be performed on models in this semantic domain (for example: check for a deadlock in a Petri
Net). The results of this analysis can be considered a property of the model, or P(m). A semantic mapping function
is constructed in such a way that some properties PM(m) hold both for a model and for its image under the semantic
mapping (i.e., the intersection of both property sets). These common properties have to be maintained throughout
evolution. An evolution is a semantic evolution if some of these properties change. This typically happens when the
requirements of a system change.

In general, when a model m in a formalism whose semantics is given by semantic mapping function M evolves to
m’, then PM(m’) must be exactly PM(M(m)) modulo the intended semantic changes. In general, when two versions of
a system are (a) equal modulo their intended syntactic and semantic changes and (b) syntactically consistent, then the
evolution of the system is continuous. Only continuous evolutions are deemed correct (and meaningful).

4. De-constructing Evolution

As discussed in the previous section, there are infinitely many possible co-evolution scenarios. Nevertheless,
these scenarios can always be broken down into a few basic ones. Figure 2 shows the possibilities. Again, arrows

3



Figure 3: Domain-evolution as sets. The evolution E(D) does not map onto D’ exactly. For m’, the constraint T’ = T◦E−1 does not hold!

are transformations and dotted arrows are “conforms to”-relationships. Dashed arrows denote a (semi-)automatic
generation. Each diagram starts from a bold relation between two meta-models MMD and MMI , modelled as a
transformation T of models m.

4.1. Model Evolution

Figure 2 (a) shows model evolution. Some model m evolves to m’. In step 1 (the only step), a delta model ∆m is
constructed (either automatically or manually) that models the evolution of m to m’. This means that m’ = m + ∆m.
The evolution itself is typically represented as a migration transformation, namely E. The equation mE = m + ∆m = m’
is valid. As previously discussed, because m evolved to m’, every transformation T must be executed again, resulting
in T(m’), conform to MMi.

4.2. Image Evolution

Image evolution is shown in Figure 2 (b). Suppose that a meta-model MMI evolves to MMI′ . In step 1 a delta
model ∆MMI is constructed to represent the difference between MMI and MMI′ . In step 2 a migration transformation
E is generated out of ∆MMI . The execution of E co-evolves models T(m) to T(m)E , so that they conform to the new
meta-model MMI′ . Moreover, the execution transformation T has to result in valid models (i.e., conform to MMI′ ).
As a consequence, T has to co-evolve to a new transformation T’ (as in step 3), which is able to transform every
possible m that conforms to MMD, to T(m)E . The diagram presents a solution for the generation of this T’: for every
m, T’(m) = E(T(m)) holds, or in short, T’ = E ◦ T. The co-evolution T’ can be simply composed out of T and E.

4.3. Domain Evolution

Figure 2 (c) shows domain evolution, where MMD evolves. The artifacts that co-evolve are similar to image
evolution. This time however, T can be expressed as T’ = T ◦ E−1. So, in this case, an inverse transformation E−1

needs to be constructed. Unfortunately, this equation does not hold for the entire domain D’, as shown in Figure 3. The
migration transformation E projects the entire domain D to E(D), but it is possible that E(D) , D’. For m in Figure 3
it may be possible to construct E−1 such that T’(mE ) = T(E−1(mE )) holds. However, for m’, which is an element of
D’ \ E(D), this is not possible. Nevertheless, T’ must apply to its entire domain D’, so the equation T’ = T ◦ E−1 can
not be used for all possible models conform to MMD′ .

4.4. Transformation Evolution

Figure 2 (d) shows transformation evolution. The requirements of a system can change, resulting in the adjustment
of the (desired) properties of a model. If transformations evolve according to a delta model ∆T, it is possible that they
only have to be executed once again. In this case, the changes on the transformation are limited: the image of T’
must conform to MMi. As previously discussed, other artifacts might possible co-evolve. In this case, a migration
transformation E must be composed from which a delta model ∆MMi can be constructed.

4



4.5. Evolution Scenario Amalgamation

Using a combination of these four scenarios, all possible evolutions can be carried out. Note however that the
problem of Figure 3 applies, so automated co-evolution is not always possible. The so-called unresolvable changes
can be classified as models in E(D) \D’. On the other hand, the transformation has to support the models in D’ \ E(D).
We call this the projection problem. In general, the projection problem arises when domE (T) * dom(T).

5. Conclusions

Widespread adoption of model-driven engineering is hampered by the lack of support for modelling language
evolution. In domain-specific modelling in particular, modelling languages change frequently. When such languages
evolve, support for (semi-)automated co-evolution of instance models is desirable.

In this paper, we have broken down this problem into four primitive (co-)evolution scenarios which can subse-
quently be combined. We showed that the co-evolution of transformations can be problematic, as a transformation
always needs to be able to transform all possible elements in its domain. The presented breakdown serves as a starting
point for further research into evolution solutions.

6. Bibliography

[1] Alanen, M., Porres, I., 2003. Difference and union of models.
URL http://citeseer.ist.psu.edu/596185.html

[2] Chen, K., Sztipanovits, J., Neema, S., 2005. Toward a semantic anchoring infrastructure for domain-specific modeling languages. In: EM-
SOFT ’05: Proceedings of the 5th ACM international conference on Embedded software. ACM, New York, NY, USA, pp. 35–43.

[3] Cicchetti, A., Ruscio, D. D., Eramo, R., Pierantonio, A., 2008. Automating co-evolution in model-driven engineering. In: EDOC ’08:
Proceedings of the 2008 12th International IEEE Enterprise Distributed Object Computing Conference. IEEE Computer Society, Washington,
DC, USA, pp. 222–231.

[4] Cicchetti, A., Ruscio, D. D., Pierantonio, A., 2007. A metamodel independent approach to difference representation. Journal of Object
Technology 6 (9), 165–185.

[5] Giese, H., Levendovszky, T., Vangheluwe, H., October 2006. Summary of the workshop on multi-paradigm modeling: Concepts and tools.
In: Kühne, T. (Ed.), Models in Software Engineering Workshops and Symposia at MoDELS 2006. Vol. 4364 of LNCS. Springer-Verlag, pp.
252–262.

[6] Gruschko, B., Kolovos, D., Paige, R., 2007. Towards synchronizing models with evolving metamodels. In: Proceedings of the International
Workshop on Model-Driven Software Evolution at IEEE European Conference on Software Maintenance and Reengineering (ECSMR).

[7] Herrmannsdoerfer, M., Benz, S., Juergens, E., 2009. Cope - automating coupled evolution of metamodels and models. In: Proceedings of the
23rd European Conference on Object-Oriented Programming (ECOOP). pp. 52–76.

[8] Hoessler, J., Soden, J., Michael, Eichler, H., 2005. Coevolution of models, metamodels and transformations. Models and Human Reasoning,
129–154.

[9] Kelly, S., Tolvanen, J.-P., March 2008. Domain-Specific Modeling: Enabling Full Code Generation. John Wiley & Sons.
URL http://www.amazon.com/exec/obidos/redirect?tag=citeulike07-20&path=ASIN/0470036664

[10] Lämmel, R., Nov. 2004. Coupled Software Transformations (Extended Abstract). In: First International Workshop on Software Evolution
Transformations.

[11] Lin, Y., Gray, J., Jouault, F., 2007. Dsmdiff: A differentiation tool for domain-specific models. European Journal of Information Systems
16 (4, Special Issue on Model-Driven Systems Development), 349–361.
URL http://www.cis.uab.edu/gray/Pubs/ejis-2007.pdf

[12] Mosterman, P. J., Vangheluwe, H., 2004. Computer automated multi-paradigm modeling: An introduction. In: SIMULATION80. Vol. 9. pp.
433–450.

[13] Ohst, D., Welle, M., Kelter, U., 2003. Differences between versions of UML diagrams. SIGSOFT Softw. Eng. Notes 28 (5), 227–236.
[14] Schmidt, M., Gloetzner, T., 2008. Constructing difference tools for models using the sidiff framework. In: ICSE Companion ’08: Companion

of the 30th international conference on Software engineering. ACM, New York, NY, USA, pp. 947–948.
[15] Sprinkle, J., Karsai, G., April 2004. A domain-specific visual language for domain model evolution. Journal of Visual Languages and Com-

puting 15.
[16] Vermolen, S., Visser, E., 2008. Heterogeneous coupled evolution of software languages. In: MoDELS ’08: Proceedings of the 11th interna-

tional conference on Model Driven Engineering Languages and Systems. Springer-Verlag, Berlin, Heidelberg, pp. 630–644.
[17] Wachsmuth, G., Jul. 2007. Metamodel adaptation and model co-adaptation. In: Ernst, E. (Ed.), Proceedings of the 21st European Conference

on Object-Oriented Programming (ECOOP’07). Vol. 4609 of Lecture Notes in Computer Science. Springer-Verlag, pp. 600–624.
[18] Xing, Z., Stroulia, E., 2005. Umldiff: an algorithm for object-oriented design differencing. In: ASE ’05: Proceedings of the 20th IEEE/ACM

international Conference on Automated software engineering. ACM, New York, NY, USA, pp. 54–65.
URL http://dx.doi.org/10.1145/1101908.1101919

[19] Zhang, J., Gray, J., 11 2004. A generative approach to model interpreter evolution. In: OOPSLA Workshop on Domain-Specific Modeling.
pp. 121–129, vancouver, VC.

5


