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Abstract

Mechatronics development requires the close collaboration of various specialist
teams and engineering disciplines. Developers from the different disciplines
use domain-specific tools to specify and analyse the system of interest. This
leads to different views of the system, each targeting a specific audience, using
that audience’s familiar language, and concentrating on that audience’s
concerns. Successful system development requires that the views of all
developers produced by the different tools are well integrated into a whole,
reducing any risks of inconsistencies and conflicts in the design information
specified.

This thesis discusses techniques of managing and integrating the views from
various disciplines, taking better advantage of multidisciplinary, model-based,
development. A Model Data Management (MDM) platform that generically
manages models from the various domain-specific tools used in development is
presented. The platform is viewed as a unification of the management
functionalities typically provided by the discipline-specific PDM and SCM
systems. The unification is achieved by unifying the kind of objects it manages
— models. View integration is considered as an integral functionality of this
platform.

In demonstrating the platform’s feasibility, a generic version management
functionality of models is implemented. In addition, model integration is
investigated for the allocation of system functions onto the implementing
hardware architecture. The proposed approach promotes the independent
development of the views, allowing developers from each discipline to work
concurrently, yet ensuring the completeness, correctness and analysis of any
inter-view design decisions made.

The prototype MDM platform builds on existing technologies from each of the
mechanical and software disciplines. The proposed MDM system is built based
on a configurable PDM system, given its maturity and ability to manage model
contents appropriately. At the same time, the version control functionality
borrows ideas from the fine-grained version control algorithms in the software
discipline.

The platform is argued to be feasible given the move towards model-based
development in software engineering, bringing the discipline’s needs closer to
those of the hardware discipline. This leads the way for an easier and more
effective integrated management platform satisfying the needs of both
disciplines using a common set of mechanisms.
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1. Introduction

With the introduction of computer technology as a feature in mechanical
engineering products, a change is experienced in the expected functionality of
these mechatronics products, as well as the means of their development. The use
of micro-controllers, software, and network systems in modern technical products
has permitted functionality that would otherwise be impossible or very expensive.
The contribution of this technology is indispensable, and product success is
increasingly dependant on it. More resources are allocated to computer
technology, in order to gain an edge over competing products. For example, in the
ever increasing complexity of automotive electronics, roughly 70% of functional
innovations are made possible and performed by software [1].

The advantages of introducing computer technology in modern products come at
the cost of increasing the product development complexity, where designers are
facing many challenges to ensure that the products meet their requirements.

One source of complexity is due to the dramatic increase in the number of
software-based functions in the system. For example, in the automotive industry,
X-by-wire functions are projected to boost the share of electronics in chassis
production from today’s 12% to approximately 40% within the next ten years [2].
While the functions themselves can vary in complexity, the sheer number of these
functions forms a development challenge for the complete system. Weinberg [3]
discusses the issue of system complexity as related to its size. In promoting his
General Systems Thinking, he declares that ‘To a first approximation, we were
able to use the number of objects as a measure of complexity — the complement of
simplicity’. The challenge is to handle systems of ‘organised complexity’ —
systems that are too complex for analysis and too organised for statistics.

Complexity is further compounded by the dependencies between the system
functions. Previously standalone functions are becoming more interdependent,
where functions need to share common resources, as well as cooperate with each
other in order to fulfil their expected behaviour. Besides these functional
dependencies, other types of relationships need to be considered during system
development such as the mission-criticality or the strategic make/buy relationships
between functions [4].
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Complexity is not an inherent property of the system itself, but lies in the relation
between the system and its observer. Depending on the observer’s concerns,
different types of objects and relations between them are perceived. For example,
given the automation facilities in a modern car, its driver does not necessarily
perceive the system complexity in the same manner as its developer that needs to
provide such automation support.

In discussing the complexity problems of science, Checkland explains in [5] that
the world is a giant complex, and to cope with it, we are forced to reduce it into
separate areas which can be examined separately. This arrangement of knowledge
is inevitable given our limited ability to take in the whole. ‘Our knowledge of the
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world is thus necessarily divided into different “subjects” or “disciplines™”.

Similarly, when dealing with system development complexity, multidisciplinarity
may become a necessity. Mechatronics systems development requires the close
collaboration of various specialist teams and engineering disciplines. In
automotive system design, for example, developers from the many disciplines of
engineering, such as control, software, mechanical and electrical engineering, need
to interact to meet the demands for dependable and cost-efficient integrated
systems.

The developers from the different disciplines use their own specific tools,
providing their own specific views of the system to be developed. Each system
view targets a specific audience, using that audience’s familiar language
(viewpoint), and concentrating on that audience’s concerns [6]. Figure 1 illustrates
some of the viewpoints and views that may be necessary during the development
of a typical vehicular system.

However, multidisciplinarity may in turn become a source of complexity.
Developers from the different disciplines differ in the design concerns and
interests in which they are involved. These concerns and interests are not
necessarily exclusive, which leads to overlap and dependencies in their
development information space. Even though they attempt to develop the same
system, developers from the different disciplines may then form a different
perception of the system’s aims, problems and solutions. This becomes a source of
conflict and complexity during development.

To take full advantage of multidisciplinary development, it is essential to have
good integration of the efforts of all involved disciplines, as well as good
communication between them. For successful system development, the views of
all developers produced by the different tools should be well integrated into a
whole, reducing any risks of inconsistencies and conflicts in the design
information specified in these views.
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1. Introduction

Figure 1. Some of the disciplines and views in system development.

This thesis discusses techniques of managing and integrating the views from the
various disciplines, in order to minimise the complexity due to multidisciplinary
development, while optimising its benefits.

Prior to presenting the contribution of this thesis, some earlier experiences within
the research project in multidisciplinary tool development are discussed in the
following section. These experiences justified and inspired the aim and approach
advocated in this thesis, which will be detailed in sections 3 and 4. Section 5
introduces the particular thesis contributions, further detailed in the appended
papers. A survey of modelling and integration approaches is then presented in
section 6, followed by a summary of relevant industrial case studies in section 7.
Finally, future work is discussed in section 8 before concluding in section 9.






2. Background - Earlier Attempts

This section presents earlier efforts made within this research project at developing
modelling and analysis tools to support certain aspects of mechatronics system
design. The aim and approach dealt with in this thesis are motivated by first hand
experiences in tool and model integration, discovered by the author when
developing and using these tools. A more complete description of the Aida-toolset
and XILO tools can be found in [7] and [8] respectively.

2.1. The AIDA-toolset — A Real-time System Design
Tool

The Aida-toolset integrates the specification and performance analysis of control
systems with embedded real-time system design. Various aspects of the system
can be described, from the control system specification to its implementation on a
distributed network of processors.

The aim of the toolset is to help the user evaluate a number of different system
designs before the actual realisation of the system. Design iterations may include
changes in the software structuring, function allocations, hardware structuring,
process priorities, process scheduling, communication protocols, etc. Evaluations
are based on timing analyses as well as simulations of the resulting control system
performance.

The AIDA-toolset is designed to support one particular work-flow, visualized in
figure 2, leading to a specific precedence in the order of building the models.
Initially, a pure control specification is designed and tested using Matlab/Simulink
[9], within which control performance analysis can be performed by simulation.
The resulting control algorithm and system dynamics provide the necessary
information for the software specification. At this stage of development, important
requirements such as controller jitter and delays are often overlooked, since they
are dependant on implementation details and their values can only be deduced
once the system is implemented. Next the control design is imported into the
AIDA-toolset where the Simulink model is translated to a data-flow diagram. The
resulting model is augmented with additional information such as execution times
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for functions and size of data-flows. This model becomes the base for the real-time
system design. In the real-time system design, the user defines the target hardware,
allocates the functions to processors, maps the functions into processes and
specifies communication, triggering and scheduling related characteristics. When
the real-time design is complete, response time analysis techniques are used to
calculate the response times and release jitter of the processes and their contained
functions. Once successfully analysed, the model is exported back to Simulink for
further simulation. The new Simulink diagram is a copy of the original, augmented
with the implementation-induced time delays. These implementation effects are
hence taken into account in the resulting control performance analysis.

Juwaaes

2. Import the control
design to the AIDA toolset

1. The control designer starts
with a Simulink block diagram
representation of the system

4. Export the resulting control
design augmented with analysis
results to Simulink and analyse
control performance through
simulation.

3. Model the real-time implementation using the AIDA
models and analyse the function response times

Figure 2. The work flow supported by the AIDA-toolset. Three different system
views in the AIDA-toolset are represented to the right: a Process Structure
Diagram, a Data Flow Diagram and a Hardware Structure Diagram.

The models used in the Aida-toolset are based on a larger modelling framework
for mechatronics systems [10]. In this framework, sixteen different models are
defined, of which seven are used in the toolset:

e The data-flow diagram (DFD) defines functions specifying the system
functionality and data-flows specifying the data exchange between these
functions.

o The function timing and triggering diagram (FTTD) defines the required
time precedence relations between these functions.

o The hardware structure diagram (HSD) describes the structure of the target
computer hardware.
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e The process timing and triggering diagram (PTTD) defines, for each
processor in the system, the timing and triggering properties of its set of
processes and the mapping of functions into processes.

o The process structure diagram (PSD) defines the inter-process messages,
based on the data-flow information from the DFD and the processes
described in the PTTDs.

o The communication link diagram (CLD) defines, for each communication
bus, the communication frames based on the messages defined in the PSD.

o The process internal timing and triggering diagram defines, for each process
in the system, the time precedence relations between the functions allocated
to the process.

The environment of the Aida-toolset is based on two separate tools: DoME [11]
and Matlab/Simulink [9]. The use of the single tool, DoME, for the real-time
domain modelling allows easy integration and exchange of data between models,
given its provided facilities to define new domain-specific models.
Matlab/Simulink was chosen for its good support of control design and simulation
capabilities, which are also used to evaluate the implementation architecture
developed. These capabilities could not be provided in the DOME environment. As
shown in figure 3, the Aida-toolset consists of three major parts:

e Aidasign - The real-time system modelling environment.

e Aidalyze - The response time analysis tool, implemented in C++, performing
timing analysis methods for distributed real-time systems [12].

e The interface with Matlab/Simulink - connects Aidasign to Matlab/Simulink,
enabling import of Simulink data flow diagrams to Aidasign and later export
to Simulink.

Matlab/Simulink | Aidasign | Aidalyze |

Import >
e 23| |
X
Control modelling Modelling Tool for analysis of
and simulation

environment for the task response times
environment Export | AIDA models and release jitter

Figure 3. Architectural overview of the AIDA-toolset, highlighting its three major
parts and their relations.
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2.2. XILO — A Control/Scheduling Co-simulation Tool

The XILO tool supports the design of distributed real-time control systems,
through the modelling and co-simulation of control functionality together with the
controlled processes and the behaviour of the computer system. The co-simulation
of scheduling and other implementation-related mechanisms with the control
application allows the user to directly study the impact of such design decisions on
the resulting system behaviour. The tool promotes interdisciplinary design by
combining the views of control and computer engineering into one view.

The workflow supported by XILO is similar to that of the AIDA-toolset,
visualized in figure 2, with the following differences:

e The complete set of XILO models are developed within the same
environment. Hence, there is no need to perform import/export of the models
between tools.

e In XILO, the analysis is only performed through the co-simulation of the
application software behaviour, together with the system software and
hardware behaviour.

In order to achieve the goal of a multidisciplinary modelling environment,
modelling aspects were borrowed from a number of sources:

e The AIDA modelling framework [10] provided insights into the control
implementation requirements needed, the component models and their
parameters.

e The CODARTS method [13], as a software engineering design methodology
and model, highlighted the aspects of software that need to be included.

e Data flow diagrams from the control engineering approach were used for the
modelling of the application functionality.

XILO allows the modelling and simulation of the following views:

o Application software encompassing different functionalities in a wide variety
of styles (e.g. discrete-time, even-triggered, data-flow, state machines etc.).

o System software including the behaviour of the operating system scheduling
and inter-thread communication protocols.

o Distributed computer systems including communication networks and
computer nodes.

e Mechanical systems including sensors, actuators and mechanical system
dynamics.
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The various views are modelled within a single hierarchy. At the top level, the
hardware topology of the whole system is modelled. This hardware structure
consists of three types of components: (1) The environment modelling the
mechanical dynamics of the system including sensors and actuators; (2)
Communication Links defining the communication protocols between computer
nodes; and (3) Computer Nodes in which the application and system software is
modelled.

Within each computer node, the software structure is defined through: (1) Tasks
defining the application software; (2) A task scheduler modelling a wide range of
schedulers such as event/time triggered, static/dynamic, and off-line/on-line
schedulers; (3) Operating system services such as inter-task communication, task
synchronisation and semaphores and (4) Hardware drivers such as communication
controllers, timers, ADCs and DACs.

Finally, within each software task, the application functionality is defined as a
sequence of sub-functions.

The XILO tool is based on a set of library components for the modelling of
standard functionalities such as schedulers, communication mechanisms and basic
operating system services. This approach allows the developers to evaluate a
number of different system designs, by the simple exchange and reconfiguration of
components.

The environment used to build and execute the models is Matlab/Simulink. This
environment is biased towards the control engineer environment, allowing the
control engineer to specify, validate and interact with the computer engineer in a
familiar environment.

2.3. Integration Experiences

2.3.1. Tool Integration

In the Aida-toolset, the relationships between the various models are outlined in
figure 4, where solid arrows correspond to subdiagram relationships while dashed
arrows indicate import relationships between tools.

From a usability perspective, it is desired to transparently integrate the tools. Since
Matlab/Simulink and DoME tools have no common mechanisms that enable direct
communication between them, integration of the models is performed through
import/export mechanisms. The import mechanism of the Aida-toolset allows the
translation of a Simulink model into a DFD model, through a one-to-one mapping
from Simulink blocks to DFD functions. Once a Simulink model has been
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imported into the AIDA-toolset, additional information such as function execution
times and data-flow sizes can be specified. However, to enable future export to
Simulink, the model may not be otherwise modified, since the export mechanism
assumes the structure of original imported Simulink model. This restriction
undesirably creates a precedence relation between the models from the different
tools, preventing their parallel and independent development.

In comparison, the XILO tool handles all models within a single tool and hence
avoids the problem of tool integration. The adopted tool is however not
necessarily optimal for software and hardware development.

Function Timing Hardware Structure
and Triggering < Diagram

Diagram / \
¥

Process Timing and| |Process Structure| [Communication
Triggering Diagram Diagram Diagram

v

Process internal
Timing and
Triggering

Diagram

- - |Data-flow Diagram| - |

Figure 4. The structure of the models in the AIDA-toolset, where solid arrows
denote subdiagram relationships while dashed arrows denote import relationships.

2.3.2. View Integration

Within the Aida-toolset models, a challenge in having the many different views is
to keep the models consistent, whereby changes of information in one model are
propagated to other related models that share the information. The use of a central
database to manage all data shared by the models in the toolset was identified as a
need to avoid the problem of inconsistency. This was not possible due to DoME
limitations. Instead, the approach taken was to, for each piece of data, designate
one model that is the data owner, while the other dependent models operate on
data copies. Data is then automatically updated, when manually triggered by the
user, and in this way regaining consistency in the model set. The major drawback
of this approach is that model changes are not reflected in the whole system
immediately, leading to inconsistent models in the intervals between model
updates.

10
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In the XILO tool, the mapping from the control-based functional model to the real-
time implementation model is not managed, and no attempt is made to maintain
the models synchronised. In addition, the XILO tool avoids the consistency
problem by assuming a single model structure to fit the many implementation
views of the system. This approach however conflicted with the need for different
viewpoints for different disciplines, allowing developers to concentrate on specific
aspects.

2.4. Integrating the Aida-toolset and XILO Tools

During their development, it was realised that the Aida-toolset and XILO tools had
many properties in common, leading to the intention of integrating them. This goal
was deemed feasible given that the tools are inspired by the same modelling
framework [10]. The main differences between the tools are presented in table 1.
The tools essentially contain the same modelling content, while they mainly focus
on different analysis techniques, namely timing analysis and co-simulation. It
would hence be desired to provide the two complementary approaches for system
analysis based on the same modelling framework, and without the need to
manually duplicate the models.

Table 1. The main differences between the AlIDA-toolset and the XILO tool.

XILO Aida-toolset

Analysis Co-simulation = Timing analysis

= simulation

Tools One tool for all disciplines Two domain-specific tools

View modelling |Views modelled within one  |Separate models for each

hierarchy view.

Analysis results |Control performance = Timing behaviour in terms of
worst/best case response
times and jitter.

= Control performance

However, each analysis technique requires a specific environment to work within:
the Simulink simulation environment for XILO and Dome for the Aida-toolset.
The challenge is to manage the modelling content in a tool-independent manner,
not favouring one tool over the other, nor creating dependencies between them.
This desire directed the research interest towards model content management and
tool integration.
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3. Goal

This thesis aims to develop a model integration and management platform that
supports the multidisciplinary, model-based development of mechatronics
systems. The platform should allow for the management and sharing of the
product information produced by tools and disciplines throughout the development
life cycle. Consequently, various analyses can be performed based on the same
information set. The platform should also facilitate the communication of
information between the different stakeholders, allowing any inconsistencies and
conflicts to be identified and dealt with.

Two assumptions or limitations are implicit in the above inter-disciplinary
integration aim: (1) A product domain focus and (2) a model-based development
approach. These are further developed in the following subsections.

3.1. The Product Domain Focus

In studying the complexity of product development, Eppinger and Salminen
introduce three domains of analysis: Process, product and organisation [14].
Decomposition is used within each of these domains in order to manage the
development complexity. The full development process is decomposed into
phases; an organisation is decomposed into teams; and a product is decomposed
into sub-systems. With the separation of development into product, process and
organisation domains, the interactions between these domains can be better
analysed, giving a better understanding of the complexity of product development.
The interactions within and between the three domains are illustrated in figure 5.

This model of product development does not explicitly take into consideration the
multidisciplinary nature of certain products. It is assumed that a single product
decomposition exists within the product domain. This assumption simplifies the
patterns of interaction between the product structure and the remaining domains.

However, the development of multidisciplinary products adds another dimension
of development complexity, whereby within each domain, the interactions
between the disciplines play an important role and need to be additionally
analysed.
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For example, no single product structure can be assumed in a mechatronics
product. Developers from the different disciplines have their own specific
viewpoints of the system to be developed. That is, different description languages
and analytical methods are adopted to deal with the specific concerns of the
different disciplines [6]. The need to consider the product from different
viewpoints leads to different product structures — or views — of the system.

components
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Process Interactions Interactions

Figure 5. The patterns of interaction within each of the three domains of product
development, as well as across them (Reproduced from [14]).

Within the product domain, the interactions between the various structures need to
be analysed, in order to avoid inconsistencies between them. Similarly, the
different disciplines may need to follow different development processes, leading
to different process structures for each discipline [15]. In multidisciplinary
development, this leads to multiple process structures. From the organisational
perspective, the teams can no longer be viewed homogenously, as various
members (or entire teams) may belong to specific disciplines, creating multiple
organisation structures. As a result, the interactions between the domains can no
longer be treated as suggested in [14], since the mapping is no longer between
single structures within the domains.
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Note that the source of different viewpoints (and hence the different structures)
stems not only from the different needs of the disciplines. Within each discipline,
different viewpoints may also be needed. The predominant system structure used
in traditional mechanical development reflects the physical decomposition of the
product into its designed components. On the other hand, software development
employs many structures, which also need to be integrated. In UML [16], for
example, many structures are adopted such as Class, Statechart, Use Case and
Deployment models. In this general sense, a discipline can be viewed as a broader
grouping of many views.

With this complex model in mind, the contribution of this thesis focuses on the
interactions between the various disciplines within the product domain. We aim to
integrate the various views produced by the different disciplines, ensuring the
consistency of the information assumed from their various viewpoints, and
providing a common basis for information flow between them.

It is acknowledged that the remaining domains cannot be simply ignored, and
handling the complexity within one domain does influence the complexity in the
remaining aspects. After all, the integration’s final aim is to support the engineers
in their development process. Nevertheless, it cannot be claimed that this thesis’
contribution directly integrates the development processes assumed by the
different disciplines, nor the integration of people within an organisation.

By formalising the interactions between the various product structures within the
product domain, this thesis can form a step to understand the more complex
interactions between the above three domains, assuming a multidisciplinary
product and development.

3.2. Model-based Development

A precondition to be able to integrate and handle the interactions between the
various product views is the availability of an explicit representation of these
views. That is, models describing the product structures — and hence the product —
are available.

Moreover, it does not suffice that the product models are simply provided. Instead,
for successful development, tying the product, process and organisation domains
together, the product models should be the basis of the development process
within the organisation. Product models form the basis for the interactions and
communication between the teams of the organisation; as well as the information
flow between the development phases. Such a basis for development is here
termed as model-based development.

15
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Model-based development refers to a development approach whose activities
emphasise the use of models, tools and analysis techniques for the documentation,
communication and analysis of decisions taken at each stage of the development
lifecycle. Models can take many forms such as physical prototypes, graphical and
textual models. It is essential however that the models contain sufficient and
consistent information about the system, allowing reproducible and reliable
analysis of specific properties to be performed. In model-based development,
analysis plays the critical role of ensuring that the models being built - hence the
design decisions being taken — are consistent and satisfy the system requirements.

Within a given discipline, model-based development is commonly used, such as
the use of CAD tools in mechanical engineering. In the maturing software
engineering domain, model-based development is gaining acceptance. The
popularity of modelling languages such as UML is an indication of this trend.

In multidisciplinary model-based development, several viewpoints of the system
are formed by the different disciplines. This leads to several models, representing
the different product structures produced. In the integration of these models, the
discipline-specific description languages and analysis methods used to model these
structures should be preserved. Proper model integration may become a strong
basis of communication between engineers of different disciplines.

This thesis suggests an approach in which the integration of models from the
various design domains is also model-based, ensuring the explicit documentation
of the interactions between the product views. The state of practice of social
integration [17], where informal communication between engineers tries to ensure
consistency, is not desired.

Given the recent establishment of the model-based development in certain
disciplines such as software engineering, the sensibility of this assumption can be
questioned. According to Encyclopadia Britannica [18], ‘engineering’ is defined
as the ‘professional art of applying science to the optimum conversion of the
resources of nature to the uses of humankind’. Given this definition, one can
reverse the question and wonder how the application of the sciences can be validly
performed during engineering activities without access to explicit and reproducible
information. Product information and design decisions need to be explicitly and
unambiguously documented for their communication between engineers, and to
become a basis onto which scientific analysis can be performed. Engineering is a
combination of craftsmanship and scientific exploration, and model-based
development is a basic requirement for the latter to be possible. In other words, in
order for software development to change from an art to becoming an engineering
discipline, it ought to become model-based.
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The aim of the integration platform is to integrate the different models used to
represent the structures or views from the various development disciplines. In the
development of large and complex products, an organisation normally adopts
some kind of product management tools in order to manage the large amount of
documents storing these models. For example, the development of software-
intensive products relies on Software Configuration Management (SCM) systems,
while mechanical system development uses Product Data Management (PDM)
systems. The need to obtain consistent access to the documents storing the models
leads to the necessity to coordinate the intended integration platform with these
management tools.

In multi-disciplinary product development, a number of these management
environments come into simultaneous use. This is necessary since developers from
each discipline require the specific support provided by its corresponding
management system. Integrating these environments becomes essential for the
successful integration of the efforts of all disciplines involved, considering the
central role they take in controlling the development process as well as facilitating
the communication between developers.

In summary, a model integration platform integrating different development tools
needs to be itself integrated with the management tools, which in turn need to be
integrated with each other. The various integration needs are illustrated in figure 6.

Another approach to the problem is to step back and treat the view integration
problem as part of the management problem already covered by PDM/SCM
systems. Model integration is treated as another functionality that can be
augmented to the conventionally expected functionalities of management tools.
This approach is illustrated in figure 7.

In one sense, incorporating the management tools expands the integration
problem. However, expanding the problem domain provides a better fit of the
view integration problem. Much can be borrowed from the PDM/SCM integration
efforts such as the work suggested in [15] and [19]. In addition, by absorbing the
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management tools into the platform, a smaller number of tools need to be
integrated.

Problem simplification can also be claimed given the assumption of model-based
development. As argued in section 5.3 (Paper-C), the integration of PDM/SCM is
considered more feasible with this assumption, suggesting a unified platform that
generically handles models from all disciplines. Based on this platform, the
integration of the models from the different disciplines is made more feasible.

~= Integration ==
Platform

I Exists
D D B Expected
PDM SCM [ Integration
platform

Figure 6. The integration needs of the various development and management
tools for mechatronics systems.

Integrated
PDM/SCM
+

' View Integration ___
Platform

-
PDM/
SCM

Figure 7. An integration approach treating view integration as part of the
management systems.

The integration problem is reduced to that of integrating PDM and SCM systems,
plus providing integration functionality based on the integrated solution. Within
the context of figure 5, the approach not only contributes to the integration of the
disciplines within the product domain by integrating their views, but by also
contributing to the integration of the management facilities such as process
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control, workflow control, user management, etc. These facilities are used in the
process and organisational domains, leading to a better alignment of the three
domains.

4.1. Model and Tool Integration

Model integration is made a lot easier if one assumes a single tool that fully
supports the development of all involved views. Model management and
integration can thus be provided within the tool implementation itself. While this
may be desired, experience shows that no such silver bullet can be provided. Our
conviction is that no matter how large and encompassing modelling tools get, one
will never reach the point when a single tool will meet all the needs of a
multidisciplinary development process in any organisation. As a consequence, the
need to integrate model information between the tools that act on this information
will always exist.

No tool in the tool-set should take a predominant role, to which all other tools
integrate. Such an approach creates a dependency on that tool, and peripheral tools
can only be integrated indirectly. Instead, a central platform is suggested to which
tools are connected. It is through this platform that communication between tools,
and the integration of their models, occurs. Naturally, dependencies are created to
the integration platform, which is however expected to be more stable, as
suggested in section 4.3.

4.2. Platform Requirements

In summary, the integration platform should support the following needs:

e Support for discipline-specific tools — It should be possible to integrate
different kinds of tools from the various disciplines, recognising that different
organisations will assume a different toolset.

e Data sharing and view integration — A tool integration mechanism should
manage the duplication of information between tools, synchronizing and
maintaining its consistency. In addition, having chosen a specific set of tools,
certain design information ends up in between tools. This information
specifies a relationship between the different views (inter-view information).
Good integration mechanisms should permit the specifications of such cross-
view information, reflecting points of interaction at which the respective
stakeholders need to communicate.

e Model management — includes functionalities such as the storage of models,
handling of versions and variants of models, change request management,
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process/workflow management as well as support for geographically
distributed development. Support for discipline-specific functionality should
also be provided such as build management for software development. An
integration platform ought to provide these functionalities centrally for all
tools that it integrates.

4.3. Integration Cases

Caution should be taken when adopting a given integration solution, given the
central role such a platform assumes in an organisation, and the dependencies it
creates between developers. In addition, an integration platform is expected to
outlive the many tools it integrates. While metrics such as the Return on
Investment (ROI) are developed to justify investments in central systems like
PDM and SCM [20], no such metrics are necessary in adopting tools such as
compilers or editors, which may be used locally within an organisation and are
replaced relatively more easily over time.

For these reasons, a stable, long-lasting and universal integration solution, which
can anticipate future changes in tools, is to be expected.

This stability is threatened by factors such as the fast growth in modelling
languages and tools, specifically for the maturing software engineering discipline.
On the other hand, partial standard efforts such as the MOF modelling standard
[21], formatting standards such as XML [22], and basic communication
mechanisms such as CORBA [23] and COM [24], provide a valuable foundation.
The appearance of the STEP [25] standard within the mechanical engineering
discipline is historical evidence that such efforts are possible.

In this thesis, it is recognised that achieving the stability expected of an integration
platform is very much a standardisation effort. For this reason, focus is instead
placed on two cases of integration techniques to cover each of the main needs
specified above: view integration and model management.

Concerning view integration, the integration of the system functional view to the
hardware architecture view, through the allocation of functions to hardware
components, is investigated. With each view related to a different discipline, this
example highlights the multidisciplinary problem. Further details are discussed in
section 5.2 and Paper-B.

Concerning model management, a generic version management functionality of
models is investigated. While version control is needed in both the mechanical and
software disciplines, the functionality differs between SCM and PDM systems.
This allows us to investigate how far such mechanisms can be aligned between the
disciplines. Version control is also critical since it will put to the test the other
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crucial management functionalities of any common management system such as
the possibility of having a common product structure and data representation.
Further details are discussed in section 5.4 and Paper-D.

Finally, to satisfy the need to support discipline-specific tools, these cases need to
be dealt with assuming different modelling tools.
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5. Summary of Appended Papers

This section provides a summary of the appended papers of this thesis. The
combination of these papers provides a good description of the tool integration
platform.

The reader is advised to read these papers before proceeding with the remaining
chapters of the thesis.

5.1. Paper A - A Tool Integration Platform for Mullti-
Disciplinary Development

This paper presents the architecture for the Model Data Management (MDM)
platform that aims to satisfy the needs for tool and model integration presented in
section 4.2. MDM generically manages and integrates models from the various
tools used in the development of mechatronics products.

The platform aims to provide generic model management functionalities including
supporting the storage of models, handling of versions and variants of models,
access control, change request management, process/workflow management as
well as support for geographically distributed development. This is viewed as a
unification of the management functionalities typically provided by the discipline-
specific PDM and SCM systems traditionally used in the hardware and software
disciplines respectively. The model-based approach to data management unifies
the software and hardware disciplines by unifying the kinds of objects it manages
— models. The model-based management functionalities and the need to interrelate
the internal model contents require that the platform manages the fine-grained
details of each model from the integrated tools.

The architecture supports the decoupling of the modelling tools from the MDM
platform, permitting an open architecture where various tools can be integrated as
desired. This is made possible through the adaption layer that maps the tool-
specific format and meta-model, used internally by the tool to manage its model
data, to the generic format and meta-model of the platform.



5. Summary of Appended Papers

The proposed architecture explores the idea of building on existing technologies
from the more mature discipline of mechanical engineering, as well as borrowing
advanced functionalities from the software domain. MDM is built based on a
configurable PDM system. PDM is adopted due to its maturity and ability to
define information models, with a high level query language to access and modify
the model data in the repository. In addition, it is envisaged that the development
of the remaining MDM functionalities is made easier given the already developed
functionalities of PDM such as the support for distributed development, change
management, workflow control, etc. At the same time, the version control
functionality borrows ideas from the fine-grained version control algorithms in the
software discipline.

Model management functionalities are illustrated through the implementation of
the version control algorithm of Paper-D. In addition, model integration
techniques are provided, where model content can be shared across different tools.
This is illustrated in the partial implementation of the view integration
mechanisms proposed in Paper-B.

5.2. Paper B - Towards a Multi-View Modelling
Environment for Mechatronics Systems

The paper presents an approach to multi-view modelling and integration which
systematically integrates the two generally accepted complexity reduction
techniques of multi-view and hierarchical decomposition. The approach defines
how inter-view relationships can be used to tightly interweave the views’
hierarchies.

Through the use of a case study, model integration is investigated for the
allocation of system functions onto the implementing hardware architecture. The
resulting approach maintains the principle of hierarchical design within, as well as
between the views, where allocation can be performed at arbitrary levels across the
hardware and function hierarchies. The proposed approach promotes the
independent development of the views, allowing developers from each discipline
to work concurrently, yet providing support for a holistic view.

Mechanisms are defined to ensure the completeness and correctness of any inter-
view design decisions made, as well as, to perform cross-view keyfigure analyses.
The principle that a part of the complete system is a system of its own, with its
own set of views is reinforced, with the possibilities to perform cross-view
analysis on the complete system as well as its individual parts.

The feasibility of the inter-view mechanisms is investigated through the
implementation of a prototype tool, in which views, as well as, inter-view design
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information and analysis, could be performed. In addition, a partial
implementation of the approach is developed based on the MDM platform of
Paper-A. Through a generic inter-view association mechanism, the model data
from different tools can be interrelated. This acknowledges the need for the
different views to be modelled using domain-specific tools. The integration
platform takes a centralisation role in which the inter-tool information is managed
and stored.

The paper also presents the meta-meta-model of the MDM platform. A simple
meta-meta-model is adopted, allowing focus to be placed on the view integration
mechanisms and the management functionalities of interest.

5.3. Paper C - Model Data Management — Towards a
common solution for PDM/SCM systems

This paper investigates the effect of adopting model-based development in
software engineering in bringing the discipline closer to the hardware engineering
discipline and permitting a tighter integration of their management systems. The
investigation considers the three crucial factors for a successful integration: tools
and technologies, processes, and people [26].

It is argued that, as software development becomes increasingly model-based, its
needs become closer to those of hardware development. In particular, the process
management and information modelling functionalities expected of SCM systems
come closer to those provided by PDM systems for hardware development. This
leads the way for a more effective integrated management platform satisfying the
needs of both disciplines using a common set of mechanisms. The model-based
approach to data management unifies the disciplines by unifying the kind of
objects it manages — models. Management functionalities deal with models and
their internal contents as central entities, transparent of the file structure used to
store them.

The MDM platform, presented in Paper-A, provides a basis for the desired
common management functionalities, by generically handling different kinds of
models produced from a set of different tools and disciplines. To illustrate the
suggested common management solution, a model-based version management
functionality is implemented, as presented in Paper-D.
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5.4. Paper D - The Version Control Algorithm
Implementation in the Model Data Management
(MDM) Platform

In this paper, a simple model version control functionality (MVC) was
implemented, in order to exemplify the PDM/SCM integration approach suggested
in Paper-C, and test its feasibility using the MDM platform of Paper-A.

While version control is needed in both the mechanical and software disciplines,
the functionality differs between SCM and PDM systems. This allows us to
investigate how far such mechanisms can be aligned between the disciplines.
Version control is most fundamental and best validates the MDM approach since it
will put to the test the other crucial PDM/SCM integration factors such as the
possibility of having a common product structure and data representation.
Naturally, a full validation of the approach needs to investigate the feasibility of
the remaining management functionalities using the model-based approach.

MVC provides mechanisms that allow a user to save and extract any part of the
system model through check-in and check-out operations respectively. This
permits stakeholders to perform design activities in terms of models, where they
can organise, share and modify their models, transparent to the underlying file
structure.

The algorithm generically supports the fine-grained versioning of any model that
can be mapped to the meta-meta-model assumed in the platform, and presented in
Paper-B. In the current implementation, Data Flow Diagram (DFD) [27] models
from the Matlab/Simulink tool and Hardware Structure Diagram models [7] in the
Dome tool are handled.
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6. A Survey of Modelling and Integration
Approaches

A survey of current approaches for the modelling of embedded computer control
systems was performed as part of this research project [28]. A short summary of
this study is presented in this section, together with a complementary survey of
representative tool integration approaches. The study was initiated to appreciate
the various flavours of modelling approaches available, and understand the
differences between them. The common patterns found between the approaches
formed a good basis for the definition of the meta-meta-model suggested in the
MDM platform (Paper-B). The tool integration solutions suggested by these
approaches, and their limitations, also became a good motivation for further
research on model and tool integration.

The survey aimed to study ‘what’ each approach models, with less focus on the
details of ‘how’ this is performed. For this purpose, a framework for
characterizing, comprehending and comparing the different approaches was
developed, focusing on the modelling content. As illustrated in Figure 8, the
framework combines generic modelling concepts with multiple iterations from the
evaluation of twelve modelling approaches covering different levels of design and
disciplines. This evolved and stabilised the framework, consolidating more
precisely the defined factors.

A modelling approach refers to any support technique or solution provided for the
design of embedded computer control systems, such as computer tools, languages
and standards. The choice of approaches covers different application domains,
disciplines and levels of design, ensuring that a broad collection of modelling
features are covered.

Twelve approaches have been evaluated based on published materials from the
respective developers. ACME [29], Wright [30], UniCon [31] and Rapide [32] are
software Architecture Description Languages (ADL). Lustre [33] and MAST [34]
have a computer science origin with formal methods and scheduling theory
background respectively. VCC [35] is an approach from the automotive industry.
Orccad [36], Giotto [37] and MetaH [38] are domain-specific approaches that aim
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at control applications to be implemented on computer systems. Finally, both
Ptolemy [39] and SDL [40] focus on the high-level specification of the system,
and less on implementation details.

Systems, Design, Process

/ / \ \
To/p—down Synthi

Modelling Classification & Comparison Framework

Content Context Tools Language
Factors Factors Factors Factors
5 r S —

Modelling Modelling Modelling
Approach Approach 0060000000 Approach
A B L

Figure 8. Technique for defining the framework — Top-down synthesis and bottom-
up refinement

6.1. Comparison Framework

To compare different modelling approaches, both the model contents, as well as
the design and analysis context within which the models are used, need to be taken
into consideration. In the comparison framework, this is formulated using three
groups of comparison factors: modelling content, design context and analysis
context. These factors are summarized in figure 9.

The content factors aim to identify the various system aspects that can be modelled
by a particular modelling approach. In this framework, a model is seen as
consisting of a set of abstractions that represent real system entities. The
abstractions may be classified into a set of common types. Furthermore, there exist
different types of relationships between the different abstractions, such as
communication between abstractions and decomposition of one abstraction into a
set of other types of abstractions. Following this view on models, the set of
abstraction types, the properties that define them, and the inter-abstraction
relation types that may exist in any modelling approach are identified.
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To facilitate the comparison, abstraction types, their properties and relation types
most relevant for embedded control systems are predefined in the framework, as
listed in figure 9. The content classification forms a common basis upon which it
is possible to organise and compare the content support provided by each

modelling approach.

Content Design Context
— Abstractions —Levels
}_Properties — Activities
L Structural interface I —Domains & Disciplines
L Behaviour Semantics L —Methodology
Activation —Traceability
Persistence L Complexity Management
Timing —Reusability
Error Analysis Context
—Constraints L —Functionality
—Inter-abstraction Relations L Performance
L Decomposition L —Reliability
L Encapsulation L Safety
L Behaviour Semantics —Other
— Constraints Language
L Communication L —Representation technique
L Behaviour Semantics —Adaptability
| Constraints —Multi-views
—Synchronisation LConsistency guarantee
L Behaviour Semantics Tool
| Constraints — Availability
I Commonality —User interaction
LDependency L —Tool integration
L Refinement —System Generation
L Allocation
—Criticality
—Replication
—Other

Figure 9. Comparison framework structure and factors

Within the design context, the level of design at which the content is used by the
approach is of most interest. For comparison, four general design steps are
defined, ranging from implementation-independent specifications, towards the
final solution description: functional design, architectural design, medium-level
design, and detailed design.

29



6. A Survey of Modelling and Integration Approaches

Within the analysis context, it is interesting to study the types of analysis that can
be performed given the modelling content provided by the approach. For
embedded computer control systems, relevant analysis types include: functionality,
performance, reliability and safety analysis.

Two other groups of factors are also handled in the framework: language and tool.
The former deals with the techniques and rules adopted by a modelling approach
for representing its content. Even though two approaches have the same content,
they may differ in the way this content is handled, used and represented in the
models. Finally, the tool factors attempt to identify the computer-aided techniques
and facilities available for manipulating, managing and verifying the models.

6.2. Comparison

The major part of this work was in the surveying and analysis of the modelling
content of the approaches. A detailed discussion and comparison of the content
can be found in the original study [28]. The procedure used to acquire the
comparison framework highlights the common features between the studied
approaches. Abstractions such as communication and software types; properties
such as timing; and inter-abstraction relations such as decomposition,
communication, refinement and allocation are most common between the studied
approaches.

Furthermore, in structuring the modelling content, common techniques are found
between the modelling approaches in order to absorb the complexity of the system
being modelled. The major identifiable mechanisms for complexity management
are: The widely adopted hierarchical decomposition, the use of domain-specific
terminology and concepts, the repeated use of a few central concepts, good
language and tool support, the division of content into multiple views, and
commonality mechanisms such as typing and specialisation/generalisation.

Through the analysis of the modelling content, the design levels addressed by each
modelling approach are determined, as illustrated in figure 10. In addition, table 2
presents a summary of the available and possible analysis techniques provided by
each approach. Available analysis techniques are those explicitly identified and
supported by an approach. Possible techniques are those that can be potentially
performed, given the content supported by an approach.
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Figure 10. Design levels focused on by each modelling approach.

Table 2. Summary of available (V) and possible (+) analysis techniques

Functionality Performance

Simulation Cll\n/le:l(frllg Simulation| Cm‘;ﬁig Timing Reliability Safety
Ptolemy V \
Lustre + V + +
SDL + +
Acme
Wright + V
Rapide \ \ + \ +
vVCC N v +
Orccad V V v + \
Giotto V V v \
MAST v v
MetaH + + v V
Unicon + + \

Concerning tool integration capabilities, the modelling approaches tend to
integrate other tools in order to cover certain aspects that are weak or not covered
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in the original approach. Compared to integration platforms (section 6.3), such
integration efforts tend to be ad-hoc, implemented to meet the current needs of the
approach. For example, MetaH is integrated with ControlH for the functional
description of its subprograms, and Giotto uses Simulink for graphical
representations. Certain approaches become quite dependent on this integration to
be usable. For example, Wright needs to have a CSP checker to perform any kind
of analysis. On the other hand, MetaH can still be operable without the use of
ControlH.

Much overlap exists between the content covered by the approaches. This is
specifically the case for approaches that attempt to cover similar activities and
analysis techniques, at the same level of design. The similarities between the ADL
languages, where focus is mainly placed on software modelling at the architectural
level, is a typical example. In these approaches, the main abstractions covered are
components, connectors and configurations used to model system software. It can
be argued that content overlap between approaches is an indication of integration
potential between them. The challenge remains to coordinate the remaining
content that does not entirely overlap.

Approaches covering the same activities at the same level of design can be used
interchangeably. Integrating such approaches might be of interest when the
different approaches provide complementary functionalities or analysis
techniques. For example, the ACME ADL might be desired to use for its
possibilities for generic specifications, while Wright provides analysis possibilities
through simulation and model checking.

In addition, approaches covering different activities, or different design levels
would be of interest to integrate to cover a wider range of design levels and
activities. For example, it may be of interest to integrate an ADL such as Rapide
with Ptolemy. While the latter provides higher level functional descriptions, the
former can be suitable for the architectural level of design. The model of
computation provided in Rapide (timed-posets) can also be complemented by the
variety of models of computations provided by Ptolemy.

An abundance of modelling languages and approaches that target various aspects
of system development exists. The union of these approaches may cover all that
can be desired. The challenge remains however in providing such a union. A
necessary component of any such integration effort is the integration of their
modelling content. Ad-hoc integration, as experienced in the studied approaches,
creates undesirable dependencies to the modelling tool. Instead, as discussed in
section 4.1, a platform addressing the integration of tools should be used. The next
subsection surveys a number of such platforms.
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6.3. Tool Integration Approaches

This survey is based on the study of seven tool integration approaches: Cheops
[41], Eclipse [42], Fujaba [43], GeneralStore [44], IDM [45], IMPROVE [46] and
Toolnet [47].

Tool integration can be divided into two general categories: data integration and
control integration. The former focuses on relating the model data produced by
the different tools. On the other hand, control integration deals with tool activities
such as integrating the services or functionalities provided by the tools, providing
a common look and feel across the tools, controlling the workflow between the
tools, managing tool interactions, etc. A typical example of control integration is
the Eclipse platform for software development. Eclipse provides a plug-in based
framework to create, integrate and utilize software tools. The plug-in mechanism
is used to realise the services of the integrated tools, and through which tools can
interact and request services from each other. However, any files and data items
produced are managed internally by the integrated tools and are beyond the scope
of the platform. Naturally, certain tools such as Fujaba take into consideration both
aspects of integration. This section focuses mostly on data integration, given its
relevance for the issues discussed in this research.

Two different needs for data integration can be identified: the integration of
models covering different components of the complete system - component model
integration; and the integration of models covering different views of the same
system — view integration. These needs lead to different integration solutions.

The challenge in component model integration comes when the different
components are modelled using different models of computation, such as the time-
continuous or time-discrete models of computation. In this case, the heterogeneous
models need to be appropriately coupled at their interfaces to form a complete
model. From the surveyed approaches, GeneralStore and Cheops focus on
component model integration of software systems and mathematical models of
chemical plants respectively. Both perform component model integration through
the transformation of the heterogeneous models to a common internal
representation, based on a single meta-model. However, the common meta-model
in GeneralStore is only used to store the models, while the integrated system
model consists of the original models, together with wrapper elements generated
based on the specified interface definitions. Cheops, on the other hand, integrates
the transformed models into a complete system model, on which a common
numerical analysis method can be used. With both approaches, the resulting
complete model can be used for the co-simulation of the integrated components.

In dealing with view integration, the models generally need to be integrated at a
finer level of detail, associating specific content within the models to each other.
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In this survey, four integration approaches deal with view integration: Fujaba,
IDM, IMPROVE and Toolnet. Different types of relations can be setup either
manually or automatically between the models. As identified in Toolnet, two
general categories of relations can be defined: general dependencies and data
duplication. Once the relations are setup, the most common analysis support
provided as part of the integration platforms is that of consistency checking of
model data between the tools, as provided in Fujaba, IMPROVE and Toolnet. The
approaches also provide mechanisms to repair any inconsistencies found during
the analysis. In certain cases, the integrated models deal with the same or close
aspects of the system being modelled. In other words, much duplicated or similar
data is found in the heterogencous models. In such cases, a transformation
between the different model types can also be performed. Transformation facilities
are provided by Fujaba, IDM and IMPROVE.

Very few platforms consider the issue of data management. In Eclipse, such
support is gained through the integration of the CVS [48] versioning tool.
Considering that Eclipse does not perform data integration, CVS is simply treated
identically to any other development tool. Such integration is similar to that
illustrated in figure 6. The management tool manages the documents at the coarse
file level, without dealing directly with the fine-grained model data. From the
studied platforms, GeneralStore is the only platform to provide management
functionalities such as user authentication, transaction management and fine-
grained object versioning. This approach is closer to that illustrated in figure 7, but
not entirely satisfactory, since the need to integrate the platform with existing
PDM/SCM systems remains.

The general trend in the implementation of the platforms focusing on data
integration is to assume a centralised data storage system, to which tools are
integrated through a wrapper or a plug-in. The wrapper provides the necessary
abstraction from the tool-specific implementation and formats, and in this way
providing a uniform interface to the platform. The storage system can be a
database management system such as for GeneralStore, or a simple file as in
IMPROVE.

With the exception of GeneralStore, the repository is not generally used to manage
the complete set of model data from the tools. Instead, the platforms only handle
reference objects to the model data and additional integration information such as
relations between the references objects and relevant metadata. Model data is
expected to be managed and stored by its producing integrated tool. The strongest
motivation for not storing modelling data is to avoid the duplication of information
in the modelling tools as well as platform. Such an approach however limits the
possibility to provide the necessary management functionalities, as advocated in
this thesis.
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7. Industrial Case Studies

This section presents a summary of two industrial case studies carried out at
Scania, as part of this research project. As briefly discussed in section 7.3, the case
studies were used as a source of inspiration, as well as to evaluate some of the
ideas presented in this thesis. The first case study aimed at a quantitative analysis
of architecture designs based on a set of keyfigures that reflect important quality
attributes. Given exposure to the challenges faced during this case study, a second
case study was initiated to deal with an analysis of the function modelling
capabilities at the organisation, together with a recommendation for future
improvements. A more complete description of these case studies can be found in
[49] and [50] respectively.

7.1. Keyfigure Analysis Case Study

During the early architectural design of a truck, architects face the challenge of
choosing the Electrical/Electronics (EE) architecture, onto which the system
functionality is to be implemented. It is desired to quantitatively analyse and
compare different architecture designs, taking into consideration and optimising
important design keyfigures such as the resulting system weight and costs. The
evaluation needs to perform trade-offs between a set of keyfigures, taking into
consideration a range of product variants.

For this end, a keyfigure tool supporting the architecture design of allocating
functions to control units, as well as the quantitative calculation and weighting of
selected keyfigures, was developed. The architecture of the developed keyfigure
tool, together with its different data sources is shown in figure 11.

A central database was used to collect information about the functional
specifications, communication signals and components set of the product variants.
Data was collected from a range of dispersed sources in the organisation. A core
source of information was the Function and Component Databases that needed to
be manually manipulated to suite the needs of the study. Another important source
of implementation data was the Communication Database used to deduce the
communication needs between functions, the decomposition of functions into
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subfunctions, and their allocation to electronic units. In addition, specific product
variants were imported from proprietary product identification files, in which
variants were defined as a selection of a set of user functions.

Comm.
Database
Analysis
" Results
e e
|| Import Tool H

Function and

Component [yr o1 adaptatior> Architecture Keyfigur
Databases Database Analysis Tool

Figure 11. Tool architecture for the keyfigure calculation tool

A wide range of keyfigures (See table 3) was selected based on four important
product aspects: Dependability, cost-efficiency, modularity and performance. An
example keyfigure is the number of cable connection points. This keyfigure relates
to the dependability aspect, since connections are an important source of faults and
failures in embedded automotive control systems. The aim is to reduce the number
of connection points in difficult environments, through the appropriate positioning
of control units. The length of cables and number of components are other easily
analyzable keyfigures relating to cost-efficiency.

In the study, the specification of the functionality and the hardware architecture
were separated, creating two views of the system. The separation facilitated the
possibility to perform multiple allocation strategies without needing to re-model
the system functionality. The functionality was modelled as function blocks linked
by communication links. The implementation was modelled as electronic units
linked by cables. The electronic units include sensors, actuators and electronic
control units (ECU). The different views are then interrelated once the functional
allocation onto the hardware is defined, where function blocks are associated to
electronic units and communication links are associated to one or more cables.
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Table 3. The keyfigures considered in the quantitative architectural design

analysis.
= Number of connection = Number of = Number of mission
points suppliers/sensors critical connections
= Cable length = Modularity = Number of part numbers
= Connections in bad » Number of messages = Number of distributed
environment through gateway functions
= Number of cables in = Number of Mission = Number of widely
difficult passages critical units distributed functions
= Number of ECUs = Processor utilization = Number of pins/ECU
= Number of sensors = Gateway utilization = Component cost
= Weight = Number of suppliers/ECU |» Bandwidth utilization
= Number of units
developed in-house

Once the functional allocation is performed, an analysis tool allowed the keyfigure
calculations for a specific product variant and system architecture. A screenshot of
the main analysis window, highlighting some of the measured keyfigures, is
provided in figure 12. Using this tool, it was possible to quickly compare
alternative architectures and find the weaknesses and strengths of the alternatives
as indicated by quantitative keyfigures.

7.2. Function Modelling To Improve Software
Documentation

Among the many distributed sources of information within the Scania
organisation, the current functional documentation of the EE
(Electrical/Electronics) system is mainly based on three core documents:

e User Function Specification (UFS) - specifies a User Function, which is a
specific functionality to be implemented in a vehicle, implemented over more
than one system.

e System Description (SD) - specifies a System, describing the physical entities
onto which User Functions are implemented such as sensors, actuators and
ECU-hardware units.

e Message sequence charts (MSC) - Specifies a Scenario describing a specific
sequence of events for a given User Function. Multiple scenarios are
specified for each User Function and these are grouped into Use Cases.
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Figure 12. Screenshot of architecture scorecard tool

In a preliminary internal study, a range of problems were identified with the
current functional documentation, namely:

e Document inconsistencies - Text editors are used for the documentation,
where references to other documents are hard-coded, with no mechanisms to
update these links upon changes.

¢ Incomplete information — A scenario-based behaviour description of the
functions is used, leading to an incomplete specification. In addition,
functionality to be completely implemented within one hardware unit is not
necessarily documented.

e No user function overview — No documentation currently provides a general
overview of functions, focusing on the end-user aspects.

e Unclear dependencies - For a particular user function, the distribution of
function parts onto systems is implicit.

e Function and Implementation mixed-up - The current User Function
Specification document contains information about both function and
implementation, limiting the possibility of function reuse given
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implementation changes, as well as blurring the boundaries between the roles
of the system owner and the function owner.

A Dbrief investigation to deal with these problems was performed. The study
resulted in an information model and a documentation approach to function
specifications. The proposed techniques were evaluated through the specification
of three functions of varying complexity.

7.2.1. Information Modelling

The proposed information model to handle the document contents is illustrated in
Figure 13. The information model is broken down into different views that group
entities together targeting particular aspects of the system. Roles were also
identified to control access to the information model entities.

The three main views of the system are the Functional view, Software view and
Hardware view. A common pattern exists between each of these views,
specifically: (1) The hierarchical decomposition used within each view, for
managing the size and complexity of the system description. This highlights that
there exists no single dominating product structure, and each view describes the
system from a specific perspective. (2) The definition of entity interface through
which the entity interacts with its external environment.

e Function View - The main object in this view is the Function, with two sub-
types: PartFunction and Variable. A PartFunction object designates certain
functionality that given a certain input, produces a certain output. A Variable
object designates a transportation link that manages certain data internally
and provides access to this data to connected PartFunctions. A Function can
be decomposed into a set of (sub-)Functions, forming a hierarchical product
structure. The interface definition of a Function is defined by a set of ports,
where a port acts as a placeholder for a subset of its object’s externally
accessible properties.

e Software View - Similar to the Function view, the main object in this view is
the SoftwarePart, with two sub-types: SofiwareComponent and Data. A
SoftwareComponent object designates a sourcecode module that given a
certain input, produces a certain output. A Data object designates a data
storage facility that manages certain data internally and provides access to
this data to connected SoftwareComponents. A SoftwarePart can also be
decomposed into a set of (sub-)SoftwareParts, forming a hierarchical product
structure. The interface definition of a SoftwarePart is defined by a set of
SoftwarePorts, where a SoftwarePort designates a certain internal data item
that is externally accessible to other SoftwareParts.
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e Hardware View - Similar to the Function view, the main object in this view is
the HardwarePart, with two sub-types: HardwareComponent and Cable. A
HardwareComponent object designates a physical block having geometrical
dimensions and a position. A Cable object designates a single cable with a
certain geometrical path. A HardwarePart can also be decomposed into a set
of (sub-)HardwareParts, forming a hierarchical product structure. The
interface definition of a HardwarePart is defined by a set of pins, where a Pin
designates a spatial location at which the HardwarePart can be connected to
other HardwareParts.

In addition, the User Function view is a special view targeting the product user,
and hence focuses on structuring the product functionality from the user
perspective. A complete system is described using a network of hierarchically
decomposed Functions. However, from the user perspective, certain sets of
Functions form a clear and valuable contribution that the user can relate to. Such a
set is managed in the information model using the UserFunction object. Ignoring
Function variants for the moment, a UserFunction is a grouping of Function
objects, forming a fully defined specific functionality (just like the hierarchical
composition of functions into PartFunctions). It is important to note that a
Function object does not exclusively belong to a single UserFunction. Certain
functionality, such a ‘speed sensing’, provides services that can be shared by many
UserFunctions. Such functions are a good indication of the interaction and
dependencies between user functionalities.

Finally, given the importance of product configurations, each of the above views is
further described using a specific variant view: FunctionVariant, SoftwareVariant
and HardwareVariant views, describing variants of functionalities, software
realizations of functionality and the hardware platform in which the software
realizations are allocated respectively. Again, a pattern can be found in
representing these three variant needs, and in their relation to other objects in the
information model.

e The FunctionVariant is used to represent variations for a particular user
functionality. A UserFunction is a grouping of FunctionVariants that provide
similar or competing functionality from which the user can choose. A
FunctionVariant object is in turn a grouping of Function objects, forming a
fully defined specific functionality. It is important to note that a Function
object does not exclusively belong to a single FunctionVariant, since certain
functionality can be a common part among the various variants of a given
UserFunction.
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e The SoftwareVariant is used to represent the different variants in how a
particular Function is implemented in software. A SoftwareVariant is a
grouping of SoftwarePart objects that together realise a given Function.

e The HardwareVariant is used to represent the different variants in how a
particular SoftwarePart is allocated to hardware. A HardwareVariant is a
grouping of HardwarePart objects that together implement a given
SoftwarePart.

In the above views, objects do not exclusively belong to one view. For example,
the SoftwarePart object belongs to both a Software view describing the software
implementation, as well as a HardwareVariant view describing the allocation of
software to hardware. Such objects help identify the dependencies that exists
between views, calling for special attention for their management, in order to
reduce duplication and inconsistencies in the product description.

7.2.2. Roles

As illustrated in table 4, certain roles responsible for the development of the views
were identified. In most cases, the responsibility of defining the objects within a
given view lies with the same role, and the table is hence presented relating views
to roles. However, given that objects may not be exclusively defined within one
view, it was necessary to relate the role responsibilities at a finer-grained level,
relating roles to specific information objects. For brevity, the fine-grained
responsibility sharing is not discussed here. In addition, besides the Owner roles,
there exist several other roles that only need to access the product information,
such as the system user, tester, safety analyst and maintenance/repair.

7.2.3. Proposed Documentation

The information model must be captured in some kind of descriptions, textual or
graphical, collected in documents. Given the shortcomings of the original
documentation, a new documentation solution is proposed replacing the original
UFS and MSC documents. Two new documents are suggested instead: A User
Function Description (UFD) document and a Function Architecture Description
(FAD) document, specifying the implementation-independent functionality and
their software/hardware implementation respectively. In the proposal, the SD
document is also redefined to focus on the hardware aspects of the system it
describes. The content of the new documents is simply a restructuring of the
previous documentation, and major changes have been avoided where possible in
order to permit a smoother shift to the new documentation structure. Since an
analysis of potential tools and models were beyond the scope of the study, and
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recognising the effort needed in introducing new tools, documents are still defined
using text editors. The use of UML 2.0 activity diagrams for describing functions
is however proposed, given the present experience in its usage by some members
of the organisation.

Table 4. The roles responsible for the development of the information model

views.
View Owner role Role Description
Function |Function owner |Responsible for the specification, development and
validation of a user function.
Software |System owner |Responsible for the development of a selected set of]
Hardware |System owner |software/hardware components for the implementation of a
selection of partFunctions/softwareParts.
Function |Configuration [Manages and ensures compatibility —between the
variant  |coordinator combinations of hardware and software for a given
(functions) configuration. A configuration is a selection of systems with
Software |Configuration |defined hardware and software versions. The configuration
variant  |coordinator coordinator manages the conditions pointing out different
(software) variants.
Hardware |Configuration
variant  |coordinator
(hardware)
User Function Manages the interaction of user functions by coordinating
function |coordinator the definition and development of partFunctions and their
F-SW Function interactions.
allocation |coordinator
F-HW  |Function
allocation |coordinator
SW-HW |Communication [Manages the allocation of communication between software
allocation |coordinator components both within and between processing units. The
communication coordinator is responsible for reliable
communication and non-congested channels.

7.3. Conclusion

The keyfigure analysis case study borrowed many ideas from the tool and
mechanisms discussed in Paper-B. The multi-view principles presented in Paper-B
were adopted in the restructuring and division of the available dataset into
different views, thereby facilitating the desired analysis as well as the possibility
to perform multiple allocation strategies without needing to remodel the system
functionality. In addition, the database structure used in this case study is based on
the meta-meta-model suggested in the paper.
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Preliminary studies and keyfigure analysis of the case study were first performed
using the prototype tool presented in Paper-B. However, a new keyfigure tool
implementation was ultimately used to facilitate the process of importing
information from the various sources at the organisation. In the final tool, the use
of hierarchy within each view, and hence the -cross-hierarchy allocation
mechanisms, was not adopted. Nevertheless, the prototype tool later took
advantage of the case study material for experimentation and testing purposes.

During the import of information from the various data sources, many
inconsistencies in the documents were discovered due to duplication of
information in the different documents and the lack of mechanisms to propagate
changes between them. The needs for an integrated data management system as
advocated in this thesis were confirmed from experiences in the case study.

The discovery of inconsistencies also triggered the documentation case study of
section 7.2. The scope of the study did not encompass the implementation of tools
for the automated management of the suggested documentation. For this reason, it
was not possible, nor expected, to directly apply any of the solutions presented in
this thesis. However, many ideas were borrowed such as the division of the
information model into multiple views, as well as the particular meta-model within
each view. Given the lack of automated support, integration was achieved through
the restructuring of the documents to minimise the duplication of information and
to highlight any relationships between their contents.
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As mentioned in section 4.3, this thesis focused on two cases of integration to
cover each of the identified needs of view integration and model management. The
potential for future developments is hence great.

The view integration mechanisms presented in Paper-B need to be expanded to
cover other types of relationships. While specific to the allocation of system
functions to hardware, it is believed that these mechanisms can be applied to other
types of relationships such as that of mapping software components to hardware.
However, no claim can be made that these mechanisms are general enough to
handle all types of relationships. In particular, future work should address the
management of duplicated information between tools, synchronizing and
maintaining its consistency. A systematic approach when implementing these
relationships should allow a reuse of many of the concepts already explored. In
addition, the ability to perform inter-view associations over a larger number of
views is a challenge to handle in future developments. Finally, a complete MDM-
based implementation of the inter-view allocation approach remains to be
developed.

A full validation of the PDM/SCM unification approach needs to investigate the
feasibility of the remaining management functionalities. The functionalities of the
union of typical SCM and PDM tools would include: Version management,
product structure management, build management, change management, release
management, workflow and process management, document management,
concurrent development, configuration management and workspace management
[15]. A unified approach should support the common needs of hardware and
software development, as well as the discipline-specific needs such as build
management for software development.

Relating to implementation issues, the current platform implementation
investigates the potential of implementing the MDM platform using the
technology offered by a commercial PDM system. This reference implementation
can be used to highlight the shortcomings of conventional PDM, as well as the
specific needs of MDM. The experience gained can then be used in the
development of dedicated MDM systems.
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The implementation of the current functionalities has not considered the
performance issue yet, focusing instead on the feasibility of the approach in the
large. It remains however to see if the expected performance can be provided by a
conventional PDM, given that such a system is not normally designed to deal with
a large number of fine-grained data items. Such an evaluation will provide
valuable feedback on to the expected performance of new MDM solutions.

Finally, some process related and usability issues have been touched upon in this
thesis, and are relevant for future work.

The inter-view mechanisms defined in Paper-B support a process-independent
allocation practice. By placing certain restrictions, the allocation practices can be
constrained. For example, disallowing the possibilities for association extensions
through the sub-systems provides a top-down approach, where sub-system design
can only refine design decisions specified at the higher level. The open approach
however allows for the possibility to feedback information up the hierarchy.
Exploring these process issues can be of interest for future extensions.

Doubt remains whether the inter-view mechanisms actually facilitate the
developer’s work. It is believed that the approach, while based on simple concepts,
does require a new mind-set. From the limited gained experiences, the ability to
focus on specific parts of the system design, as well as inheriting and extending
other decisions made elsewhere in the system, is rewarding. This however does
depend on good feedback and support by the integration tool. In the worst case,
the approach advocated here can be seen as an experiment, or an initial step,
towards other possibilities of view integration.

More advanced fine-grained version control algorithms need to be implemented in
the platform. Future algorithms need to support concurrent development, by
allowing parallel access to modelling elements, as well as providing branch/merge
mechanisms. In addition, in supporting multiple product structures, support for the
parallel development of these structures need to be provided, while ensuring the
consistency of information across these structures. For usability reasons, the
graphical visualisation of the differences between two model versions needs to be
developed.

It would also be interesting to develop a number of version control algorithms
based on the same MDM platform. The system can then be configured so that
different strategies can be applied for different kinds of models. Different
development needs can thus be satisfied using variants of the same basic
mechanisms in a unified management system. For example, software development
might require the complex version control mechanisms and concurrent
development normally provided by SCM systems, while hardware development is
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satisfied with sequential revision control. The different solutions ought to be based
on the same basic mechanisms, user interface and terminology.
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9. Conclusion

Weinberg [3] states that ‘A system is a way of looking at the world... The system
is a point of view — natural for a poet, yet terrifying for a scientist!” System
structuring is not an inherent property of the system. Instead, it is a way of looking
at a system to better understand it.

In the shift from mechanical to multi-disciplinary mechatronics products, the need
for multiple viewpoints becomes more evident. The need for multiple disciplines
during development means that there will exist multiple viewpoints — multiple
product structures. This is specifically amplified with software development
within which the presence of many structures is more apparent.

For the successful integration of the efforts from each of these disciplines, the
views need to be appropriately integrated, preventing any inconsistencies and
divergences from creeping into the system design. Each view structure is equally
important and the challenge is to integrate them appropriately.

An acceptable environment to perform view integration, should also deal with the
various models used to represent these views. This leads to the need for model
management functionalities and hence the challenge of integrating the
management systems used by the specific disciplines, namely PDM and SCM
systems. It is here argued that model integration ought to be one of the many
functionalities supported by such an integrated, model-based, management system.

Recognising that such an environment ought to be a result of standardisation
effort, this thesis focused on two cases of integration techniques to investigate
each of the view integration and model management issues.

An approach to multi-view modelling and integration which tightly integrates the
view hierarchies is presented. Specifically, model integration is investigated for
the allocation of system functions onto the implementing hardware architecture.
The proposed approach promotes the independent development of the views,
allowing developers from each discipline to work concurrently, yet ensuring the
completeness, correctness and analysis of any inter-view design decisions made.



9. Conclusion

A Model Data Management (MDM) platform that generically manages models
from the various tools used in development is also presented. View integration is
considered as an integral functionality of this platform. The platform is viewed as
a unification of the management functionalities typically provided by the
discipline-specific PDM and SCM systems. The unification is achieved by
unifying the kind of objects it manages — models. The advantage of MDM over
conventional PDM/SCM systems is the inclusion of the internal content of its
supported models, allowing for a tighter integration of the design information
between different models. In demonstrating the platform feasibility, a generic
version management functionality of models is implemented.

The platform is argued to be feasible given the move towards model-based
development in software engineering, bringing the discipline’s needs closer to
those of the hardware discipline. This leads the way for an easier and more
effective integrated management platform satisfying the needs of both disciplines
using a common set of mechanisms. The needs of the disciplines will always differ
due to the nature of the products themselves. For example, the development
process of software and hardware products differ [15]. However, in a unified
management approach, the development needs of both disciplines can be satisfied,
using variants of the same basic mechanisms, by providing different strategies for
different kinds of models. It is essential however to base the strategies on the same
basic mechanisms and user interface, allowing the reuse of basic components and
preventing confusion in terminologies. While most critical for multi-disciplinary
development, the platform is equally appropriate for the development of purely
mechanical or software products.

The major aim of the current platform implementation was to experiment and
illustrate the concepts discussed in this thesis. The architecture builds on existing
technologies from each of the mechanical and software disciplines. The proposed
MDM system is built based on a configurable PDM system, given its maturity,
ability to manage model contents and the presence of already developed
management functionalities such as the support for distributed development,
change management, workflow control, etc. At the same time, the version control
functionality borrows ideas from the fine-grained version control algorithms in the
software discipline. The adoption of a PDM system is not indispensable and one
can envisage building an independent MDM that supports both disciplines. It is
our ideal vision that with the acceptance of model-based development, one no
longer needs to discuss the integration of PDM and SCM systems. Instead, a truly
unified approach to model data management can be used by both disciplines.
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Abstract

In multi-disciplinary development, where various domain specific tools are
used by developers to specify and analyse a system, efficient system
development requires that the models produced by these tools are well
integrated into a whole, reducing any risks of inconsistencies and conflicts in
the design information specified. In this paper we present an architecture for a
model and tool integration platform that borrows its major components from
well known and accepted standards from both computer and mechanical
engineering. The architecture supports model integration, where models
defined in different tools for different aspects of the same system are related
such that they may share and exchange data.

The integration platform also enables model management functionalities on a
fine-grained level, suggesting a combination of the functionalities found in
traditional data management systems such as product data management (PDM)
and software configuration management (SCM).



A.1. Introduction

A.1. Introduction

Mechatronics systems development requires the close collaboration of various
specialist teams and engineering disciplines in order to reach the expected
complex functionality. In automotive system design for example, traditional
engineering disciplines such as control, software, mechanical and computer
engineering, need to interact to meet the demands for dependable and cost-
efficient integrated systems. Even though working with the same system towards
the same overall goal, developers from different domains use specific tools,
providing their own specific views of the system to be developed. Each system
view targets a specific audience, using that audience’s familiar language
(viewpoint), and concentrating on that audience’s concerns [6]. Figure 14
illustrates some of the viewpoints and views that may be necessary during the
development of a typical vehicular system.
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Figure 14. An example of some disciplines and views in system design.

For successful system development, the views of all developers produced by the
different tools should be well integrated into a whole, reducing any risks of
inconsistencies and conflicts in the design information described in these views.

View integration can be performed either through social communication among
developers - social design, or through formalised and automated design processes -
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model based design (MBD) [2]. MBD refers to a development approach whose
activities emphasise the use of models, tools and analysis techniques for the
documentation, communication and analysis of decisions taken at each stage of the
development lifecycle.

This paper proposes an architecture for a model-based tool integration platform
that allows for the generic management of different kinds of models from a set of
different tools, as well as the automated sharing of data between these models
produced during multi-disciplinary development.

In the next section, we categorise and discuss the needs for tool and model
integration. Section A.3 presents the architecture for the Model Data Management
(MDM) platform that aims to satisfy these needs. The major functionalities
provided are further discussed in section A.4, followed by a presentation of the
tool implementation. Finally, a discussion of related work is presented before
concluding the paper in section A.7.

A.2. Needs for Tool and Model Integration

With the increasing acceptance of model-based engineering, a large number of
tools are available that support specific aspects of the development process. While
it is desired to obtain a single tool that can fully support system development
processes, experience shows that no such silver bullet can be provided.

Our conviction is that no matter how many and large modelling languages get, we
will never reach the point when a single language, and consequently a single tool,
will meet all the needs of a development process in any given company. As a
consequence, the need to integrate model information and the tools that act on this
information will always exist. A platform that supports this type of integration
should meet a number of needs in model based engineering. The more important
of these are pointed out in the following.

Support for domain specific tools and languages. The presence of a variety of
tools within a company arises from multiple reasons. First, developers from the
different disciplines are accustomed to and educated in specific languages used in
domain-specific tool environments that let them focus on specific aspects of the
system. Second, it is not uncommon that, even within a given discipline, many
tools that provide almost the same functionality are used within the same
organization. While this redundancy may seem unnecessary and could be avoided
in many situations, it is nevertheless a common practice when no single tool can
offer all needed functionality.

Apart from design tools in which models are specified, another group of tools use
the model data either for transformation or analysis purposes. Many such tools are
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integrated into design tools or are plug-ins acting on information from many
different data sources.

Data sharing and view integration. There are two main reasons to use an
integration platform to handle model data from different tools. First, it is necessary
when certain system information is used and duplicated in more than one tool. A
tool integration mechanism should manage the duplication of information in the
tools, synchronizing and maintaining its consistency. Second, having chosen a
specific set of tools, certain design information ends up in between tools. This
information specifies a relationship between the different views (inter-view
information). For example, the allocation of software components onto the
hardware components of a system is not the sole concern of either the software or
the hardware developer, and this design decision lies between the two views. Good
integration mechanisms should permit the specifications of such cross-view
information and reflect the interaction points at which the respective stakeholders
need to communicate.

Model management. A further important aspect of model based development is
the need to manage all the models produced during development. In the
development of large and complex products, an organization normally adopts
some kind of product management tool to support its development process, and
deal with the large amount of design information, created and modified during the
development and product life cycle. Model management includes supporting
functionalities for the storage of models, handling of versions and variants of
models, access control, change request management, process/workflow
management as well as support for geographically distributed development. Only a
few tools provide model management facilities, and for this reason an integration
platform ought to provide this functionality centrally for all tools that it integrates.

A.3. MDM Architecture

Accepting that no single tool-suite would be sufficient in the development of
mechatronic systems, and that tools need to be coordinated in order to tightly
couple the model data produced and managed within them, we seek to define a
generic architecture for tool management and integration. This architecture should
support the needs identified in section A.2

No tool in the tool-set should take a predominant role, to which all other tools
integrate. Such an approach creates a dependency on that tool, and peripheral tools
can only be integrated indirectly. Instead, the solution proposed here makes use of
a central platform to which each tool is connected. It is through this platform that
communication between tools occurs. The envisaged tool integration architecture
is shown in figure 15.
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Figure 15. Tool integration architecture

The platform consists of two main parts: A set of tool-specific adaption layers and
a data repository with mechanisms to handle this data. The data repository stores
the data for each of the tools. To perform this role in a generic way, the data from
the different tools is expected to be presented in a predefined form, and this
functionality is provided by the adaption layer. Triggered either by a tool or the
repository, the corresponding adaption layer permits the data flow between a tool
and the repository. The following subsections will further discuss these
components.
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A.3.1. Data Repository

The data repository stores the data from each of the tools integrated into the
platform. In addition, it provides mechanisms to manipulate this data such as the
sharing of relevant data from one tool to other tools and tracing changes over time.

For the concern of model integration, it suffices to handle tool data that may be of
interest to other tools, and a complete coverage of all information specified in a
tool is not necessary. However, other functionalities, such as version control, place
a more demanding requirement that it should be possible to completely re-generate
a tool-specific model from the data in the repository, with no resort to additional
external files or databases. For this use, the data repository needs to store all tool
data.

In order to satisfy both needs, the platform needs to manage the complete data set
ever needed to fully reproduce and control a model. However, this data is divided
into two subspaces with differing access and formatting properties. The public
space manages a subset of the complete data set that can be accessed by other
tools in the toolset. The remaining data is stored in the private space. The public
space is further divided into read-only and read-write subspaces. This division of
subspaces allows flexible control over data access privileges in the platform.
Using a common classification as an example, tool data can be separated into
graphical and model data [12]. In most cases, the former will belong to the private
space, while the later belongs to the public space.

Furthermore, while private data can be stored in a proprietary format that is only
understood by the corresponding tool, the public data needs to be represented
using a generic format and structure in the repository, understandable by all
adaption layers in all connected tools.

Access to the tool data and the mapping of this data to the repository is performed
by an adaption layer as discussed in section A.3.3. In the next section, we discuss
the information model to be adopted in order to manage and structure the data in
the repository.

Note that the data repository in this solution is not far from that adopted when
using a Product Data Management (PDM) system in the development of
mechanical systems. We here seek to perform a similar approach for the model-
based design of multi-disciplinary systems, which may need to integrate data from
a broader class of models from a multitude of disciplines of software and
mechanical engineering.
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A.3.2. Meta-modelling

A tool generally adopts a specific internal meta-model that it uses as a basis for the
data schema to internally manage and store the model data produced. In many
tools such as in Simulink [14], a meta-model is implicitly assumed, while others,
such as UML [15] tools, are strongly based on a given meta-modelling framework.

The MDM platform managing an integrated model-set needs to map the meta-
model of each tool onto that of the repository. In order to simplify the
specification of a schema for each integrated model, a meta-meta-model is adopted
as a basis for the repository. In developing an adaption layer, the meta-meta-model
is instantiated to reflect a given meta-model, which is then further instantiated
when storing the internal model data of its tool in the repository.

Note that adopting a common meta-meta-model between the models is not
sufficient if there is a need to integrate the various model contents into a whole. It
may well be the case that each model type occupies a separate space in the
repository with a different data structure. To obtain an integrated information
model, a unified information model of the set of models is necessary, specifying
more detailed semantics of the models and their interrelations. While such
information models are standardised for hardware products [6], no such standard
model is currently available that also encompasses models from the software
discipline. In section A.4.1, we explore the possibility to setup relations between
the different models, integrating the models to form a complete information
model.

We adopt a simple meta-meta-model which generalises among established meta-
meta-modelling languages such as MoF [16], Dome [4] and GME [5], and based
on a broad survey of modelling languages for embedded computer systems [3]. A
model can be generally viewed as consisting of a hierarchical structuring of
modelling objects that may possess properties; ports defining interfaces of these
objects; and relationships (such as associations, inheritance and refinement)
between ports. Modelling languages differ in the kinds of objects that can be
specified, their relationships and the kind of properties they possess. When
integrating a particular model, the adaption layer maps the model data onto the
repository according to the meta-model specification defining the kind of objects,
ports and relations that may exist.

In this approach, the granularity at which the MDM system operates on the models
is controlled by the definition of the meta-model, implemented in the adaption
layer. Mechanisms will understand the model semantics down to the level at which
the elements, ports and properties are defined. Finer semantics within these entities
are not the concern of MDM. For example, if a property of an element is defined
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as a blob of text, an MDM functionality cannot be expected to interpret the
detailed semantics of this property.

A.3.3. Adaption Layer

Access to the tool data and the mapping of this data to the repository is performed
by the adaption layer. An adaption layer is developed for each tool to be integrated
into the MDM system. This layer isolates the tool-specific issues allowing MDM
to operate generically on many tools implementing different technologies. The
adaption layer fulfils three purposes. As discussed in section A.3.2, it maps the
specific meta-model of its designated tool onto the repository’s. The adaption
layer also specifies how the model data is to be partitioned between the public and
private data space in the repository.

Second, the adaption layer translates the specific format used by its designated
tool to a generic format adopted in the platform. Different technologies are
available for a tool to internally store its model data. A tool can use either a
computer file system to store model data in a file, or a database management
system. Various standards exist that specify how data should be handled using
these technologies, yet one cannot assume that tools will not implement their own
solutions. In a set of tools in which the tools adopt a combination of technologies
(standard or not), it becomes necessary to translate these technologies onto a
common format. This makes the tool-specific data technology transparent, and
provides a generic interface to the rest of the platform functionalities. In the
platform advocated in this paper, we adopt the data neutral XML format.

Third, the adaption layer accommodates the different techniques used to gain
access to the tool’s internal data. Different tools use different technologies to
provide automated access to its internal data. In the simplest case, the adaption
layer can access and interpret the textual file produced by the tool. A tool can also
provide ‘export’ functionality, an Application Programming Interface (API), or a
query language.

For a potential tool to be integrated into the MDM system, specific automation
support is expected. In order to allow fine-grained accessibility to parts of models
and the manipulation of models, a modelling tool whose models are to be managed
need to:

e Provide access to the model data either through an API or using parsable text
[6].

e Provide fine-grained mechanisms for the construction and modification of
models through an API.
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The translation executed by the adaption layer is triggered upon request by the
user, whenever the model being developed is deemed satisfactory. The adaptor
performs a transformation of the current state of the tool’s internal data to an XML
file format. This file is then received and interpreted by the repository in order to
store the information in its store.

Naturally, the mapping is performed several times during development as changes
to the model occur. For traceability reasons, the repository implements a version
control mechanism as discussed in section A.4. In this mechanism, the repository
needs to identify the changes performed since the last translation, and modify its
information space accordingly.

A.4. Model-based Data Management Functionalities

In developing software-intensive products, an organisation generally adopts a
Software Configuration Management (SCM) system to manage the large amount
of files produced in the process. Similarly, mechanical system development relies
on Product Data Management (PDM) systems.

In multi-disciplinary development, a number of such systems may need to
simultaneously exist and considering the central role these tools take in controlling
the development process, any tool integration effort needs to consider the
integration of this class of tools. In this section, we will discuss how the MDM
integration platform aims to provide the functionalities of these tools.

First, we will study the reasons why such a common management system has not
been possible in the past. Two fundamental problems can be identified that has so
far complicated the integration of PDM and SCM tools. First, the development
process support expected of these tools from their respective disciplines differs
greatly. While mechanical design expects full life-cycle product support together
with control over the process itself, software design has traditionally only expected
management of large amount of source files produced during the implementation
stages. Another major difference has been in the kind of information that the
support tools are expected to handle. In mechanical development, the need to
provide a seamless workflow from design to manufacturing phases has forced
PDM systems to not only handle the documents produced, but much of their
contents as well. An information model of the product data is an integral part of a
PDM system, providing the facility to related information to each other, within as
well as across the development phases. Software development, on the other hand,
has so far satisfied itself with a file-based approach, were the only relations
handled between the files are those of the file system itself. The internal structure
of these files and the semantic relationships between them are outside the scope of
SCM tools [11].
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However, with the increasing maturity of the software discipline, SCM is expected
to manage the early development phases by managing documents such as design
and analysis models [13]. This need leads to the need to also manage the
development process itself since distinctions need to be made between these
different kinds of documents. In addition, with the move towards a more model-
based software design approach, where models, and not just files, are analysed and
transformed when moving through the development phases, it is desirable that
SCM systems also handle the internal structure of the files under its control, as
well as the relationships between these structures. This change is newly recognised
in the literature and is generally referred to as fine-grained SCM ([13] and [19]). In
summary, as software development becomes more model-based, its needs move
closer to those of mechanical development, making it easier to unify and support
the needs of both disciplines using a more common management tool.

In model-based development, models and not files become the focus of
engineering activities. For this reason, data management functionalities such as
version management, product structure management, workflow and process
management should focus on the models and their contents, transparent to the file
structure used to store them. The ability of the MDM system platform to handle
the internal contents of models forms a good basis to provide such support.

This approach also allows for the alignment of variations in behaviour of common
functionalities within PDM and SCM. For example, the fine-grained version
control facilities provided by SCM are more desired in a model-based
development environment than the conventional facilities provided by PDM tools,
which simply perform a copying of files. In this case, adopting the former
approach would be beneficial for both disciplines.

A.4.1. Multi-view Integration

The management functionalities discussed so far act generically on all model types
independent of the other models integrated into the platform. The multi-view
integration functionality presented here differs since knowledge of the other
models to be integrated is needed.

In [3], different kinds of relations that exist between modelling elements within a
given modelling approach were identified such as dependency, allocation and
refinement relations. Depending on the set of modelling tools adopted within an
organisation, certain relations may not be directly supported by any specific tool
within the tool-set and lie in between the models (or views) of the system. Such
inter-view relations are however critical since they specify important design
information that is otherwise implicitly assumed during development. In addition,
inter-view relations act as integration points between the various models of the
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system, providing a complete and consistent information model. For a truly model-
based development, the integration platform should provide generic mechanisms
to specify such inter-view information, in the case where no explicit tool is used
otherwise.

In this section, we will explore one such example of model integration through
inter-view relations. This example originated from a case study at Scania in which
the functionality to be implemented in a truck is to be mapped onto the
Electrical/Electronics (EE) physical architecture, during the early architectural
design stages, optimizing keyfigure values such as system weight and cost [17]. In
this case, while the system’s function and hardware structures are modelled in
specific separate tools, allocation was performed by yet another tool, with no
explicit synchronization of data with its data sources, leading to inconsistencies.
Good model integration mechanisms were needed to permit the specification of
cross-view function allocation information using the original tools as data sources,
removing any source of data duplications.

Figure 16 illustrates example models describing a subset of the functional and
hardware structure of a truck. As argued in [18], it is desired to allow allocations
to be made on an arbitrary level in the hierarchies, so that, similar to when
working within a given view, when performing design decisions across views,
designers can focus on specific parts of the system and at a certain level of
abstraction. For example, a designer may wish to specify that the brake system is
to be implemented on a certain group of processors, without needing to specify in
detail which specific brake sub-functions is to be allocated to which processor.
Such a decision can be further refined or extended by others or at a later stage.
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Figure 16. An example function structure model (left) and hardware structure
model (right), of parts of a hypothetical truck EE architecture, together with the
mapping (broken arrows) of functions onto hardware units.
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This allocation strategy has the advantage of ensuring the independent
development of each of the hierarchies, since hierarchical decomposition is a
technique used to reduce the complexity perceived by a given stakeholder, and the
use of this tool should not be compromised by the needs of other stakeholders.
Further details on the cross-hierarchy allocation strategies and rules are presented
in [18].

We use the example here to present the techniques of specifying inter-view
information in the integration platform. Figure 17 shows the architecture in figure
15 in more detail, highlighting the allocation design data as inter-view data
between two models. Note that in this case, the inter-view design data actually
relates the structural aspects (functions and components) of two separate tools, and
takes no consideration of their detailed properties.

Data repository

Inter-view Information Model

Modelx

( Common meta-meta model 2

Common database

Figure 17. Detailed tool integration architecture, illustrating cross-tool data
integration.

A.5. Tool Implementation

The MDM platform is currently based on a configurable PDM system, namely the
Matrix PDM system [20]. The major advantage of using a PDM system is the
possibility to define information models, with a high level query language to
access and modify the model data in the repository. In addition, it is envisaged that
the development of the MDM functionalities discussed in section A.4 is made
easier given the already developed functionalities of PDM such as the support for
distributed development, change management, workflow control, etc.

A simple model version control functionality (MVC) has been implemented. The
algorithm supports the versioning of any model that can be mapped to the meta-
meta-model assumed in the platform. In the current implementation, data flow
diagram (DFD) models from the Matlab/Simulink [14] tool and Hardware
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Structure Diagram models [21] in the Dome [4] tool, are handled. MVC provides
mechanisms that allow a user to save and extract any part of the system model. In
a ‘checkin’ operation, changes to the model since the last checkin operation are
saved in the repository. When performing a ‘checkout’ operation, the specified
element is reconstructed for a given version, together with its subparts, forming an
XML document of the information in the repository. This document is then further
transformed by the adaption layer to create a tool-specific format that can be used
by the tool. The details of these operations are performed transparently to the user,
allowing him/her to interface with the modelling tool’s interface and format.

A preliminary multi-view integration mechanism is also currently implemented for
the case-study presented in section A.4.1. In the current implementation, the user
is given direct access to the interface and data between Simulink and Dome
models. This access is provided through generic mechanisms in the repository and
the adaption layers of the two tools assuming the tools provide the necessary APIs.
Another possible solution is to perform the allocation specification using a generic
tool that forms an abstract presentation of the data in the repository of each of the
tools, and through which the user specifies the relationships between the data
items as desired. Such a generic tool will form part of the integration platform, and
is reused in setting-up any kind of inter-view relationships. This tool can for
example be built using one of the generic rapid-prototyping tool environments
such as Dome [4] and GME [5].

A.6. Related Work

With the increasing automation support needs in product development and the
variety of tools available, the need for tool integration is increasing.

Integration platforms such as Toolnet [7] and Fujaba [8] share similar aims to
those presented in this paper. These solutions rightly advocate a limited repository
that only stores the additional integration information not otherwise stored in the
tools being integrated. Such an approach however limits the support functionalities
that can be provided, specifically the data management functionalities generally
expected of a PDM/SCM system.

The transformation-based approach to model integration as advocated by MDA [9]
is also an important factor in tool integration. Focus in solutions such as [10] is
placed on the integration of models in which a large amount of data is duplicated
and where one model can be automatically deduced from another. However, this
solution is of less help in integrating different types of models, where it is
necessary to specify inter-view relations (section A.4.1) coupling data items across
the modelling tools.
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As shown in this paper, the integration of PDM and SCM systems should be a
critical part in any tool integration effort for the development of mechatronics
systems. In [11], three different techniques of integrating PDM and SCM systems
are proposed. However, the suggested approaches accept the status quo of the file-
based software development leading to limited integration success. Rejecting the
status quo and focusing on the commonality between the disciplines (model-based
development), as advocated in this paper should instead lead to a smoother
integration.

A.7. Conclusion

In multi-disciplinary development, where various tools are intensely used by
developers to specify and analyse the system, successful system development
requires that the models produced by these tools are well integrated into a whole,
reducing any risks of inconsistencies and conflicts in the design information
specified. In addition, it becomes increasingly critical to provide generic
functionalities to manage the models produced from the various developers.

In this paper, we proposed a model-based tool management and integration
platform (MDM) that allows for the generic management of different kinds of
models from a set of different tools, as well as the automated sharing of data
between these models produced during multi-disciplinary development.

In essence, this approach attempts to borrow the best from each of the discipline-
specific PDM and SCM technologies. We propose adopting a PDM system
commonly used in the development of mechanical systems, and extending its
usage for the model-based development of mechatronics products. The ability to
manage workflow control and the specification of a product information model
generally available in PDM systems is combined with the more advanced fine-
grained version control mechanisms proposed for modern SCM systems. This
should also help in the process of unifying the terminology used within an
organisation.

A model-based approach to system development suggests that a more fine-grained
handling of models is supported, in which the set of model data specified in each
of the tools is managed by the integration platform based on a common
information model and not simply as a set of files. This fine-grained approach then
allows various coupling between data from the different tools to be performed.

A good model-based, integrating design environment is also a good basis for the
communication of information between developers, where any conflicts and
misunderstandings between developers are reflected, detected and dealt with in the
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models. An integrated platform allows design decisions taken by one developer to
be communicated to the rest of the team in an understandable way.

To illustrate the MDM approach, an initial prototype tool has been developed on
top of a PDM system. Functionalities currently supported include model version
control (MVC) that allows the fine-grained version management of two types of
models from two different tools. MVC permits stakeholders to perform design
activities in terms of models, where they can organise, share and modify their
models, transparent to the underlying file structure. In addition, the integration of
two models from two different tools is studied facilitating the allocation of system
functionalities onto the system hardware architecture.
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Abstract

The development of modern technical systems requires the close collaboration
of various specialist teams and engineering disciplines. Even though working
with the same system towards the same goal, developers from the different
domains use their own specific tools, providing their own specific views of the
system to be developed. For the successful integration of the efforts from each
of these disciplines, the different views need to be appropriately integrated,
preventing any inconsistencies and divergences from creeping into the system

design.

In this report, we present an approach to multi-view modelling which
systematically integrates the two generally accepted complexity reduction
techniques of hierarchical decomposition and multi-viewing. While these
techniques are common practice in many modern design tools, the approach
presented defines how the inter-view relationships can be used to tightly
interweave the views’ hierarchies.

Through the use of a case study, model integration is investigated for the
allocation of system functions onto the implementing hardware architecture.
The resulting approach maintains the principle of hierarchical design within, as
well as between the views, where allocation can be performed at arbitrary levels
across the hardware and function hierarchies. The proposed approach
promotes the independent development of the views, allowing developers from
each discipline to work concurrently, yet providing support for a holistic view.
This provides a good basis for an information sharing environment enabling
model-based, multi-disciplinary development.

While specific to the allocation of system functions to hardware, these
mechanisms can be reused for the mapping of system functionality to the
software architecture, or software to hardware allocation. The generalisation of
this work to cover other kinds of relations remains a challenge for future work.



B.1. Introduction

B.1. Introduction

The development of modern technical systems requires the close collaboration of
various specialist teams and engineering disciplines. In automotive system design
for example, developers from the traditional engineering disciplines such as
control, software, mechanical and electrical engineering, need to interact to meet
the demands for dependable and cost-efficient integrated systems. Even though
working with the same system towards the same goal, developers from the
different domains use their own specific tools, providing their own specific views
of the system to be developed. Each system view targets a specific audience, using
that audience’s familiar language (viewpoint), and concentrating on that
audience’s concerns [1]. Figure 18 illustrates some of the viewpoints and views
that may be necessary during the development of a typical vehicular system. This
separation of concerns has been well recognised in literature and is the common
practice of modern engineering modelling languages and tools ([2], [3], [4] and
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Figure 18. Some of the disciplines and views in system development.
Breaking up the design information of the system into multiple views, based on

domain concerns, has the major advantages that it increases understandability and
reduces the perceived complexity of the system at hand. However, the concerns
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and interests of each domain are not necessarily exclusive, which leads to overlap
and dependencies in their development information space. In addition, even
though they attempt to develop the same system, developers from the different
disciplines may form a different perception of the system’s aims, problems and
solutions. Combined with the fact that these disciplines are distributed across
several teams that focus on specific subsystems of a large system, it becomes
essential that the efforts of all developers are well communicated and the different
views are well integrated into a whole. This reduces any risks of inconsistencies
and conflicts between the views.

There are two main reasons for the need of view integration. (1) Integration is
necessary in the case where it is not desired to specify certain system information
exclusively within a single view, since the information is the concern of more than
a single aspect or discipline. Good integration mechanisms should allow this
information to be duplicated in the relevant views while maintaining its
consistency across the views. An example approach focusing on the consistency
checking between views in software engineering, where the same or closely
related entities can appear in different views and must be maintained consistent,
can be found in [6]. (2) Depending on the adopted set of views, some information
may not belong to one view or the other, but specifies a relationship between
different views. For example, the allocation of software components onto the
hardware components of a system is the sole concern of neither the software nor
the hardware developer, and this design decision lies between the two views. Good
integration mechanisms permit the specifications of such inter-view information
and reflect the interaction points at which the respective stakeholders need to
communicate. Inter-view information can naturally be considered as a view of its
own. It is however interesting to highlight the fact that such an “inter-view view”
cannot exist on its own, since most of its information lies in the other views it
relates. This report focuses on the latter kind of view integration.

B.1.1. Inter-view Modelling - A Complexity Management
Technique

Breaking up the system description into multiple views is simply an application of
the decomposition or “divide-and-conquer” technique commonly used to manage
system complexity. This technique is well adopted in many aspects of science and
technology and is generalised in the General Systems Theory ([7] and [8]). A more
common application of this principle is hierarchical decomposition, in which a
complex system is recursively divided into smaller subsystems until a satisfactory
level of detail or complexity is reached. Combining both techniques, system
modelling can be envisaged as presented in figure 19, in which the complete
system model information is first divided into its various views and then
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decomposition is used to form a hierarchy of the information specific to each
view.

It is argued that a good view integration approach should maintain the use of
hierarchies when specifying inter-view information in order to facilitate the
developer’s work. Relationships setup between views should be appropriately
reflected in models and not simply as a list of references. Establishing
relationships across the hierarchies of the views provides a tight interweaving of
the views. Using this interweaving, mechanisms can be developed to allow a
developer within a given domain to view the other aspects of the system from
his/her own point of view. The other views should be reflected to the developer at
a sufficient level of abstraction and detail that makes him/her appreciate the
information provided. Such mechanisms also act as a good basis for information
sharing between developers.

View View
A B

Subsystem
Ay 1 Sub]ssylstem Subsystem
Subsystem B3
A2 /

/
Subsystem / Subsystem
A3 Subsystem / B2
A4 / —
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Figure 19. The integration of multi-view and hierarchical decomposition
techniques. The broken arrow illustrates a relation between the separated views.

View integration can be performed either through social communication among

developers - social development, or through formalised and automated design
processes - model based development (MBD) [9].
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MBD refers to a development approach whose activities emphasise the use of
models, tools and analysis techniques for the documentation, communication and
analysis of decisions taken at each stage of the development lifecycle. Models can
take many forms such as physical prototypes, graphical and textual models. It is
essential that the models contain sufficient and consistent information about the
system, allowing reproducible and reliable analysis of specific system properties to
be performed. In MBD, analysis plays the critical role of ensuring that the models
being built - hence the design decisions being taken — are consistent and satisfy the
system requirements.

Within a given domain or view, MBD is commonly used, such as the use of CAD
tools in mechanical engineering. This report suggests an approach in which the
integration of models from the various design domains is also model-based. By
emphasising the use of tools, models and analysis techniques, this ensures the
explicit documentation of all inter-view design decisions, making it possible to
validate and verify them.

An integrated, model-based, multi-view design environment is also a good basis
for the communication of information between developers, where any conflicts
and misunderstandings between developers are reflected, dealt with and detected
through the models. An integrated environment allows design decisions taken by
one developer to be communicated to the rest of the team in an understandable
way.

We here propose such a multi-view integration approach. In particular, through the
use of a case study, model integration is investigated for the allocation of system
functions onto the implementing hardware architecture. The resulting approach
maintains the principle of hierarchical design within, as well as between the views,
where allocation can be performed across the hardware and function hierarchies.
Rules and mechanisms are developed to ensure the completeness and correctness
of such inter-view design decisions. Additional mechanisms allow a developer
within a given domain to view the other aspects of the system from his/her own
perspective, making view integration a good basis for information sharing. The
developed allocation rules permit the refinement of allocation specifications
performed higher up in the hierarchies, as well as their extensions at the lower
levels.

The next section briefly introduces a small case study that will be used throughout
the paper to exemplify the approach. The meta-meta-model that should be used in
defining a single view of the system model is then defined in section B.3, and
exemplified using models relevant for the case study in section B.4. The section
ends with a discussion on conventional integration mechanisms, highlighting their
shortcomings and defining a set of desired requirements. In section B.5, the multi-
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view integration approach, satisfying these requirements, is suggested and
explained through the case study. Section B.6 presents typical cross-view analyses
that can be performed with this approach, followed by a short description of the
implementations performed in section B.7. A discussion of related work is
presented in section B.8, before concluding the paper in section B.9. Two
typographic conventions are used in this report: (1) [talics are used for the
definition of a term or keyword. (2) Once defined, Letterspacing is used for
most keywords in the remaining parts of the report. This is necessary given the
multi-word composition of some keywords, simplifying their identification in the
text.

B.2. Case Study

The following case study is an extract from a larger effort performed in
cooperation between Scania AB and the Royal Institute of Technology, aimed at
quantitative analysis of architectural design decisions [10].

The original case study deals with the increased design complexity of modern
truck systems accompanying the introduction of software-based functionality in an
otherwise mechanical product. Among other reasons, complexity arises due to the
increased number of functions introduced. More importantly, complexity arises
from the interdependencies between these functions, where functions need to share
common resources such as memory space on Electronic Control Units (ECU), as
well as cooperate with other functions in order to fulfil their expected behaviour.

During the early architectural design of a truck, architects face the challenge of
choosing the Electrical/Electronics (EE) architecture, onto which the system
functionality is to be implemented, taking into consideration and optimising
design parameters or keyfigures such as the resulting cable weights, costs and the
number of weak connection points. Additional aspects of the system design to be
taken into consideration include reliability, available technology, safety, sub-
contractors, etc. The EE architecture of a truck consists of a network of
communicating ECUs of varying complexity. A critical factor that affects
keyfigures is the allocation of system functions onto these ECUs. Different
function allocations provide different performance requirements of the ECUs,
communication bandwidths, and different sets of cable connections between ECUs
for communication.

Evaluating keyfigures and making trade-offs between them is often performed
through qualitative investigation efforts. The aim of the original case study was to
perform quantitative keyfigure analysis, based on accurate models, to guide these
tradeoffs. In addition, the EE architecture and the system functionality are
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currently modelled within one view, reducing the possibilities to easily explore
different allocation strategies without changing the model itself.

In the original case study, a tool was developed which allows the specification of a
hardware and functional architecture, followed by the possibility to specify
various allocation specifications from which keyfigures can be calculated. These
keyfigures become a trade-off basis for choosing the most appropriate allocation
strategy.

In this report, we consider a subset of the complete truck functionality handled in
the larger case study, to illustrate how the two views of the system ought to be
separated and integrated, simplifying the process of function allocation. We
illustrate how our technique of multi-view modelling identifies two types of
concerns to be separated: Intra-view relations specified in the given view’s model,
and inter-view relations that deal with integrating views.

In particular, we focus on the Adaptive cruise control (ACC) function. ACC is a
typical distributed functionality that requires the cooperation of many components
of the system. ACC may be seen as an extension to the conventional cruise
control, where ACC not only keeps the speed but also ensures a given distance to
the vehicles ahead. The ACC is mainly seen as a comfort oriented function,
although it could be seen as the first step towards more autonomous driving. In the
future, this step could be followed by various functions aimed at comfort, safety
and fuel economy. Sections B.4.2 and B.4.3 illustrate models of the ACC
functionality and of the implementing hardware components respectively.

The ACC functionality described in this report is hypothetical and does not
necessarily match that adopted at Scania. In particular, the function specification
has been reorganised in order to introduce a hierarchical specification.

B.3. Single-view Modelling

In representing a given system, the types of properties selected are based on those
properties that the observer or user is interested in and is capable of observing.
Given that a system may have many different users, the set of properties to be
represented needs to be the union of the properties of interest for each of the users.

A single representation covering all the needed properties can be provided. This
solution implies that observers are exposed to properties to which they have no
interest. Another solution is to provide a different view for each of the concerned
observers, onto which the system properties are distributed. Each view of the
system is represented using a single model. This solution allows observers to focus
on the properties of their concerns. A system is hence said to be represented using
a set of models together with their relationships. This definition of the “model”
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and “view” concepts almost agrees with that presented in the IEEE-1471 standard
[1]. While in our definition, views and models form a one-to-one relationship, the
standard defines one-to-many relation, where a view is represented using one or
more models. This set of “models” is grouped into one in our terminology. A
many-to-one relation, where a model is used to represent more than a single view
of the system is not desired, since this would require the need to define which
parts of the model belongs to which view.

B.3.1. The Meta-meta-model

Multi-view modelling generally requires that a certain meta-meta-model is defined
from which the specific models are eventually instantiated [11]. This allows for
many concepts to be reused across all model definitions, and hence facilitating the
integration of these models.

We adopt a simple meta-meta-model which generalises among established meta-
meta-modelling languages such as MoF [11], Dome [12] and GME [4], and based
on a broad survey of modelling languages for embedded computer systems [19].
Since the suggested concepts are very basic and general, it is expected that most
modelling languages can be instantiated using this meta-meta-model. It is
important to note that the main aim is not to suggest yet another meta-meta-model
that claims to cover any modelling language. A simple, generalised meta-meta-
model was adopted, allowing focus to be placed on the view integration
mechanisms.

As further detailed in this section, a model can be generally viewed as consisting
of a hierarchical structuring of elements that may possess properties; ports
defining interfaces to these elements; and relations (such as associations,
inheritance and refinement) between ports. Modelling languages differ in the kinds
of elements that can be specified, their relationships and the kind of properties
they possess. The meta-meta-model is first instantiated to reflect a given meta-
model by defining the kind of elements, ports and relations that will exist in that
particular model. The meta-model is then further instantiated by the user when
defining a specific model for a specific system. Figure 20 shows a graphical
presentation of the concepts discussed in this section.

The main concept that is recurring in most modelling languages and will be
adopted here is composability. In dealing with large complex systems, a system
can be seen as consisting of a set of parts which together, through their
interrelations, describe certain aspects of the system such as its functionality,
structure, etc. These parts are considered systems of their own, which similarly
consist of interrelated parts. This recursive decomposition of the system into its
constituting parts helps in managing and absorbing the complexity of the system,
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where the observer can focus on a part of the system that is of interest at a given
point in time while ignoring the others. Note that decomposition is not necessarily
an intrinsic property of the system, but a technique of perceiving and structuring a
system adopted by the observer to better grasp its details.
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Figure 20. A graphical representation of the general modelling concepts.

B.3.1.1. Elementary and Composite System Definition

A system’s properties are described by an element. An element is a placeholder of
attributes describing the represented system’s (relevant) properties.

For a simple description of an element, the properties can be specified as a set of
attributes. Such a description is known as an elementary element. In defining a
specific meta-model, the model designer specifies different types of elementaries
to describe different types of systems, with each elementary type having a
different set of properties.

When the complexity of the system increases, the use of elementaries becomes
insufficient to satisfactorily specify all properties of interest. It may become
impossible to define properties whose values can be simply specified; there may
exist complex interdependencies between the properties; or the number of
properties set may be too large to handle. For elaborate descriptions, the properties
of the system can be decomposed into smaller, less complex, interacting elements,
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where each element contains a subset of the original system properties. Such a
description is known as a composite element. In relative terms, a composite
element is known as the parent element to each of its composing elements — the
internal elements.

The internal elements of a composite can themselves be either elementary or
composite elements. In this hierarchical decomposition, an element of a system
becomes a system of its own, with its own set of elements and so on. The recursive
decomposition terminates arbitrarily at a certain level once the level of complexity
reached for a part is satisfactory, and the parts can be simply described. The
decision of when an element can be described by a simple set of properties is made
by the designer and reflects his/her mental capabilities and purposes.

Depending on the context used in viewing a certain element, two different
descriptions of the element properties can be identified. If viewing the element as
the parent element containing other elements, then the internal definition (white-
box definition) deals with its complete set of properties, which consists of the set
of internal elements. This definition defines the element as a stand-alone system
and hence needs to be complete irrespective of its surrounding environment. If
viewing the element as a composing element of a larger parent element, then the
external/interface definition (black-box definition) reveals only those properties
that need to be shared with the system environment. From the environment
perspective, this definition is sufficient to know how the element can be used and
related to other elements, while ignoring its internal workings.

B.3.1.2. Element Interface

The interface definition of an element is an extract of the internal definition, and is
defined by a set of ports. A port forms part of the interface of its element and acts
as a placeholder for a subset of its element’s externally accessible properties. It is
through ports that an element interacts with its external environment.

An interaction between elements is described through a relation between their
ports, indicating a certain relationship between the properties specified in the
ports. Two general types of relations are identified: Interface relation and
connection relation.

In order to externally reveal the internal properties of an element, an element’s
port establishes an interface relation to the port of the internal element with the
properties of interest. In figure 20, the interface relation between the ports p, and
p: indicates that the interface properties of the internal element e; are externally
accessible. In relative terms, the port of the internal element is called an interfaced
port of the port of the parent element. The latter is called an interfacing port of the
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port of the internal element. In this way, a port acts as a gate to the internal
properties of its element to which the environment connected to that port gains
access. Each direct interfacing port can have one, and only one, direct interfaced
port and vice versa.

Section B.3.1.1 presented a simplified technique of distributing a composite
element’ properties into elements. However, it is generally not possible to obtain
such independent elements. Certain properties that end up in specific parts need to
be related to other properties in other parts, and relationships need to be specified
between the elements to describe these dependencies. A complete system
description hence consists of its composing elements, as well as the relations
between them. A connection relation is established between two ports of peer
elements, implying a certain dependency between the properties specified in the
ports. (See figure 20 for an example connection relation between the ports p, and
p;3.) The ports with such a relation are called direct connected ports.

We define the equivalent ports of a port to be the combined sets of its interfacing
ports and interfaced ports (as well as itself). Given the definition of an interface
relation, equivalent ports are hence the representations of the same set of
properties of the system. Without any loss of information, an element/system can
be replaced by its set of internal elements, where the interfaced ports of its internal
elements connect directly to the ports which the interfacing ports connect to. This
procedure can be executed down the hierarchy until the view consists of a flat
structure of elementary elements. In other words, the model hierarchy is arbitrary,
based on the needs of the developers.

We define the connected ports of a port to be the set of its direct connected ports
and each of their equivalent ports, together with the direct connected ports of the
equivalent ports of this port. Again satisfying the definition of equivalent ports,
the set of connected ports of a port is the same as that for each of its equivalent
ports.

B.3.1.3. Specifying Port Properties

A port’s properties can be defined either directly (direct properties), or through
one of its equivalent ports (inherited properties). If the port properties are allowed
to be simultaneously defined in multiple equivalent ports, a source of potential
inconsistency between the specifications is created. It becomes necessary to ensure
that all specifications are consistent whenever a change occurs (such as when
creating a new interface relation, or changing the properties in one of the
equivalent ports). Another simple solution is to allow properties to be defined on
only one port among the set of equivalent ports, avoiding duplications of property
definitions and hence inconsistency problems. In this case, once the initial choice
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of the equivalent port is defined, no other equivalent port can be used to define
properties. This condition needs to be checked whenever a new interface relation
between two ports is created, since the ports become equivalent and it is necessary
to ensure that the new set of equivalent ports has only one port definition.

B.3.1.4. General Principles

In the definition of this meta-meta-model, we try to adhere to a few basic
principles:

e An element/system is fully defined by its internal definition, whether it is a set
of properties or a set of consisting elements and their relations. That is, a
system or element is independent of its surroundings. Its properties cannot be
defined based on properties of its peer elements nor its parents up in the
hierarchy. In other words, it should be possible to remove a system from its
current surroundings and place it in another, without changing its internal
properties.

e An element’s internal and interface definitions should be fully specified
through the interface definitions of its direct children elements. In other
words, the element does not need any information about the internal
properties of its children.

These principles are beneficial in many ways:

e The concept that each element is a system of its own is reinforced, since
external changes and reorganisation do not influence that system/element.

e From the user perspective, the concept that the internal elements can be treated
as black boxes with a certain interface is reinforced. There is no need to study
the direct children’s internal definitions in order to define the element’s
properties or to check its correctness, as long as the internal elements are
assumed to be correct. Only the internal elements and their relations are
needed.

e Systems can be built and checked independently and then used as elements
inside a larger system providing a mechanism for building libraries of
reusable elements.

e Constraint rules and mechanisms relating the different modelling entities
(views, elements, properties, etc.) can be applied more locally. For example,
checking the validity of an element’s interface requires only access to the
element’s direct children without reference to other elements in the system or
further elements down or up the hierarchy.
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e Once a change is made to an entity, the reapplication of the rules and
mechanisms to maintain the model validity is also restricted to a smaller local
subset of the system’s direct elements. This permits the implementation of
more efficient dynamic constraint checking mechanisms.

B.3.1.4.1. Inheritance

Inheritance is the mechanism of specifying a property of a system based on other
properties specified elsewhere. It can be viewed as an automation of the manual
specification of properties, in the case where only one choice would have been
available for a valid model.

The inheritance mechanisms should satisfy the principles specified above. For
example, a property of an element can only be inherited from properties specified
by its direct children. A port’s properties can only be inherited from its direct
interfaced port down the hierarchy.

Certain exceptions to the principles specified above may sometimes appear to be
made when setting up inheritance mechanisms. The specification of properties
among equivalent ports is a typical example (see section B.3.1.3). In that case, it
was allowed to specify the port properties at any level among the equivalent ports,
and all other equivalent ports (up and down the hierarchy) simply inherited these
specifications. This can be interpreted as a violation of the above principle. While
it is acceptable to allow the inheritance of the port specifications up the hierarchy
(by step-wise inheritance), the inheritance down the hierarchy from a port to its
interfaced port is a violation since the element specification is no longer
independent of its surrounding environment. In order to satisfy the need that all
equivalent ports have equivalent properties, a strict application of the principles
means that properties can only be specified at the ports of elementary elements.
This solution is however restrictive for the user, and would not be desired.

We hence differentiate between the inkheritance of the properties in the models
which strictly follows the above principles, and the convenience inheritance for
the user which is more flexible. In the case the property is specified at a high level
by the user, this property is actually specified at the equivalent port lowest down
in the hierarchy (There is only one such port since each port can only have one
direct interfaced port). The properties hence become inherited up the hierarchy by
all the equivalent ports. In the case the elementary or any element with an
equivalent port, for example, is taken out of its context, its properties remain
specified as well. In this way, while the simplification is performed for the user,
the model specification still adheres strictly to the above principles.

86



B.3. Single-view Modelling

B.3.1.5. Instantiating a Meta-meta-model

In defining a particular viewpoint (meta-model), the model designer specifies the
kind of elements, ports and relations that exist in any model, as well as the rules
and constraints governing their use. The following need to be specified:

e The set of composite element types, together with their properties.

e The set of elementary element types, together with their properties.

e The set of relation types between element types, together with their properties.
e The set of port types of each element type

e The rules constraining the kind of models that can be built, by constraining the
usage of the above entities.

The choice of these types and constraints is left to the model designer. A common
question arising during such a design is whether some aspects of the system are to
be modelled as elements or relations. It is often the case that, while in certain
models of the system certain aspects are best described as being a part of the
system, in other models they are best described as relations between parts. A
sound indicator of whether something is to be an element or a relation is that
elements are considered systems in their own right and can be further broken down
into subparts, while relations are described through simple properties with no
decomposition.

B.3.2. Formal Notation

A model can be described mathematically using set notation. This will help define
and formalise the rules and conditions for inter-view associations in section B.5. A
summary of the following terminologies and notations can be found in Appendix
A and Appendix B respectively.

A model M, of a certain view, V, is defined as an ordered
setM = (E,P,H,G,Ri,a,Rc,ﬂ), where

e F is the set of elements of view V.

e P is the set of ports of view V.

e H is a binary relation from E to E, denoting the direct parenthood relationship
between element nodes. Considering the parenthood relations between the
element nodes, M is a directed tree, or an acyclic directed graph, where
exactly one node called the root has indegree 0 while all other nodes have
indegree 1 [13].
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Hg{(c,p):ceE/\peE}

e (G is a binary relation from P to E, denoting the containment relationship
between elements and their interface ports.

Gc{(pe):pePrecE}

o R; is the set of interface relations, and o is a mapping from R; to ordered pairs
of P x P, denoting the interfacing relationship between the ports of the parent
element and the ports of its internal elements.

Ruga < {(p.,p;): p. € P A p, € P}

e R, is the set of connection relations, and £ is a mapping from R. to unordered
pairs of P x P denoting the connection relationship between ports.

Rngﬂg{{pl,pz}ipl ePAp, eP}

B.3.2.1. Further Notations

o The direct children of element e, E,.(e), are defined as the set
E,(e)= {c € E:(c,e)eH}

e Element c is said to be a direct child of e if c € E, (e)
e Element p is said to be a direct parent of element c, ezy(c), if (c, p) eH

Notation: p =e,, (€)= (e, p)eH
e The parents of element e, E,(e), are defined as the set

E,(e) = {p ek: (Elel,ez,...,en ek:
(e,el)e H/\(el,ez)e H/\.../\(en,p)e H)}

e Element 7 is said to be a parent of eif ne £, (e)

o The children of element e, E.(e), are defined as the set
E (e)= {c ek: (Elel,ez,...,en ek:
(el,e)e H /\(ez,el)e H /\.../\(c,en)e H)}

e Element 7 is said to be a child of e if n e E,(e)

e Element e is said to a elementary, e/(e), ifE ;. (¢) = &
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Notation: ¢,(e) = E,.(¢)= &
* Element e is said to be a root, e,(e), if £, (e)=2
Notation: e, (¢) < E » (e)=2
e Element e is said to be the containing element of port p, e,(p), if (p,e) eG
Notation: e = e, (p) = (p,e) eG
e The ports of element e, P,(e), are defined as the set
P(e)={peP:(p.c)eG}
e Port p is said to be an port of e if p € P,(e)
e Port n is said to be the direct interfacing port of port p, pu(p), if (n, p) € Rnga
Notation: n = p; (p) = (n,p) € Rnga
e Port n is said to be the direct interfaced port of port p, pa.(p), if (p, n) € Rnga
Notation: n = p,,(p) = (p.n) € Rnga

e The direct connected ports of port p, P,.(p), are defined as the set
P,.(p)= {n eP: {n,p}e Rngﬂ}
e Port 1 is said to be a direct connected port of p if ne P, (p)
e The interfacing ports of port p, P;(p), are recursively defined as the set
B(p) = pa(pP)UP(pas(p))
e Port » is said to be an interfacing port of p if n € P. (p)

e The interfaced ports of port p, P.(p), are recursively defined as the set
P.(p) = pa(P)UP.(pe(p))

e Port » is said to be an interfaced port of p if n e P, (p)

e The equivalent ports of port p, P, (p), are defined as the set
P, (p)=pUPR(p)UP.(p)

o Port n is said to be an equivalent port of p if ne P, (p)
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e The connected ports of port p, P, (p), are defined as the set
Pp)= o Bm)

ner (p) meP,, (n

e Port 7 is said to be an connected port of p if n € P.(p)

B.3.2.2. Model Properties

For a valid model M, the following properties can be asserted:
e H is a function relation since each child has only one direct parent.

e (G is a function relation since each port is only contained within one parent
element.

e Rng is a one-to-one function relation, since each direct interfacing port can
have one, and only one, direct interfaced port and vice versa.

b v(pe’pi)e Rnga’eg(pe):edp(eg(pi))

® Rng # is a many-to-many relation.

o Y(p,.py)eRugpBe, e, (p)))=e,le, (p,))

B.4. Case Study Models

B.4.1. Design and Analysis Views

The different system views can be categorised into design views and analysis
views. A design view is used to model and document the design decisions that the
developers have made, allowing also for the communication of information
between the different developers. Example design views are:

o Function Structure view, describing the functionalities of the system and the
information flow that exists between them.

o Function Behaviour view, describing the behaviour of the system
functionalties.

e Hardware Structure view, describing the physical components of the system,
and their connections.

e Cabling view, describing the cables of the system and the components they
connect.
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e Power Supply view, focusing on the power network of the system.

Unlike design models, an analysis model does not document any design decisions
made, but simply present specific aspects from the set of design models in a
certain way that facilitates the performance of an analysis. So in principle, the
same analysis can be performed given the collection of design models of the
system, but an analysis view condenses the information by only revealing what is
relevant for that analysis. Example analysis views are:

o Timing Analysis view, focusing on the timing aspects of the system behaviour.
e Safety Analysis view, focusing on the safety aspects of the system behaviour.

Analysis models are extracted from the design views. The process can in many
cases be performed automatically; however, there may be cases in which the
analyst needs to take certain “analysis decisions” to perform valid analysis. This
may be the case when the analysis technique used needs a simplified model of the
system and the decision on how to simplify the design models cannot be
automated and require the analyst’s choice. For example, in timing analysis, the
analyst may need to decide which of the two modes of operations of a certain task
to be considered for analysis, if the analysis technique at hand cannot handle
different modes of operations.

In most modelling tools, no distinction is made between these view types. Any
analysis performed assumes an implicit analysis view, not accessible to the user. In
few cases, such as [28], such a distinction is made, where the design data-flow
model is first transformed into a fault tree model onto which safety analysis can be
performed.

In the following subsections, we exemplify our meta-meta-model using two design
views relevant for the case study of section B.2, namely the Function Structure
and Hardware Structure design views. The specification of associated views in
section B.5.1.2 is a step towards the definition of analysis views. It remains
however to ensure that the analyses discussed in section B.6 make use of these
Views.

B.4.2. Function Structure

This section defines an instance of the meta-meta-model - the Function Structure
meta-model, used to specify the structure of the functions to be implemented in a
system. Through the ACC case study, we discuss how this model is used to
describe the structure of vehicle functionality.

This meta-model is very similar to the traditional data flow diagram [14] adopted
in many modern tools such as Matlab/Simulink [15], representing functions as
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well as the required information flow between them. In this case study, we are not
interested in a complete behavioural description of each function, and a structural
specification suffices, since the analysis of interest is not concerned with the
system’s dynamic behaviour. In addition, the links between functions are modelled
as first-class elements of their own, and not simply as connection relations
between functions, since the data flow between functions is of major concern
during function allocation, and it hence becomes necessary to focus the modelling
effort on these links.

B.4.2.1. Elements

Two types of elements are defined: functions and communication links. A function
element designates certain functionality that given a certain input, produces a
certain output. A communication link element designates a link that transports data
between functions.

These element types are arguably similar, taking certain input and producing
output. The difference lies in the intention of each type, which is ultimately
decided upon by the user. A communication link element differs from a function
element in that its main purpose is the data transfer it performs, while its
functionality becomes a side effect. The function element’s main purpose is to
transform its input data to produce some output data, where the transformation is
not seen as a transfer of data (See [16] for a detailed discussion of this issue).

Both elements can be either elementary or composite. In describing simple
systems, the elements can be elementaries, while composite elements can be used
for more complicated descriptions. A composite function element designates an
aggregation of other composite and elementary function and communication link
elements, providing a certain interface to them. A composite communication link
element designates an aggregation of other composite and elementary
communication link elements (but not function elements), providing a certain
interface to them. It is desired to restrict the content of communication links to not
include function elements, since it is argued that communication links should only
model communication between functions, and not contain any functionalities.

B.4.2.2. Element Interface

For function and communication link elements, port properties consist of a set of
data items, where a data item consists of a name, direction (in, out, inout) and type
(int, float, etc.). These data items designate a subset of the element’s internal data
that are externally accessible to other elements.

92



B.4. Case Study Models

Connection relations between ports indicate that the input data of one port is the
output data of the other. Since ports of function elements can only connect to ports
of communication link elements, a connection relation indicates that the connected
port of a function exchanges its data via the connected communication link’s port.
A port connected to more than one port indicates that the data on that port is
transmitted through all of the connected ports.

Interface relations indicate that the related port of the internal element is available
for external interface.

B.4.2.3. Constraints Summary
For a valid model, the following constraints need to be satisfied:

e A connection relation cannot be setup between two function elements.

o The internal definition of a communication link element can only contain other
communication link elements.

e The data properties of related ports should have equal types.

e For a connection relation, the direction of related ports should be opposite.

B.4.2.4. ACC Function Structure Model

Figure 21 illustrates the Function Structure model of the ACC functionality
considered in this report. The model is hypothetical and does not necessarily
match that adopted at Scania. The highest level in the hierarchical decomposition
highlights the control nature of the function, where a control mechanism (Control)
uses certain sensing of the environment (Sensing) to regulate certain actuators that
control this environment (Actuation). In addition, user interaction is described in
the Human Interface sub-function.

e For the purposes of this study, the control algorithm can be simply broken
down into a decision on the specific target to follow (Target Selection), a state
machine (ACC State Machine) to decide on the mode of the function which is
based on user inputs and environment conditions, and a control algorithm
(Distance Control).

e The control algorithm requires the following properties to be measured from
the environment: the vehicle speed (Speed Sensing), vehicle yaw rate (Yaw
Rate Sensing), and the set of nearby vehicles’ speeds and distances (7argets
Sensing). Each such measurement requires some kind of filtering or signal
processing.
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Figure 21. A Function Structure model of the truck ACC functionality.
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e The user interaction functionality can be divided into receiving input from the
user (Operator Inputs), ensuring the validity of any inputs (HMI Logic) and
feeding back information from the system to the user via displays (/nstrument
Cluster).

e The ACC functionality may actuate the Engine, Brake and Retarder of the
truck. Only one of these may be enabled at a time, by requesting a certain
vehicle speed to be achieved. Each such request is further broken down into
lower level control processes (such as Speed Control Retarder, Retarder
Control and Retarder Actuator).

B.4.3. Hardware Structure

This section defines an instance of the meta-meta-model - the Hardware Structure
meta-model. Through the ACC case study, we describe how this model is used to
describe the system’s hardware.

The model of the hardware architecture needs to describe the major computational
units as well as their connections through which data communication is possible.
At the early architectural analysis of this case study, information about the
physical location of these units and their connections is sufficient. The accurate
physical dimensions are of no interest and we resort to a very simplified
geometrical model, specifying approximate unit dimensions. A more accurate
model such as that provided by a CAD model could also have been utilised. This
is not adopted at this stage, since such models would not contribute to our aim in
experimenting with multi-view modelling.

B.4.3.1. Elements

Two types of elements are defined: hardware units and cables. In describing
simple systems, these elements can be elementaries, while composite elements can
be used for more complicated descriptions.

An elementary hardware unit element designates a physical block occupying a
certain amount of space. It is simply modelled as a 3-D square box and its
attributes describe its geometrical dimensions and position. An elementary cable
element designates a single cable with a certain geometrical path. Its attributes
describe its diameter, density, and its spatial path.

A composite hardware unit element designates an aggregation of other units and
cable elements, providing a certain interface to them. Note the abstract nature of
these composites. A composite hardware unit is simply an abstract aggregation of
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a number of physical hardware units and cables, and cannot be viewed as a
physical unit itself.

A composite cable element designates an aggregation of cables. A certain length
of the cables share a common path, while the extremities can be separated, hence
the end-points can have different physical locations. A composite cable is simply a
hierarchical management of a number of independent cables which can, but not
necessarily have to, be physically bundled together.

B.4.3.2. Element Interface

For hardware unit and cabling elements, port properties consist of a set of
coordinate items, where a coordinate item specifies a spatial location at which the
element can be connected to other elements. A port can be used to specify more
than one connection point that can be physically situated in different locations.

Connection relations between ports indicate that the ports’ coordinates are
physically connected to each other. That is, the connection points of the two ports
have the same spatial position. A port connected to more than one port indicates
that all connected ports share the same spatial location.

Interface relations indicate that the port of the internal element is available for
external connections.

B.4.3.3. Constraints Summary
For a valid model, the following constraints need to be satisfied:

e A connection relation cannot be setup between two ports of hardware unit
elements.

e The internal definition of a cable element can only contain other cable
elements.

e The connection point properties of two connected ports should have equal
values.

B.4.3.4. ACC Hardware Structure Model

Figure 22 shows the complete Scania EE architecture needed to implement the
complete functionality set of a truck. The hardware architecture is based on the
Controller Area Network (CAN) protocol, with three buses separated by an ECU
unit that also acts as a gateway between them. The gateway unit (COO) features
some software functionality apart from the role of a gateway. ECUs with different
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levels of system criticality are separated by being placed on different buses. The
Red bus has ECUs with the highest criticality; ECUs on the Yellow bus are
estimated to have intermediate criticality; and the ones on the Green bus have the
lowest level of criticality.
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Figure 22. Scania EE architecture

Figure 23 illustrates a subset of the hardware architecture relevant for the case
study considered in this report. This Hardware Structure model is hypothetical and
does not necessarily match that adopted at Scania. Additional components such as
the AICC hardware unit were added to suit the case study. Moreover, components
such as sensors and actuators are also defined, providing a more complete
hardware specification. The original model is restructured to provide a hierarchical
representation. For example, the powertrain management system (PTMS) is
introduced to group the engine and gearbox management systems (EMS and
GMS). The naming of the ECUs is adopted from the original Scania architecture of
figure 22. It would be desired to avoid such naming in the future, since the names

are misleading and imply certain functionality, causing bias in the allocation
process.
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Figure 23. A Hardware Structure model of the truck ACC functionality.

B.4.4. Requirements on View Integration

By specifying the function and hardware architectures as the system’s two separate
views, the allocation of functions to hardware units and communication links to
cables becomes a design decision that lies in between these two views. This
allocation step can obviously be treated in a view of its own, with its own model,
but as it only deals with relationships between entities of other views this is not
needed. Instead the two views can be integrated making use of inter-view
relationships.

The simplest and most common solution for integrating views is to flatten the
hierarchical structure in either one or both views before inter-view relations are
specified. Assuming that both of the views described in section B.3 are flattened,
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leaf (elementary) functions would be allocated to leaf hardware units. This method
obviously fails to make use of the complexity management advantage provided by
the hierarchical models during the allocation step. A number of related
shortcomings of the method can be identified: Since only leaf entities are related,
the context of these, given by their respective hierarchies, is lost during the
allocation process. Furthermore, it is difficult to make early coarse design
decisions and it becomes necessary to have detailed knowledge about both the
particular function and hardware elements by any person performing allocation.
Also, if an allocation has been specified and a function is later further decomposed
into sub-functions, during a refining design stage, the already existing allocations
are lost. In summary, the inter-view allocation is unnecessarily affected by intra-
view design changes. All these arguments hold also for the case when only one of
the two views is flattened.

Forcing allocation to be done on a leaf level will make the allocation sensitive to
changes in either of the two views. What would be desirable is to integrate the
different views in a way such that they can both be developed as independently as
possible, without affecting the wvalidity of an already chosen allocation.
Furthermore, since designers work on different levels of detail in potentially very
large systems, one would like to allow allocation decisions to be made on an
arbitrary level in the hierarchies. Any decision made would need to be reflected up
and down the system hierarchies. This also means that the designer can start with
performing rough allocations of a group of functions to a group of hardware units,
and then refine the choice down the hierarchy.

Another common approach to view integration is to setup the relationships
between the different views based on an import mechanism, where the user in
essence maps a complete model into another. Such a mechanism creates a
precedence relationship between the views, where one view needs to be first fully
developed before the other. In addition, any changes made to the source model are
not reflected in the destination until the next transformation is performed, causing
inconsistencies between the models. This approach inhibits the possibility of
concurrent development between disciplines.

One can also assume a primary view under which the other view is defined. For
example, the hardware view can be first defined, and then the functions are
distributed over the hardware structure, where each function definition is specified
under the hardware units to which it is allocated. This in essence creates a single
model structure for the system views. Again, precedence relationship between the
views is created, inhibiting concurrent and independent development of the views.

In summary, a model-based view integration environment should satisfy the
following:
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¢ One view — one model. Preserve the need for a single model for each view of
the system since, in most cases, a model user needs only to concentrate on a
single aspect at a time.

e Allocation is inter-view and not intra-view information. It should therefore
not lie in either view, but across views.

o Preserve the hierarchy. The inter-view relationships between hierarchically
decomposed views should be performed across the hierarchies of the views,
independently of the two hierarchies.

o Independence between the hierarchies. The choice of hierarchical
decomposition within one view should be independent of that specified in
another view. Since hierarchy is a tool used to reduce the complexity
perceived by a given stakeholder, the use of this tool should not be
compromised by the complexity needs of other stakeholders.

e Concurrent development. A view development should be performed
independently and concurrently of the other views. Each discipline should be
able to work independently, yet support for a holistic view should be
provided. No precedence should exist in the development of the views.

B.5. Two-View Integration

Similar to the argument in section B.3.1.2, the properties in the different views
may be interdependent and hence the multi-view solution is accompanied by the
need to setup relations between the views.

To differentiate relations between properties within a view from relations across
different views, we refer to the latter as associations between properties, while
relations hereafter only refer to the former.

This section discusses the mechanisms needed to establish these associations
between views for the particular case of integrating a Function Structure with a
Hardware Structure view. While these mechanisms are not general enough to be
adopted for any kind of inter-view associations, it is believed that they can be
easily reused for the mapping of system functionality to the software architecture,
or software to hardware allocation. Essentially, the mechanisms can be generalised
with little effort to any inter-view information that implies a “implemented by” or
“allocated to” relationship. It remains however to test this claim through other case
studies in the future.

Setting associations between properties is practically performed through property
placeholders, namely elements and ports. Section B.5.1 presents such relationships
between elements, and section B.5.2 deals with relationships between ports.
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B.5.1. Element Associations

Associating an element in one view to another element in a second view has
different implications, depending on the particular views and elements involved.
Concerning the case study, the following rules apply when associating elements
between the Function Structure and Hardware Structure views:

e Function and communication link elements from the Function Structure view
can be associated with hardware unit elements from the Hardware Structure
view, indicating that the functional element is physically implemented in that
unit.

e Communication link elements can be associated with cable elements,
indicating that the communication mechanism designated by the link is
performed through the cable.

Associations can be specified between any function and hardware elements,
irrespective of whether they are composite or elementary.

Note that an association of a function, £, to a hardware unit, 4, does not necessarily
mean that the complete function f'is implemented on the complete unit /, nor that f
cannot be implemented by other units as well. Instead, the association simply
implies that some of the f functionality is implemented on some of /4’s hardware.
The remaining f functionality may (or may not) be implemented by other hardware
units; similarly, the remaining 4 hardware may (or may not) implement other
(parts of) functions. This interpretation is important when understanding the
element association rules in the following subsections.

When performing design decisions across views, designers would at a given time
want to focus on specific parts of the system, at a certain level of abstraction,
without being concerned with more detailed design decisions. For example, a
designer may wish to specify that the brake system is to be implemented on a
certain group of processors, without needing to specify in detail which specific
brake sub-functions is to be allocated to which processor. Such a decision can be
further refined by others or at a later stage. Conversely, the more detailed
allocation design decision of a particular function to a processor must be reflected
to the high level functions containing it.

In addition, to satisfy the requirement that views should be developed
independently, it is necessary to allow associations between elements of different
views to be made across the hierarchy. In other words, an element in a certain
view, at a certain depth in its hierarchy is not restricted to be associated to
elements in the same depth in another view, instead it can be associated to any
valid element throughout the hierarchy.
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However, consistency between the high level and the lower level design decisions
needs to be maintained. This can be realised by specifying that: A function
implemented on a certain hardware unit means that it is also implemented by
hardware units containing this hardware unit. Conversely, a unit implementing a
certain function, means that this unit also implements (part of) functions that
contain this function.

The following subsections discuss how such cross-hierarchy associations ought to
be interpreted and managed in order to satisfy these needs.

B.5.1.1. Associated Elements

We define the following, for associations between elements from view V, to view
Vi

e The direct associated elements of element e, in view V), Ay(e,, V), is defined
as the set of elements in V), directly associated by the user on element e,.
Direct associations are bidirectional meaning that if e, is associated to e,, then
e, is also associated to e,. See section B.5.1.3 for conditions for such a valid
set.

e The inherited associated elements of element e, in view V,, Aie,V,), is
defined as the set of topmost direct associated elements of e,’s children,
excluding those which have already been defined, or generalised, through the
direct associated elements of e,, A4(e,, V).

4;(e.,V,) :{a € nebECJe‘. Ad(n,Vy):(—Eim €

) Ad(n,Vy):meEp(a))/\

nek, (e,

(—EImeAd(e Vv ):meEp(a)vmza)

X2 y

e The associated elements of element e, in view V), A,(e.V,), consists of the
union of its direct associated elements and its inherited associated elements.

A,(e,. V) = Ale,. v, U4, (e,.7,)
Note that the above definitions are specified so that 4, (ex SV, )ﬂ 4, (ex WV, ) =J.

The associated elements, A4,(e,V,), can be interpreted as the result of a filter
applied onto the associated view V), in which only the elements associated to e,
and additional associations specified at the more detailed levels are considered.

In figure 24, the COO hardware unit is directly associated to the Main Controller
and Operator Inputs functions,
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A, (COO,V g )= {Main Controller,Operator Inputs}; where Vg denotes the
Function Structure view.
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Figure 24. The direct associations of the hardware unit COO, as well as some of
its child units ECU, Clutch Sensor and Throttle Sensor. The associations from
ECU to ACC State Machine and Distance Control specialise that specified to Main
Controller.

Furthermore, the sub-function HMI Logic is associated to the ECU unit of COO.
The association between the ECU and HMI Logic indirectly implies that the COO
unit also implements HMI Logic. HMI Logic is said to be an inherited associated
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element of COO, Ai(COO,VFS)z{HMI Logic}. In integrating these design

decisions from the various levels, the COO is to (partly) implement the Main
Controller and Operator Input functions, as well as HMI Logic,
A,(CO0 V)= {Main Controller,Operator Inputs, HMI Logic}.

In refining the above design decisions, the direct association between COO and
Main Controller can be further refined by directly associating the ECU hardware
unit to the ACC State Machine and Distance Control functions. This association
implies a more detailed specification of the allocation of the Main Controller’s
functionality to specific hardware units. The associated functions are not
considered as inherited associations to COO, since they specialise an already
existing association, namely the parent Main Controller. In a similar refinement
step, Clutch Pedal Sensing and Throttle Pedal Sensing are associated to the Clutch
Sensor and Throttle Sensor sub-units respectively.

Finally, the allocation of functions to COO is not considered complete in this case
since the allocations to its remaining sub-units (the sensor cables) still need to be
specified (see section B.5.1.7 for a discussion on completeness conditions).

As a consequence of the above association definitions, if e, is associated (directly
or indirectly) with the elements e, e, .... e,, then e,’s children will in effect only
be associated with e;, e, .... e,, or any of their children. As soon as a child of ¢, is
associated with an element that is not in this set, this element also becomes an
associated element of e, (unless its parent already is), and hence the above rule still
applies. In other words, the children of e, can either specialise (refine) the parent’s
associations, or extend them; the propagation of the extended associations up the
hierarchy have the same effect as specialisation.

Allocation is strongly related to the design process and can of course be carried
out in different ways. The above mechanisms support a process-independent
allocation practice. By placing certain restrictions, the allocation practices can be
constrained. For example, disallowing the possibilities for association extensions
through the sub-systems enforces a top-down approach, where sub-system design
can only refine design decisions specified at the higher level.

Given the above definitions, in order to deduce the A,(e, V) set, one needs to
consider the 4, set of all the children of e, down the hierarchy. The 4; set of the
children can be ignored since these will be reflected anyway by other children
down the hierarchy. However, as specified in section B.3.1.4, it would be desired
to establish 4,(e,, V) by only considering e,’s direct children.

As proved in Appendix C.1, 4;(e,, V,) can be redefined in terms of e,’s direct
children only as follows:
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A, (e, Vy) = {a e U A, (n, Vy ){—Elm IS Eu A, (n, V}, )m IS Ep (a)j A

nek, (e,

(—EimeAd(ex, y)'meEp(a)vmza)

B.5.1.2. Associated Views

As argued in this paper, a system model consists of a set of views. An element in
the system hierarchy is also considered a system of its own, and hence its
description would need to consist of a set of views. One such view is its internal
view which consists of its composing elements. The other views are constructed
from the associations made to that element.

We define the associated view V), of an element e, in view V,, to consist of the
elements from view V), that are associated to element e, (taken across the whole
hierarchy of V). The elements from view V), are also said to be in the V), view of
e,. An associated view of the element is a subset of that view for the complete
system since the element is only part of the system.

The views of an element are hence its internal view, as well as the set of associated
views. This reinforces our concept of system decomposition into small systems,
which themselves have multiple views. The designer of that element need only to
look at these views for the analysis of the current status of the design since they
summarise all the decisions made so far. However, in extending or specialising
these decisions, the designer needs access to the complete views.

Considering the earlier example shown in figure 24 and assuming that COO (or
one of its children) is further associated with the Clutch Pedal, Throttle Pedal and
the User Inputs (of both Truck and Human Interface functions) communication
links, figure 25 illustrates the Function Structure associated view, as well as the
internal view (Hardware Structure) of COO.

Given the independence of the views, a user can choose to focus on a single view
of the whole system and ignore all references made to other views, giving a single
perspective of the whole system. On the other hand, a user can take an element
with all its internal views and treat it as a complete system with many views.

The relations between the associated elements are also included in the associated
view. If two ports of two elements that are in the associated view of e,, have a
connection relation between them, then this connection relation is also in the
associated view V) of e,. In the example of figure 25, the direct connection
relations between the ports of Operator Inputs with Clutch Pedal and Throttle
Pedal communication links are included in the associated view. Note that
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connections between ports can be indirect, which is the case when the ports belong
to elements in different parts of the V), hierarchy. For example, in figure 21, the
indirect connection between the port of Main Controller and the User Inputs
communication link is included in the associated view.

ecomposition/ Associated Vii
Internal Definition\ \(Function Structure)
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Figure 25. The views of the COO hardware unit, consisting of its internal
(Hardware Structure) view, as well as the associated Function Structure view.

In the case where there exists a connection relation between two ports and only
one of the ports is in the associated view of an element e,, then it is necessary to
indicate that such a connection is missing. This is shown by connecting the
existing port to an associated view interface port, to indicate that the port needs to
connect to other external ports that do not exist in the current (associated) view. In
figure 21, an Operator Inputs’s port is connected to the Brake Pedal
communication link, yet Brake Pedal is not in the associated view, hence the port
is shown as an associated view interface port in figure 25.

The associated view ought to be automatically constructed. Such a mechanism
allows a developer to view information in alternative views from its own
perspective, defined by its source view (V,), at a given point in the hierarchy. Note
that the elements, ports and relations shown in the associated view V) of an
element e, are a duplication from the complete view V). Changes to these elements
are reflected in the complete view V). Alternatively, an associated view is only
used for visual purposes, and no information ought to be specified in that view.
The elements, ports and relations are then considered as ‘clones’ of the real ones.
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B.5.1.3. Validating Element Associations

Naturally, not all associations between elements in different views are permitted.
Certain restrictions, which depend on the currently established associations, are
imposed.

For element e, from view V to be directly associated to element e, in view V), the
following conditions need to be satisfied:

e ¢, is not a child of one of the direct associated elements of one of e,’s children.

e Neither e, nor any of e,’s parents or children is already directly associated
with e,.

The first condition ensures that associations are specialised down the hierarchy,
and that associations do not ‘cross-back’ up the hierarchy. Referring to figure 24,
given that COO is directly associated to Operator Inputs, it is not possible to
specify a direct association between ECU (a child of COO) and Human Interface
(Operator Input’s parent).

The second condition ensures that direct associations cannot be made to an
element as well as its children or parent. Referring to figure 24, given that COO is
directly associated to Operator Inputs, it is not possible to specify a direct
association between COO and Pedals nor Clutch Pedal Sensor (Children of
Operator Inputs down in the hierarchy), nor Human Interface (Operator Input’s
parent).

Formally, the conditions are represented as follows:

(EP (ey )ﬂ neb&f(e‘)Ad (n’ v, ) = @j
A (ey g A, (eX,Vy ))
AE e, )N 4,e.7,)=2)
n (Ec (ey)ﬂ Ad(ex ’Vy) - @)
As shown in Appendix C.2, this can be simplified to
(Ep (ey)n 4 (eX’Vy): Q)
Aoy e 4,(e.7,)
rELe, )N 4ier,)=2)
Direct associations are bidirectional meaning that if e, can be associated to e,, then

e, should also be associated to e,. To ensure that this condition is satisfied, the
validity check becomes:
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B.5.1.4. Associating Elements

It may sometimes be desired to find out what elements in view V), have element e,
as an associated element (direct or inherited). An example of such a need is found
in the analysis of section B.6.1.3. We define the associating elements of e, in view
Vi, Adles, V), to be such a set. Mathematically, Au (e, V) is represented as
follows:

Aa[(eX,Vy)z {e}, €k, e € Aa(e v )}

yolx
Where E, is the set of elements in view V.

Recall that if e, is an associated element of e,, it is not necessarily the case that e,
is an associated element of e, unless e, and e, are directly associated.

Now, rather than searching the entire set of element in V), we know that the
associating elements of e,, Au(ey, V), are constrained to the following subset:

e The elements that have e, as a direct associated element, 4,(e,, V;) (which are
the direct associated elements of e, due to the bidirectionality of element
associations).

o For each of the above direct associated elements, their parents up the hierarchy
that are also associated to e,. That is the parents up until, but not including,
the parent that is associated to a parent of e,.

The associating elements of e, in V,, A, (e, V,), can hence be rewritten as:

A,(e V) =4, (ex,Vy)U{n € meA:(é ,V,.)Ep (m):e, e A,(nV, )}

For example, in figure 24, the associating elements of Clutch
Sensor, A,; (Clutch Sensor,V ) , consists of the Clutch Pedal Sensing element (its

direct associated element), as well as the Pedals element (the direct parent of
Clutch Pedal Sensing). However, the parent Operator Inputs is not an
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associating element to Clutch Sensor, since it is associated to the parent of
Clutch Sensor, namely COO.

B.5.1.5. Existence in the Associated View

If neither the element e,, nor any of its children, have been associated to any
element in view V), element e, is defined to be not exist in associated view V,,
since from the perspective of view V), element e, simply does not exist.

Element e, is said to be exist in associated view V,, an(e, V), if
(Ad (ex,Vy);t @)v (Eln €E.(e,): 4, (n, Vy);t @)

As shown in Appendix C.3, this is equivalent to
4l v, )@

Notation: a,,(e,,V,) < 4,(e,,V,) # D

For example, consider the association between Target Sensing and the AICC
hardware unit shown in figure 26, noting that none of the children of Target
Sensing are further associated. In this case, Signal Processing is considered to not
exist in Hardware Structure associated
view,—a,, (Signal Processing,V ), since it is not associated to any elements in

Vs, A, (Signal Processing, Vs )=@ (Vus denotes the Hardware Structure view).

Note that if an element e, does not exist in associated view V), then none of
its children can either, since otherwise the associated elements of e, would not
have been empty in the first place.

—a,, (ex,Vy) =VnekE.(e):—a, (n, VV)

B.5.1.6. Elementary in Associated View

If the associations of a given element e, are not further specified by its children,
then the element is treated as elementary with respect to the associated view V),
since it is not possible to further specify the details of the internal elements’
associations. In other words, from the perspective of the associated view V), the
internal elements of e,, whether e, is elementary or composite, are not relevant.

We define an element e, to be elementary in associated view V,, ay(e,, V), if none
of the children of e, is associated with any elements in view V), (in other words,
none of the children exist in the associated view V)), yet e, has associations
with at least one element in V),
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(Vn eE, (ex):—mzxv(n,Vy ))/\ A, (ex,Vy)i %)

As specified in section B.3.1.4, it would be desired to define ay(e,, V) in terms of
the direct children of e,. The above condition can be rewritten as:

(Vn cE,le,): —wzxv(n,Vy ))/\ A, (ex,Vy)i %)

Since (Vn cE.e):—a, (n, v, ))E (Vn cE,le,):—a, (n,Vy )) as shown in
Appendix C.4.
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Figure 26. Element association between the Target Sensing element and the
AICC hardware unit.

Note that the definition of e, as elementary in associated view is only
appropriate in the case where e, exists in associated view V).

Notation: a,,(e,,V,) < ((Vn ek, (ex ) Day, (n, v, »/\ A4, (ex v, ) # @)

In figure 26, the element Target Sensing is considered to be elementary in
Hardware Structure associated view,a, (Target Sensing,V,), since none

110



B.5. Two-View Integration

of its children are further associated. On the other hand, in figure 24, the element
Operator Inputs is considered to be not elementary in Hardware Structure
associated view, —a, (Operator Inputs,V s ), since some of its children, such

as Clutch Pedal Sensing, are further associated.

B.5.1.7. Completeness Condition

The element association validation checks (section B.5.1.3) ensure that no invalid
associations between elements are introduced into the model. However, a given set
of valid associations is not necessarily complete, and completeness needs also to
be ensured before any analysis of models can be performed. See [17] and section
B.6 in this report for a discussion on correctness and completeness.

A feature of the approach described in this report is that associations between
elements from different views need not be performed all the way down to the
elementary level. For example, in the case where a composite function is to be
completely implemented within one hardware unit (composite or elementary), it is
sufficient to specify the association between the function and the implementing
hardware unit. All sub-functions are implicitly implemented by the same unit. In
the case where the hardware unit is a composite, one does not know exactly which
sub-unit is to implement which sub-function. This can be considered as a
conscious design decision, where, for example, more detailed design is performed
externally by a sub-contractor. Nevertheless, the specifications can be considered
complete for this function. However, if the association is further refined by one of
the sub-functions, it becomes necessary to further specify the allocation of the
other sibling sub-functions for a complete specification.

In the example of figure 24, the allocation to the COO hardware unit is specified,
yet only some of its sub-units (ECU, Clutch Sensor and Throttle Sensor) further
specialise this mapping while the mapping of the sub-cables (Sensor Cable 1 and
Sensor Cable 2) is not specified. This is hence considered an incomplete allocation
specification of COO, and needs to be dealt with before any analysis can be
performed. A completion of the specification can for example be performed by
allocating the Clutch Pedal and Throttle Pedal Communication links (direct
children of Human Interface) to these sensor cables.

So, while associations established at the children of an element are appropriately
inherited upwards in the hierarchy, associations established at the element can be
regarded as requirements on further refinement or specifications of these
associations by the children. If the latter associations are not established, the set of
associations may be considered incomplete since it cannot be worked out how to
further specify the associations on the children elements.
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A prerequisite to be able to check for the completeness of associations of an
element e, in view V), is that the element e, exists in associated view V),
aw(e., V). Furthermore, the condition for completeness differs, depending on
whether e, is elementary in associated view V) or not.

If e, is elementary in associated view V), then e, is defined to be completely
associated in V,, ac.(e,, V).

If e, is not elementary in associated view V), e, is defined to be
completely associated in V), ac(ey, V), if the following conditions are true:

e Each of e,’s direct children exists in associated view V.

e For each of e,’s associated elements,e, € 4, (ex, v, ), at least one of e,’s direct

children has e,, or any of its children, as an associated element.

The first condition ensures that if one of the children of e, exists in associated
view V, (which is the case since e, is not elementary in associated view
V), the other children need also to exist in associated view, since it has been
established that further refinement of e,’s associations need to be performed, and
hence we need to specify each of the children’s role in this refinement. The
example given above illustrates the need for this condition.

The second condition ensures that any association specified for element e, is
further refined by its children. Considering the example of figure 24, and assuming
that the sub-units Clutch Sensor and Throttle Sensor are not associated to Clutch
Pedal Sensing and Throttle Pedal Sensing, then COO is not considered
completely associated, since its associated element Operator Inputs would
not have been specialised by any of COQO’s direct children.

Note that the conditions above are based on the direct children of element e,. A
precondition for these conditions is that these children have complete associations
themselves, which can be specified as a third condition for complete associations.

Formally, if e, is not elementary in associated view V), e, is said to be
completely associated in V), acfey, V), if:

Vne Edc(ex): aca(n,Vy)
AVne Edc(ex): axv(n,Vy)
AVne Aa(ex,Vy): Ame E,le,): (Aa (m,Vy)ﬂ (nUE,(n))= @)
Note that the association completeness of e,, does not imply the association
completeness of e,’s associated elements, 4,(e,, V). It may be desired to reinterpret

the definition of complete association to include the completeness of its associated
elements as well. In this case, the following condition is added:
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Vne Aa(ex,V ): am(n,Vx)

y
The condition becomes:
Vnek, (ex ): a, (n, Vy)
AVne Edc(ex): axv(n,Vy)
AVne Aa(ex,Vy): Ame E,e,): (Aa(m,Vy)ﬂ(n UE,(n)# @)

AVne Aa(ex,Vy):aca(n,Vx)

True if a,(e.,V,)

‘v’neEdc(ex):aw(n,Vy) if—wt,v(ex,Vy)
Notation: a,,(e,,V,) <A Vne E, (e,):a, (n,Vy)
AVne Au(ex,Vy): dm e Edc(ex):
(4,(m.7, )N (1O E.(n) @)
AVne Aa(ex,Vy): aca(n,Vx)

B.5.1.8. Refined Associated Elements

The associated elements set of an element e, is based on the direct associations
established on that element by the user, as well as any associations inherited from
e,’s children.

The associated view, V), of element e, based on these associated elements, 4,(e,,
V), provides a fairly high level description of the associations since any refined
associations from the children of e, are not apparent in this view, in the case where
a more general association exists.

Given that the children’s associations actually refine the associations of e,, it may
be of interest to determine the most refined set of associated elements of e,. In
many cases, only certain children of a specified associated element are effectively
associated to e, (as specified by its children), while other children are associated to
another element. This set is referred to as the refined associated elements of e,. It
differs from associated elements in that it provides a finer grain set of associated
elements. An associated view based on this refined associated set defines a more
detailed specification than the associated view as specified in section B.5.1.2.

A prerequisite for establishing the refined associated elements of e, in view
V,, is that e, is completely associated in V), ac(e, V). Furthermore, the
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refined associated elements set of e, differs depending on whether e, is
elementary in associated view V), or not.

If element e, is elementary in associated view V), therefined associated
elements of e, in V), 4,4(ey, V), is defined as e,’s associated elements.

Al 7,)=4,(e.7,)
If element e, is not elementary in associated view V), the refined
associated elements of e, in V), 4,.(e, V,), is defined as the union of the
refined associated elements of e,’s direct children, excluding those which
have at least one child in the set as well.

Am(ex,Vy)z{ae

u( )Am (n, Vy): (—Elm € neEk:,(ek,)Am (n,Vy ): mek, (a))}

neky (e,
A, (ex,Vy) if alv(ex,Vy)
Notation: 4,, (ex v, ) = {a € Eu( )Am (n, v, ): if —a,, (ex , Vy)
(_‘Elme EU )Am(n’Vy):mEEC(a))}

For example, in figure 24, assuming that COO is completely associated as
suggested in section B.5.1.7, the refined associated elements of the COO
hardware unit, 4,,(COO,V ), consists of Clutch Pedal Sensing, Throttle Pedal

Sensing, ACC State Machine, Distance Control and HMI Logic elements. More
elements belong to this set since COO and its children are associated to elements
not shown in figure 24.

B.5.2. Port Associations

Similar to associations between elements, associations can be specified between
the ports across the views. Concerning the case study, in the allocation of
functions to hardware units, the association of a function port to a hardware port
indicates that the functional communication occurs physically through that
hardware port.

For a given element, the association between ports of different views occurs
between the element’s ports (its interface definition) and the interface ports of the
associated view (described in section B.5.1.2). For example, in figure 27, the COO
hardware unit has three ports in its interface definition connecting to each of the
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CAN buses, while its interface in the associated Function Structure view consists
of 13 associated view interface ports. So, the function ports of its
associated functions (such as port p; of element Operator Inputs and port p, of
element HMI Logic) need to communicate with their connected ports via one of
the three hardware ports.

ecomposition/ Associated Vii

Internal Definitios (Function Structure)
e e
Sensor' 44 %4 . o pom
Sensar Cable 1% =
— ECUF F1-C00 Pig-a w4 HM g I
rettlE —= 4 Oparatar Throtile Fedal Logio User g
- Inputs, pts -0
NGRS — PP wag 0 § :
Sensor Cable 27 —=2 Loy o4 7 Ueer -0
[%-1)
o % contraller $4
.
- “
02

Figure 27. A reproduction of figure 25, highlighting certain port names in the
associated view of COO, such as p, of the HMI Logic element.

The associated ports of port p, in view V), 4,(p., V,), is defined as the set of
associations to ports in V), directly specified by the user on port p.. Port
associations are also governed by certain validation and completeness rules. These
will be discussed in detail in sections B.5.2.2 and B.5.2.3. In addition to these
rules, the following constraint applies for a port p, (from the Function Structure
view) to be associated to port p;, (from the Hardware Structure view):

e pscan be associated to a maximum of one port from the Hardware Structure
view. However, p, could be associated to any number of ports from the
Function Structure view, indicating that more than one communication occur
through that same port py,.

B.5.2.1. The Associated View Interface

As discussed in section B.5.1.2, when viewing the associated view V), of an
element e,, the relations between the associated elements are also included in V. If
two ports of two elements that are in the associated view of e,, have a connection
relation between them, then this connection relation is also in the associated view
V, of e,.

In the case where there exists a connection relation between two ports and only
one of the ports, p,, is in the associated view V), of e,, then p, is said to be not all
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connected ports associated in e,. To indicate that p, needs to connect to other
external ports that do not exist in the associated view ¥, of e,, p, is connected to an
associated view interface port. If all the connected ports of p, are in the
associated view, then p, needs not interface to any element not associated to e,,
and hence needs not be related to such a port.

We define a port p, to be all connected ports associated in element e,,
Acpa(py, €x), if all its connected ports, P.(p,), (or one of their equivalent ports) have
their containing element associated to e,.

It suffices for one equivalent port of each of the connected ports of p, to exist in
associated view, since a connection to this port implies a connection to all its
equivalent ports. A single port from a set of equivalent ports can exist in
associated view, given that an associated view cannot contain an element as well
as its parent or child element.

Notation: acpa(py,ex) S (Vpc ePC(py):EIpe ePeq( c)3eg(l’e)€ Aa(ex,Vy))

For example, considering the associations in figure 27, port p, of element
Operator Inputs, p; operaiormpusss, (W€ denote port p, of element y as p,)) is an all
connected ports associated in element COO, a COO), since

all its connected ports, (the port of the communication link Throttle Pedal) have
their elements also associated to COO. On the other hand, port p3 operatorinpuss 15 nOt
an all connected ports associated in element
COO, —a COO), since a connected port of p3 operatormpuss, the port

of the communication link Brake Pedal (see figure 21), does not have its element
associated to COO.

cpa V4 2,0peratorinputs >

cpa (p 3,0peratorilnputs >

A precondition to be able to define, a.,.(p,, e,), is that the containing element of p,
is an associated element of e,.

e(p,)edle.7,)

B.5.2.2. Port Association Validity Check

In this section, we will incrementally deduce the validity condition for port
associations.

First, for a port p, (of containing element e,) to be associated to port p, (of
containing element e,), the following conditions need to be satisfied:

e ¢, is an associated element of e,.

e p,isnotanall connected ports associated in the element e,.
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The first condition simply ensures that the second condition can be validly
performed, as required in section B.5.2.1. The second condition ensures that the
interface ports of element e, are associated to ports that need to connect to other
external ports that do not exist in associated view V) of e,. An all connected
ports associated port needs not interface to any element not associated to e,.

Formally, the condition is represented as follows:
g (py)e Aa(ex’Vy)A T epg (py’eg(px))

For example, considering the associations in figure 28, port p, .., can be associated
to port P2 DistanceControls Since:

e The containing element of p,.. is associated to the containing element of
P2.DistanceContro, ECU € A, (Distance Control,V ¢ );

e And, ps.., is not an all connected ports associated in element Distance
Control, —a,,, (pz,m , Distance Control ) This is true since the connected port

Of P2 ccus P1.Sensorcanie2, 18 N0t in the associated view of Distance Control.

Similar to element associations, port associations are bidirectional meaning that if
P, can be associated to p,, then p, should also be associated to p,. To ensure that
this condition is satisfied, the validity check becomes:

(eg (py)e Aa (eX’Vy)/\ T epg (py’eg (px )»
A (eg (px)e 4, (ey’VX)/\_‘aczm (pX’eg (py )))

In the example above, with a similar argument, we can deduce that port
D2 DistanceControl €N also be associated to port p,..,. Hence, the association between
p2,ecu and p2,DistanceControl remains Valid-

Note however that, since elements are associated and inherited across the various
hierarchies, it often occurs that element e, is associated to e,, yet e, is not
associated to e,. Hence, guaranteeing the condition for p, is no guarantee for p,.
The condition may not even be possible to test for p, if port p,’s element (e,) is not
associated to e,.

For example, COO is in the associated view of Control by inheritance. Hence
D3.coo can be associated to D1 Control since
COO€e 4, (Control, Vs ) A= g (p3_m,C0ntrol ) However, p;comror cannot be

associated to p; .., since Control ¢ A, (COO, Vs ) Hence, according the condition
above, p; ... cannot be associated to p; conror and vice versa.
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Figure 28. A reproduction of relevant parts from figure 24, focusing on specific
direct associations of the hardware unit COO, and its child unit ECU.

The above example illustrates the case where port p, is not an all connected
ports associated in e, (satisfying the first part of the condition), but p, is not
even associated to e, (failing the second part of the condition). Hence, p, and p,
cannot be associated.

But, in many cases, there may exist an equivalent port of p,, p.., which is not all
connected ports associated in the associating element e,. In this case, p,
should be associated to p,, while p,. is associated to p,.

To allow such associations, the validity check changes to become:
e, (py)e A4, (ex, Vy )/\ g (py,eg (px ))
A Eipx/e € Peq(px):
eg (p)c/e)E Aa (ey’Vx)/\ _'acpa (px/e’eg (py ))

With this new condition, and considering the earlier example, p;., can be
associated to p;comor (as argued earlier). In addition, the equivalent port of
D1,Controls  P2,MainControllers can  now  be associated  t0  P3co0
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since Main Controller € A,(COO,V s ) A g (pz‘ MamComm,,er,COO). Hence, p3.coo
is associated to p; conror, AN P2 painControtter 18 associated to ps oo

It is important to remember that upon satisfying this condition, p, gets associated
to p,, while py. (and not p,) is associated to p,. In summary, the bidirectionality of
associations is extended to allow that if a port p, is associable to p,, then p,, or one

of its equivalent ports, can be associated to p,. This extension should be acceptable
since equivalent ports, by definition, are representations of the same properties.

In addition to these rules, equivalent ports that will potentially inherit the
associated ports impose further validity conditions that need to be met. This is
further discussed in the following subsection.

B.5.2.3. Port Association Inheritance

Equivalent ports must have the same set of associated ports and the rules of
inheritance similar to those specified for port properties apply. That is, port
associations should be defined on only one port among the set of equivalent ports
in order to avoid definition duplications and hence inconsistency problems.

In order to guarantee that for each equivalent port p,,. of p, that p, or one of its
equivalent ports forms a valid association, the validity check becomes:

e,(p,)ed,le,.V, ) A=y, (p,.e.(p,))
AP, e Py (p,):
(Elpx/e eFp, (px):eg (py/e)e 4, (ex/e’Vy)A_'acpa (Py/eaeg (px/e)))
A3, €P,(p.):
eo(pur)e Aule, V)=t (P e, (1))
AVpy. €F, (Px):
@, € Py(p))reg(poe) e A,ley eV ) A =g, (e, (p)))

Continuing the previous example, port p;.. (an equivalent port of p;..,) can
inherit the port association of p yinconmotier 10 P3.co0o» Where an equivalent port of
P2 MainControllers namely P2 DistanceControls iS aSSOCiated to P3ecu by inheritance; Since
Distance Control € 4, (ECU, Vs ) A=l oy, (pZ,Dis can ceComm,,ECU).

Note that the inheritance (and hence the application of the inheritance condition) is
only applicable to equivalent ports whose element exist in associated view,
since from the associated view perspective, elements that do not exist cannot
inherit. The final validity condition becomes:
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eo(p,)e 4,7, )n=a,.p, e, (p.))

AP, €PR, (Py)3 a,, (eg (py/e )’ Vx):
(apx/e € Peq (px):eg (py/e)e 4, (ex/e’Vy)/\_'acpa (py/e’eg (px/e)))

A3pye € Py(p,):
eg(px/e)e Aa(ey’VX)/\_'acpa(px/e’eg(py ))

APy € Pylp):anle (0 )V, ):
Bpyre € Plpy )y (P e Auley eV ) A=, (porene, (2,0 )

In the above example, the containing element of p;.., (ECU) exists in the

Function Structure associated view, and hence p;.. can inherit the
aSSOCiation to pZ,DistanceCOntrol-

As an example of an invalid port association, we return to the association between
port P2 ecu aNA P2 pistanceconror discussed earlier in the previous subsection. Given the
new port association validation condition, port p: pisanceconror €an no longer be
associated to p; .., since for an equivalent port of p2 pisianceControls P2.MainControlier, there
exists no equivalent port of p;..,, to Which pauinconroner can be associated by
inheritance. As a consequence, port p,.. cannot be associated tO p: pisinceControl
either.

B.5.2.4. Associable Ports

In summary, we define the associable ports of p, in view V,, A,,(p» V), to be the
set of ports in V), that satisfy the port association validity check. These ports can
naturally only belong to containing elements that are associated to p,’s containing
element. Formally, 4,,(px, V) is represented as follows:

(P :{p ’- e},eAHYng(px))P@(ey):

e.(p,)e 4, (e, )n=a,(p,.e,(p.)
AP, €P, (Py)Z axv(eg (py/e)’Vx):
(pr/e S (Px) 1€y (Py/e)e 4, (ex/e’Vy)/\ g (py/e’eg (Px/e )))
~3py. € Peq (Px):
€, (px/e)e 4, (ey’Vx)/\_'acpa (px/e’eg (Py ))
AP € Py(p ) ay (e, (P Y, ):
(Elpy/e € Peq (Py)3 €, (px/e) €4, (ey/e’Vx)/\ U pa (px/e’eg (py/e)))}
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B.5.3. Maintaining Model Integrity

The following actions can be performed on a model by the user:
e Create and delete elements
e Create and delete ports
e Create, delete and modify properties
e Create and delete relations (interface or connection)
¢ Create and delete associations (element or port)

Validity checks (such as those described in sections B.5.1.3 and B.5.2.2) prevent
any action from invalidating the model. In case the user wishes to perform such a
violating action, certain modifications need to be performed prior to the originally
intended modification.

The port and element association validity checks guarantee the model validity
when attempting to create a new association. This however does not guarantee the
validity of established associations at all times.

For example, while the port association validity check prevents invalid port
associations, we have not considered other actions that the user can perform that
makes existing port associations invalid. In a way, it is so far assumed that port
associations are performed once all elements, ports, port relations and element
associations are already established, and none will be modified in the future. Such
a restriction on the order of performing actions within a model is not desired.

According to the port validity check in section B.5.2.2, a port p, (of containing
element e,) can no longer be associated to port p, (of containing element e,) if one
of the following becomes true:

e ¢, becomes no longer associated (direct or inherited) to e,, e, & A, (ex,Vy).

This may be caused by the following actions:
a. The direct association between e, and e, is deleted.

b. A parent of e, is directly associated to e,, causing e, to no longer be an

inherited associated element of e,.
e p, becomes an all connected ports associated in e,, (p,.e,). That

is, all the connected ports of p, become associated to e,
Vp; ePC(py):eg(pi)e Aa(ex,Vy). This may be caused by the following

a cpa

actions:

a. The containing elements of all connected ports are associated to e,.
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b. The ports whose elements are not associated to e, are deleted.

c. Connection relations to ports whose elements are not associated to e,
are deleted.

d. Interface relations are deleted, indirectly deleting connections to ports
whose elements are not associated to e.

¢ One of p,’s equivalent ports, which exist in associated view V., can no longer
be associated to p, or one of its equivalent ports, for similar reasons/actions as
above, or if caused by the following action:

a. An interface relation is created between p, and another port, creating a
new set of equivalent ports to p,.

¢ One of p,’s equivalent ports becomes exist in associated view V;, and the port
cannot be associated to p, or one of its equivalent ports. This may be caused
by the following actions:

The port’s containing element is associated to an element in V..

b. An interface relation is created between p, and another port, creating a
new set of equivalent ports to p,.

e Given the bidirectionality of port associations, port p, can no longer be
associated to port p, for similar reasons/actions as above.

So in principle, any user action that causes the above conditions to be satisfied,
should be prevented in order to maintain the model validity.

However, in many cases, such modifications are predictable and hence the
mechanism of induced actions is introduced, automating the process and
modifying the model in order to maintain its validity. These modifications are
specified as actions themselves, possibly triggering further actions.

Considering the example of port associations above, actions can be automatically
performed in order to re-establish the model integrity, by deleting the existing
invalid port associations once any of the above actions are performed. However, in
certain cases, it is not possible to perform such induced actions since more than a
single option is available to ensure validity. For example, in case where two ports
are made equivalent and each of the ports is associated to other ports, it is not
possible to decide automatically which of the redundant port specifications ought
to be deleted. Such a decision ought to be left to the user instead.

In summary, to keep a model valid when being modified, one of two alternative
mechanisms can be adopted:
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o Validity checks - performed before an action can be taken, that prevent the user
from performing certain actions that may jeopardise the model correctness or
consistency.

o Induced automatic actions - performed as a consequence of a certain user
action in order to re-establish the model integrity.

It is not always clear whether to introduce validity checks, preventing invalid
actions from occurring, or whether further actions can be induced returning the
model to a valid state. Validity checks are simplest to implement since they simply
decline the user from performing a certain action unless other actions are
performed first, keeping the model correct. Automatic actions, on the other hand,
facilitate the work needed to be performed by the user, with the slight risk that the
user may be left unaware of any such actions.

The general principle adopted is that induced actions are performed in case there
exists a single obvious choice (with obvious consequences) available to the user in
order to keep the model valid. In certain situations, restoring validity can be
performed in many different ways, and hence a validity check is setup to prevent
the action from occurring in the first place and leaving it to the user to make a
choice.

As illustrated earlier with port associations, by analysing the dependencies
between user actions and the various model aspects (such as element association
validity, port association validity, etc.), the consequences of each user action on
each of these aspects can be established. For example, a consequence of deleting
element e, from the model is the need to induce the following actions:

e Delete any direct element associations to e,. This action affects the directly
associated element of e,, A4(e,, V).

e Re-evaluate the inherited associated elements (and redraw the associated view)
of the associating elements of e,, Au(e,, V5.

e Delete each of the ports of e,. (This action leads to further induced actions to
maintain the validity of port associations, etc.)

In the implemented tool (section B.7), we have systematically defined the
consequences of each such user action on the validity of each aspect of the model,
and defined the necessary induced actions that need to be performed in order to
maintain model validity. These actions can themselves trigger further induced
actions. It remains however an effort for future work to formalise these actions.
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B.6. Cross-view Analysis

As well as domain-specific analyses that can be performed within a view, certain
analyses require information from multiple views, and are hence of interest for the
proposed view integration environment. The approach advocated in this paper
allows a designer to treat an element of the system as a system of its own, with its
own set of views. By allowing the multi-view approach to propagate at each level
in the system hierarchies, the same analysis that can be performed at the system
level can also be easily performed at the sub-system (element) level.

Three categories of analysis can be identified:
o Correctness analysis
e Completeness analysis
e Keyfigure calculations

Correctness analyses are used to check if any incorrectness or inconsistencies exist
in a model. It is generally preferable to perform dynamic correctness checks,
detecting and preventing any incorrectness from being introduced into the model
as soon as they occur. The validity checks in sections B.5.1.3 and B.5.2.2 are
examples of correctness analysis.

Compared to the dynamic correctness checks, certain checks cannot be performed
at random instances since not enough information is yet specified by the user to
perform the analysis, while the lack of information cannot be flagged as an error.
These completeness checks can be triggered by the user once it is believed the
model to be complete. The analysis in section B.5.1.7 is an example of a
completeness check.

A keyfigure analysis produces a summary of the system properties being
modelled. These properties were not specified by the user directly, but emerged
from the combination of other properties. Prior to any keyfigure analysis, a
completeness check needs to be performed that establishes whether enough
information is available for the analysis to be performed. Different keyfigure
analyses may require different completeness analyses since a different set of
information may be needed.

In [10], the various keyfigure analyses of interest for the design of the EE
architecture are discussed. Examples of cross-view keyfigure analyses that can be
performed for any element are:

e The number of hardware units and cables needed to realise a given function
element.

o The cable length or weight needed for a given function.
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e Given a certain function, statistics on the other functions that share some of its
resources.

For a given Function or Hardware Structure element, these keyfigure values can be
easily calculated based on the associated view of the element. For example, given
the associated view in figure 25 of the COO hardware unit, one can easily
calculate the required utilisation on COOQO, given the execution times and rates of
execution of each of the allocated function elements.

The following subsection provides an extended example of cross-view keyfigure
analysis relevant for the case study of section B.2.

B.6.1. Complete Cabling Paths for Communication

This analysis checks that any Function Structure element that needs to
communicate through their connected Communication Links, can do so, given its
specified allocations to hardware units and cables. The analysis can be performed
on the complete system, as well as any sub-system (element).

Prior to introducing this analysis, certain terms need to be first defined. For this
discussion, the function and hardware unit elements are termed as container
elements, while the communication link and cable elements are termed as linker
elements.

B.6.1.1. Internally Linked Ports

The internally linked ports of port p, Py(p), is defined as the set of ports of the
containing element, e=e,(p), where p, € P, (p) implies that p, is internally

connected to p through a set of internal linker elements only, connected together to
form a path from p, to p.
The P;(p) set differs, depending on the property of e:

e If e is an elementary linker element, P;(p) is the remaining ports of e, since all
the element’s ports share the internal buffer of the elementary. Considering
the Function Structure model in the example of figure 29,

P, (pl,CLll ) = {P2,0L11:P3,CL11 }
Py(p)="P.le,(p))-r

o If ¢ is an elementary container element, then there exists no internally
linked ports, since e performs a functional transformation between its ports,
and not simply a data transfer. In the example of figure 29, P, (pL P11 ) =J.
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Pil(p):®

o If ¢ is a composite element, and p has no direct interfaced port, p.(p), then
there exists no internally linked ports since p is not even related to any
internal ports of e to further link through. In the example of figure 29,

B, (p3,CL12 ) =9.
By (P ) =0
o If ¢ is a composite element, and p has a direct interfaced port, pg(p), then

F, (P) =k, (Pde (P))

where the externally linked ports of port p;, P.(p;), is defined as the set of ports of
the parent element, e/=ey,(e,(p;)), where p, € P, (p,) implies that p, is related to

pi through a set of linker elements, connected together to form a path from p, to p;.
P.i(p;) consists of the union of:

o The direct interfacing port of each of the internally linked ports of p;.

e The externally linked ports of the direct connected ports of each of the
internally linked ports of p.

Pel(pi)zneu pdi(n)U( ) N Pel(m)j

Py(p) nePy(p;) mePy(n)

In the example of figure 29, P, (pl,Fl): {p”l,p&ﬂ}. However, P, (pz’pl)z D,
since the set of linker elements is broken by the direct child of 11, namely F111.

Pe(eg (p))—p if ¢, (eg (p))/\linker(eg (p))

) if e, (e p ( P ))/\ container(e p ( V4 ))
F, (P) =

% if —e, (e, (p)) A P (p) = nil

P, (pde (p)) if —e, (eg (p))/\ Pde(P);t nil

Notation:

where P, (p,)= U pdi(n)U( U Y Pez(m)j

Pil(pi) nekly (pi)mEPdc(”)
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Figure 29. A hypothetical Function Structure model to illustrate internally
linked ports.

B.6.1.2. Communicating Ports

Two ports, p; and p,, are defined to be communicating ports, p.(p:;, p2), if a
continuous path of only linker elements exists between them, in which the ports
along the path are either directly connected or internally linked.

Pe(P1, p2) differs depending on whether p; and p, are connected or not.

If p; and p, are connected, then they are said to not be communicating ports,
since we expect at least one linker element between p; and p,. In the example of
figure 29, the ports p;r; and p,c; are not communicating ports,
P (phF1 s Pacri ), since p; r; and p, ¢z, are directly connected.

If p; and p, are not connected, then p., (p;, p>) is true if one of the following is
true:

e p,isinternally linked to p;. In the example of figure 29, the ports p; r; and
Ps.r1 are communicating ports, 2 pl,Fl’p(),Fl)’ since pg p € P, pLFl).
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e dJpe P (p1 )such that p is a communicating port with p,, p,, (p,pz), or p;
is connected to p, p, € P. (p) In the example of figure 29, the ports p; r; and
Picr> are communicating ports, p,, (pl’Fl,pLCLz), since dp ePi,(pl,Fl),
namely pgr;, such that p, -, € P, (p6’ Fl)' Extending this example further, it

can be deduced that the ports p;r; and p,c;, are communicating ports,
Py (Pl,FpPz,CLz)a since dpelP, pl’Fl), namely pgr;, such that

Py (pé,Fl > Pacra )

e dpe Pc(pl)such that p is a communicating port with p,, pcp(p,pz). In

the example of figure 29, the ports p,c.; and psr; are communicating
ports, pcp(pz,cu,p“l), sinceEIpePC(pz’CLl), namely p;r;, such that

P (pLFl,p&F1 )(as discussed earlier, pg . € P, (pl,F1 )).
In summary, p., (p1, p2) is true if
P, €h (P1)
v3pePi(p):(poy(p.12)v ps € P.(p))
v3peP(p):p,(p.p,)

As a final example, by combining all these conditions together, and performing the
test on ports across the hierarchy, it can be deduced that the ports p; > and p; c113

are communicating ports, p,, (plm,pl CL13)-

false if p, e P.(p,)

Notation: P, (pl,pz): D, € Pﬂ(pl) if p, ¢ Pc(l’l)
v3pePi(p):(p,(p.p:)v P, € P.(p))
pl):pcp(pﬂPZ)

—

o

vipeP,

Two ports, p; and p,, are defined to be communicating ports in associated view of
element e, pe, . (p1, P2, €, if they are communicating ports, considering only
ports whose containing elements are in the associated view of e,. Naturally, a
precondition for this test is that the containing elements of p; and p, are associated
to e,.
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B.6.1.3. The Complete Cabling Path Analysis

In the current implementation of the analysis, it is assumed that a Function
Ap(p’Vth =1.

The completeness test for this analysis is that the Function Structure element f has
complete associations, a..(f, V). Failing this condition implies that there exists
missing associations and hence such a cross-view analysis cannot be performed.

Structure port is associated to a single Hardware Structure port,

The condition for completeness differs, depending on whether f'is elementary
in associated view V) or not.

If fis elementary in associated view Vi, an(f, Vi), then fis defined to have
complete cabling paths for communication, f.(f), since all its children are
implicitly associated to the same hardware elements, within which the
communication occurs internally.

If fis not elementary in associated view Vj,, —an(f, Vi), f1s defined to have
complete cabling paths for communication, f.,(f), if the following
conditions are satisfied:

e Each port, pj, of each of f’s direct children, is associated to a hardware port, if
the p/s associable ports set, A, (ps Vi), is not empty. A non-empty
associable ports set of p, implies that p, itself is not an all connected
ports associated in one of the associating elements of ey(p), Aui(ey(py.
Vis). prhence needs to be associated to one of the associable ports in order
to communicate to its unassociated connected ports.

P Ay (P V) # D
Ap(pf’Vhs);é @

e For each pair, p; and p,, of directly connected ports of f’s direct children that
have associations to hardware ports, the pair of associated hardware ports are
connected. We need not handle a port that has no associable ports, since
its containing element, and that of its directly connected ports (which have
also no associable ports), would be associated to the same hardware
element, within which the communication occurs internally.

P A (V) # DA A, (02 Vi) # D A py € P(p):

(Ap (Pl Vi ) €P, (Ap (Pz Vs )))

e For each pair, p, and p,, of internally linked ports of f°s direct children
that have associations to hardware ports, the pair of associated hardware ports

Vp,e v
pf neky,.

vplﬂpz €
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are communicating ports in associated view of f. It is necessary to
make sure that the ports are communicating by only considering the elements
and ports of the associated view, to ensure that the element f is completely
defined using its own set of views, independently of other views and elements
in the system.
Vp.p, € Y Pe(”) A, (P, Vi) #DANA,(pys Vi) 2D APy € Pil(pl):

neEq(f)

(pcp,av (Ap (pl s Vhs )’ Ap (pZ s Vhs )’ f))

Note that the condition is defined such that it only deals with the direct children of
element f, with no consideration of the children further down the hierarchy. This
definition is in line with the inheritance argument presented in section B.3.1.4. For
this reason, the communication completeness check for f, does not guarantee the
communication completeness of its children. A complete check can be performed
by recursively running the same test through the hierarchy.

true if a (f’ Vhs )

Vp, € nei(f)f’e(n)I if —a, (f,Vi)

Aap(pf’Vhs)ig:
Ap(pf,Vhs)i@

Notation: pr(f): AVDLP e U Pln):
neEy(f)

A,(p1 Vi) 2 DA A, (P V) =D Apy € P(p)):
(Ap(pl’Vhs)EPc(Ap(pZ’Vhs )))
N vplﬂpz EneEk:(f)Pe(n):
A,(p1 Vi) 2D NA,(pysVis) 2D A py EPil(pl):
(pcp,av(Ap(pl’Vhs )’ Ap (p2’Vhs )’f))

For example, consider the simple example in figure 30, showing the associations
between the child elements of the Speed Sensing function element and the BMS
hardware unit (See figure 21 and figure 23). In this example, the Speed Sense and
Filter function elements are associated to the Speed Sensor and ECU child
elements of BMS respectively.

Now, for the Speed Sense element to be able to communicate with Filter via the
Speed communication link, it is necessary to associate Speed to the Sensor Cable
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in the hardware view. In addition, the port associations ought to be performed as
shown in the figure.

Any other choice of element or port associations would not be satisfactory. For
example, it can be easily realised that it would not be acceptable to associate the
Speed communication link to the Actuator Cable of BMS. While such an element
association is valid and can be performed, no valid port association can thereafter
be specified for which the Speed Sensing function can have complete cabling
paths for communication, f..,(Speed Sensing).

Speed
I Sense” Fitter®

speed #——pC T Tig—g 1 | Oxd—S—3

Speed H .
Sensor A1 -4 PT 1 \
Senzor Cable 17 \ .

R
ke Pedal i —
i S S S— —e—3
ecus -

Senzor Cable 2° P P2-BMS
——
Brake /
oo $——4___ @
fctuztor Cable™

Figure 30. Element and port associations between the child elements of the
Speed Sensing function element and the BMS hardware unit.

Similarly, it would not be acceptable to associate the port p;, rirer 10 POt P3.ccus
while ensuring f..,(Speed Sensing). Such a port association would violate the
second condition for path completeness since the port p;, riir would be associated
to a port, p; gcu, Which is not connected to the associated port of the connected port

1O pin Fitters P1.Speed- That iS, (Ap (pin,Filter ’ Vhs )E Pc (Ap (pl,Speed > Vhs »)

Now, consider the more elaborate example in figure 31, showing the associations
between the child elements of the Human Interface function element and the
hardware elements onto which it is desired to implement them. It is desired to
establish whether Human Interface has complete cabling paths for
communication, f..,(Human Interface). However, the discussion in this section
will be limited to the communication path formed by Operator Inputs, Brake
Pedal and HMI Logic elements only.
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Figure 31. Element and port associations between the child elements of the
Human Interface function element and the hardware elements onto which it is
desired to implement them.

The Operator Inputs and HMI Logic functions are associated to the COO and the
ECU unit of COO (COO/ECU) respectively. In addition, the child of Operator
Inputs, Brake Pedal Sensing, is associated to the Brake Pedal Sensor hardware
unit of the BMS hardware unit (BMS/Brake Pedal Sensor). This later association
also implies that Operator Inputs is associated to the Brake Pedal Sensor hardware
unit by inheritance.

NOW’ given that port D 1,BrakePedalSensing is equivalent to P3,0peratorinputss the Only
possible association t0 p3operatorimpuss WOuld be 10 p; prakepedaisensor- Given that
restriction, for Operator Inputs and HMI Logic to be able to communicate via the
Brake Pedal communication link, Brake Pedal needs to be associated to
BMS/Sensor Cable, BMS/ECU as well as Red CAN. In this way, a communication
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path between BMS/Brake Pedal Sensor and COO/ECU is provided. The Hardware
Structure associated view of Brake Pedal becomes as shown in figure 32.

In addition, the port associations ought to be performed as shown in the figure.
Any other choice of port associations would have not been satisfactory. For
example, associating p3 pmizogic t0 p3,cooscu would not satisfy the second condition
for path completeness since this port p; coorcy is not connected to pygeacan (the
associated port of the connected port to p3 uuirogics P2,Brakepedat)-

Brake Pedal™
Associated View
(Hardware Structure)

-
=S a— s SEFEE £°
sensor cable [ o __‘[
0 9 9 1
! ]
Red CAN

Figure 32. The Hardware Structure associated view of the Brake Pedal element.

Finally, consider the internally linked ports p;gakeredar aNd P2 rakepedar-
According to the third condition for complete communication paths, the
associations to these ports (2 sensorcasiez A0 Py reacan) should be communicating in
the associated view of Human Interface. But as can be seen in figure 32, this is not
the case due to the hardware unit BMS/ECU. One remedy to this problem, is to
further detail the internal definition of BMS/ECU, in which a cable is setup
between the pOI'tS P2.BMS/ECU and P4,BMS/ECU-

B.7. Tool implementation

In order to investigate the feasibility of the inter-view mechanisms introduced in
this report, a prototype tool was implemented in the Dome prototyping
environment [12], in which views, as well as, inter-view design information and
analysis, could be performed.

The integration of views is easier when all views are specified within a single tool.
However, different tools are typically used by an organisation to specify the
various views of the system. The approach is hence expected to deal with views
specified in separate domain-specific tools. A central tool integration and
management system can then be used to perform the inter-view information
specification and analysis. To prove and test this concept, a partial implementation
of the approach has been developed based on the MDM platform [18]. The
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Simulink [15] and Dome [12] tools were used for the specification of the Function
Structure and Hardware Structure views respectively. A generic inter-view
association mechanism is then used to perform element associations between the
two tools. The implementation is limited to the associations between elements,
while port associations remain the subject of future work.

Some ideas from the suggested solution have also been partly implemented in the
industrial analysis tool [10] of the case study of section B.2. The tool is able to
evaluate different architectural solutions, based on the keyfigure analysis
mentioned in section B.6. The case study presented in this report forms a small
subset of the functionality studied in the industrial case study, which covered the
complete EE architecture of a set of truck variants. An important contribution of
the study was the division of the available dataset into different views, thereby
facilitating the desired analysis as well as the possibility to perform multiple
allocation strategies without needing to re-model the system functionality. While
the implementation is based on our meta-meta-model, the cross-hierarchy
associations were not adopted.

B.8. Related Work

The use of the view notion and related concepts (such as viewpoint, model and
roles) in high level modelling and framework standards is discussed in [24],
concluding that ‘in addition to accommodating multiple perspectives, views are
used in standards to: examine and define content, expose content to enable
interoperability, reduce apparent complexity, provide focus, enable modularity of
process, and enforce “need to know” restrictions’. One such standard is the IEEE-
1471 [1]. This standard addresses the content and organisation of architectural
descriptions of software-intensive systems. In the standard, concepts such as
stakeholders, concerns, viewpoint, view and model and the relationships among
them, form a fundamental basis for the organisation of these descriptions. No
specific views are specified in the standard and although it is specified that
consistency among views shall be recorded, how such consistency can be achieved
is not specified.

The need to separate the captured design information into different views is
gaining increased recognition and is found in many modern engineering modelling
languages and tools (such as [2], [3], [4] and [5]). In addition, most modelling
approaches adopt some form of decomposition techniques in describing each of
the supported views [19]. In combining these two techniques, it becomes essential
to integrate the various hierarchical views, through the specification of inter-view
design information, in order to form a consistent and complete system definition.
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When integrating the system views, modelling approaches (such as [20], [21],
[22], [23] and [3]) normally provide the simple mechanism to reference a
component from one view to another component in another view. For example, it
may be possible to specify the software components in the software view that are
to be allocated to a specific processor in the hardware view. Many of these
approaches only allow the establishment of relationships at the leaf of their
hierarchies ([22], [23] and [3]). In this way, the complexity of interrelating the
system views across their hierarchies is simply avoided. However, the advantages
gained in using hierarchical descriptions within a view are then lost during view
integration, forcing developers to work at the lowest levels of abstractions.

In the few cases where references can be specified across the hierarchies (such as
[20] and [21]), the semantics of such references are restricted to the context of the
specific system part at which they are specified. Views are hence only loosely tied
at the points at which the references are specified. It would instead be desired to
obtain a tighter integration by propagating these references across the system
hierarchies. For example, having specified the allocation of certain software
components onto hardware components, mechanisms ought to be provided that use
this information to facilitate the more refined allocation of software to hardware at
a more detailed level of abstraction of the system.

From the software engineering domain, the work presented in [16] also deals with
the documentation of software architectures, in which the concept of views plays a
central role. The work categorises a specific set of views found in common use.
Similar to the meta-meta-model suggested in this report, in describing each view,
the set of elements, relations, their properties and a topology that can be defined in
the view are described. The views are grouped into different styles, which are
themselves grouped into viewtypes forming a hierarchy. For each view, the
relationships to other views across this hierarchy are described, by stating the
relations between the different elements in the views to each other. While stating
that certain relations may be quite complex (such as the allocation of modules to
components), no guidelines are given on how this complexity should be handled.

In [25], an environment in which domain-specific components can be composed to
develop large applications is presented. The approach recognises that since
domains are developed independently, they may contain similar concepts defined
in different ways; and domain composition needs to identify and define relations
between these concepts. Two types of relations can be established: general
associations and correspondence relating similar or overlapping concepts. The
approach is model-based in that components are modelled in different domains,
using domain-specific languages, and the composition is performed at the model
level before code generation is performed. The approach is focused on software
applications where each component/domain results in source code that need to be
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integrated. While the approach deals with system decomposition into different
domains, the decomposition mechanisms within each domain are not considered.

Aspect Oriented Programming (AOP) [26] is another approach within the software
engineering community where a system specification is separated between its
functional components and its other properties that affect the system semantics and
performance. AOP deals with the cross-cutting of the hierarchical decomposition
of a system into components, with the various non-functional aspects of the system
such as its error handling and performance aspects. This cross-cutting is necessary
since the aspects must compose differently from the functional decomposition, yet
the different compositions must be coordinated. An aspect weaver is then used to
integrate and coordinate the co-composition of the aspects with the functional
components. In this approach, while the functional decomposition is hierarchical,
the remaining aspects are not.

A framework and a set of techniques for the view integration of the existing views
in UML with other architectural views is presented in [27]. The framework allows
the mapping of architectural components/connectors to the classes of the design
view. This mapping is closely related to the hardware to functionality allocation
approach discussed in this report. However, the suggested mapping deals with a
flat structure in each view, and assumes that a design class can only be mapped to
a single architectural element. In addition, once the mapping is performed,
conformance analysis can be automated in order to identify mismatches between
the architectural view of a system and its design view, based on a set of constraints
rules. For example, it becomes possible to check that class interactions belonging
to different components are appropriately constrained to the architectural topology
adopted. Such analysis is similar to the correctness and completeness check
analysis presented in section B.6.1.

B.9. Conclusion

In this paper, the need for a systematic approach to multi-view integration is
discussed. The establishment of inter-view design information is common practice
in many modern design tools. The approach presented here takes advantage of
such information in order to tightly interweave the views’ hierarchies. In this way,
the system views are reflected to a stakeholder within a given domain at a
sufficient level of abstraction and detail that makes him/her appreciate the
information provided.

Through the use of a case study, model integration is investigated for a particular
type of inter-view relationships (function to hardware allocation). The resulting
approach maintains the principle of hierarchical design within, as well as between
the views, by systematically integrating the two generally accepted complexity
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reduction techniques of hierarchical decomposition and multi-viewing. Rules and
mechanisms were developed to ensure the completeness and correctness of any
inter-view design decisions. Additional mechanisms allow a developer within a
given domain to view the other aspects of the system from his/her own
perspective, making view integration a good basis for information sharing. The
proposed approach promotes the independent development of the views, allowing
developers from each discipline to work concurrently, yet providing support for a
holistic view.

Allocation is strongly related to the design process and can of course be carried
out in different ways. The defined allocation inheritance rules permit the
specialisation (refinement) of allocation specifications performed higher up in the
hierarchies, as well as their extensions at the lower levels, propagating the
extended associations up to the higher levels. Such mechanisms support a process-
independent allocation practice. By placing certain restrictions, the allocation
practices can be constrained. For example, disallowing the possibilities for
association extensions through the sub-systems provides a top-down approach,
where sub-system design can only refine design decisions specified at the higher
level.

The approach also reinforces the principle that a part of the complete system is a
system of its own, with its own set of views. This provides the possibilities to
perform cross-view analysis on the complete system as well as its individual parts,
since all relevant inter-view relationships established across the system are
propagated.

To investigate the approach’s feasibility, various tool implementations were
performed. Less focus has so far been placed on scalability and implementation
efficiency considering many views and large systems. Future developments would
need to address these issues appropriately.

Even though it is based on simple concepts, using the approach is suspected to
require a new mind-set. This places certain doubts on whether the approach
actually facilitates the developer’s work. From the limited gained experiences, the
ability to focus on specific parts of the system design, as well as inheriting and
extending other decisions made elsewhere in the system, is rewarding. This
however does depend on good feedback and support by the integration tool. In the
worst case, the approach advocated here can be seen as an experiment, or an initial
step, towards other possibilities of view integration.

While specific to the allocation of system functions to hardware, it is believed that
the mechanisms can be applied to other types of relationships such as that of
mapping software components to hardware. No claim can be made that these
mechanisms are general enough to handle all types of relationships. However, it is
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intended to expand on this work in order to cover many of the relationships
identified in [19] such as dependencies and refinement. In addition, the ability to
perform inter-view associations over a larger number of views is a challenge to
handle in future developments.

A systematic approach when implementing these relationships should allow a
reuse of many of the concepts already explored. What is essential is to provide
mechanisms that reflect design decisions between design teams from the various
disciplines, and across the different levels of abstractions. This provides a good
basis for an information sharing environment enabling model-based,
multidisciplinary development.
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Appendix
Appendix A Terminology

A.1 Single-view Modelling

analysis view — A view used to present specific aspects from the set of design
views in a certain way that facilitates the performance of an certain analysis.

attributes - A placeholder used to represent a single property of an element, port or
relation.

child element — of element e, is an element lower down in e,’s hierarchy, forming
a part of e,’s internal definition. There may exist more than one child element of
éy.

composite element — A more elaborate description of an element where the
properties of the system are decomposed into smaller, less complex, interacting
elements, in which each element contains a subset of the original system
properties.

connected ports - of port p,, P. (p,), is the set of direct connected ports of p, and
each of their equivalent ports, together with the direct connected ports of the
equivalent ports of p.,.

connection relation — a relation established between a port of an element and a
port of another peer element, implying a certain dependency between their
properties.

containing element — of a port py, e,(py), is the element for which the port presents
an interface.

design view — a view used to model and document the design decisions made by
developers.

direct child element — of element e, is a child element of e, which exists directly
one level down in e,’s hierarchy. There may exist more than one child element of
éy.

direct connected port - of port p, is the port in a connection relation with p,. There
may exists more than one direct connected port of a single port p.

direct interfaced port — of port p., p.(p.), is the port of the internal element in
which p, is a direct interfacing port. There may only be one direct interfaced port
of a port p,.
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direct interfacing port — of port p,, pu(p.), 1s the port in an interface relation, in
which p, is a port of an internal element. There may only be one direct interfacing
port of a port p,.

direct parent element — of element e,, eq4,(c), is a parent element of e, which exists
directly one level up in e,’s hierarchy. There exists a maximum of one direct
parent of e,.

direct properties — of a port p, are properties defined directly on it by the user.
element — a placeholder of properties describing the represented system

elementary element - element e, is defined to be elementary, e/e,), if e, contains
no child elements. e, has a simple description where the properties can be
specified as a set of attributes.

equivalent ports - of a port p,, P.,(p.), is the combined sets of its interfacing ports
and interfaced ports, as well as p, itself.

inherited properties — of a port p, are properties defined through one of p.’s
equivalent ports (the inheriting equivalent port of p,).

inheriting equivalent port — of a port p, is the equivalent port of p, in which the
properties are directly defined.

interface (external) definition — of element e, reveals only those properties of e,
that need to be shared with the system environment.

interface relation - a relation between an element’s port and a port of one of its
internal elements, externally indicating that the internal port is externally
accessible.

interfaced ports — of port p,, P.(p,), is the direct interfaced port of p,, together with
its interfaced ports.

interfacing ports — of port p,, Pi(p.), is the direct interfacing port of p,, together
with its interfacing ports.

internal (white-box) definition — of element e, deals with e,’s complete set of
properties, which consists of'its set of internal elements.

internal element — see child element

parent element — of element e, is the composite element higher up in e,’s
hierarchy, in which e, is a child element. There may exist more than one parent
element of e,.

port — forms part of the interface definition of its containing element and acts as a
placeholder for a subset of its element’s externally accessible properties. Two
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representations of a port can be defined: an internal port representation which is a
representation of the port as seen from the containing element’s internal definition;
an external port representation which is a representation of the port as seen from
the containing element’s interface definition.

property placeholder — an element or a port.

root element — of view V,, e.(V,), is the single element within ¥, which has no
parent elements.

A.2 Two-View Integration

all connected ports associated - port p, is defined to be all connected ports
associated in element e, aq,q(p,, ey, if all its connected ports, P.(p,), (or one of
their equivalent ports) have their containing element associated to e,.

associable ports — of port p, in view V), A, (ps. V), 1s the set of ports in V), that
satisfy the port association validity check, and can hence be associated to p,.

associated elements - of element e, in view V), A,(e, V), consists of the union of
its direct associated elements and its inherited associated elements.

associated ports — of port p, in view V,, A,(p., V,), 1s the set of associations to
ports in V), directly specified by the user on port p,.

associated view - V, of element e, in view V; is a subset of the complete view V),
for the complete system. It consists of the elements from view V), that are
associated to element e, (taken across the whole hierarchy of V).

associated view interface port — of port p, is an interface port to p,, presented in
the associated view of element e,, in the case where p, is not an all connected
ports associated port, indicating that certain connections to p, are missing in
the associated view.

associating elements - of element e, in view V), Au(ey, V), is the set of elements in
view V), have element e, as an associated element (direct or inherited).

association - a relation between property placeholders across different views

completely associated — element e, is defined to be completely associated in
view V), ac(ex, V), if given the set of associated elements specified for e,, no
further refinement of these associations are needed by e,’s children in order to
complete the system specification.

direct associated elements - of element e, in view V,, A4le, V,), is the set of
associations to elements in V), directly specified by the user on element e,.
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elementary in associated view - element e, is defined to be elementary in
associated view V), au(e,, V), if none of the children of e, is associated with
any elements in view V), yet e, has associations with at least one element in V.

exist in associated view - element e, is defined to be exist in associated view
Vi, , an(e, Vy), if either e,, or one of its children, have been associated to at least
one element in view V.

inherited associated elements - of element e, in view V), 4;(e.V,), is the set of
(top most) direct associated elements of e,’s children, excluding those which have
already been defined, or generalised, through the direct associated elements of e,,
Ad(ex: Vy)

refined associated elements — of element e, in view V), A,.(e,, V,), is the most
refined set of associated element of e,, based on the associated elements if e,’s
direct children.

A.3 Example Views - Function structure and Hardware
Structure
cable — an element designating a physical cable with a certain geometrical path.

communicating ports - Two ports, p; and p,, are defined to be communicating
ports, p.,(p1, p2), if a continuous path of purely linker elements exists between
them, in which the ports along the path are either directly connected or
internally linked.

communicating ports in associated view - Two ports, p; and p,, are defined to be
communicating ports in associated view of element ey, pep (P, P2, €4, if
they are communicating ports, considering only ports whose containing
elements are in the associated view of e,.

communication link — an element designating a link that transports data between
functions.

complete cabling paths for communication — the Function Structure element f is
defined to have complete cabling paths for communication, f.,(f), if all
of f’s direct children can communicate to each other through their connected
communication links, given their associated hardware units and cables.

container element — a function or hardware unit element.

function — an element designating certain functionality that given a certain input,
produces a certain output.
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hardware unit — an element designating a physical block occupying a certain
amount of space.

internally linked ports - of port p, Py(p), is the set of ports of the containing
element that are internally connected to p through a set of internal purely linker
elements, connected together to form a path from to p.

linker element — a communication link or cable element.
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Appendix B Notations

acalex, V) element e, is completely associated in view V),

Acpa(Dys €4 port p, is all connected ports associated in element e,

an(e, V) element e, is elementary in associated view V)

aw(e, V) element e, is exist in associated view V,

Adle, V) Associated elements of element e, in view V),

Aadile, V) associating elements of element e, in view V),

Ap(ps V) Associable ports of port p, in view V),

Aale, V) direct associated elements of element e, in view V),

Ai(e, V) inherited associated elements of element e, in view V,

Ap(ps V) Associated ports of port p, in view V,,

Aralen V) refined associated elements of element e, in view V,

eqp(ey) direct parent element of element e,

eo(py) Containing element of port p,

eley) element e, is elementary

e(Vy) root element of view V.

E,(e) direct children elements of element e,

E,(e) Parent elements of element e,

E.(e) Children elements of element e,

Jeen(f) the Function Structure element f has complete cabling
paths for communication

Pep(D1 D2) ports, p; and p,, are communicating ports

Pepav(D1> D2, €4 ports, p; and p, are communicating ports in
associated view of element e,

DPde(Dx) Direct interfaced port of port p,

Pai(P) Direct interfacing port of port p,

DPre port p, of element e
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P.(p) Connected ports of port p,

Pi(p) Direct connected ports of port p,
P.p.) interfaced ports of port p,

P.(ey) ports of element e,

Py(py) Equivalent ports of a port p,

P.(p.) externally linked ports of port p,
Pi(py) Interfacing ports of port p,

Pu(p,) internally linked ports of port p,
Vis Function Structure view

Vs Hardware Structure view
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Appendix C Proofs

C.1 Proof 1

Let

Al.(ex,Vy)z{ae Eu( )Ad(n,Vy):(—Elme Eu( )Ad(n,Vy):meEp(a)j
/\(—ElmeAd(ex,Vy):meEp(a)vmza)} [1]

A, (e, V,) = AleV, U A4,le,.V,) 2]

And

Bl.(ex,Vy)z{ae R )Ba(n,Vy):( dm e ~ Ba(n,Vy):meEp(a))
/\(ﬁEImeAd(ex,Vy):meEp(a)vmza) [3]

Ba(ex’Vy):Bi(ex’Vy)U/ld(ex’Vy) [4]

We need to prove that

(4.(e.. V)= BleV, )al4, (e, V) =B, (e,.7)) (5]

1. Considering all the elementary elements e, of the model tree, M, [5] is true since

Edc'(ex)EEc(ex)E®
Hence,
Ve, € {a eE: Edc(a)z @}: ((Ai(ex,Vy) = Bi(ex,Vy»/\ (Aa(ex,Vy) = Ba(ex,V},)» 6]

2. Considering the nodes of the M tree one level up in the hierarchy (that
is {ex eE:Vne Edc(ex):EdC(n)z @}), [5]is true sinceEdC(ex)E Ec(ex).

Hence,
Ve, elacE:E,(a)=E (a)}:((4 e, 7)) = Ble,.V, a4, (e,.7,) = B, (e,. 7)) 7
3. Now, assume that for a given e,,, Ve , € E, (ex2 ) , condition [5] is true.

That is:
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vexl € EC (ex2 ): ((A (exl y) B, ( xl Vy ))/\ (A (exl y) B (exl y))) [8]

Given this assumption, we now proof the condition true for e,; itself.

B,(e V):{ae u B,(nr,):

b
x2 Y nek,. (e 2)

(ﬁame v B, Vy):meEp(a))/\C}

nek,. (e,

Where Cz(—EIme Ad(exz,Vy):m eEp(a)vm=a)

nek,, (ex 2

(—Elme v )(A[(n,Vy)UAd(n,Vy)):meEp(a)j/\C}

neky, (@xz

Bi(exz,Vy)z{ae U )(Al.(n,Vy)UAd(n,Vy)):

[From [8], since Vn e E,, (€x2)3 B, (n, Vy)z A, (n, Vy)z 4, (n, Vy)U A, (n,Vy)]
Bi(e V)z{ae U A(nV)U U A (nV)

¥227y neky e, nek,, (e 2)

(—Elm € el 2)A (n V )UneEdu(e 2)A (n V ) m eEp(a)j/\C}

Blear)=foe( 0, fpe g ador)

(—Elpemu Ad(m,Vy):peEp(b)) }]U v )A( v,):

nek, (
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Bi(exz,Vy)z {a e{be ) Ad(m,Vy):

mek,, (‘-’.xz )

Ad(q,Vy):peEp(b))/\C}U O A nr,):

neky, erZ)

—dpe v
( P q<E.(x)

[—Sm € {be @) Ad(m,Vy):

mek, (e,

(—Eip € qeg Ad(q,Vy):p eEp(b)j/\C}

(x)
U u Ad(n,Vy):m eEp(a))/\C}

neEq(eys)

Where x is the parent of m that is also the direct child of e,;

and Eoc (ex2 ) = EC (ex2 )_ EdC (exz )
Now, let

Y(exz,Vy)z{be U )Ad(m,Vy):(Elpe ;} Ad(q,Vy):peEp(b)j/\C}
qeE. (x

meEUC(exz ( ) [9]
We have
Y(exZ’Vy), = neEokC)(e_,z)Ad (n’Vy)_Y(exZ’Vy)’ [10]
since Eu )Ad (n, Vy ) - Y(ex2 , Vy)
B, (exz v, )can be rewritten as:
B, (ex2 v, ) = {a € (Y(ex2 Y, ), U ndf(gﬂ)/% (n, v, )) :
[—Elm € (Y(exz,Vy)' U v Ad(n,Vy)j tme Ep(a))/\ C}

neEy(ec) [11]
We first prove:
‘v’aeY(exz,Vy):(ElmeY(exz,Vy),:meEp(a)j [12]

Consider suchana € ¥ (ex2 V, ):
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ae Y(exz,Vy)
= dpe ;}( )Ad (q,Vy): PeE, (a) [Deﬁnition of Y(exz,Vy )]
qekE (x
= Elp € qEEij(exz)Ad (qﬂVy): pe Ep(a) [EL(X)C Eoc(ex2 )] [13]

pe Y(exz,Vy )' VpEe Y(exz,Vy),

sincepe U Ad(q,V‘,),and U Ad(q,V)DY(exz,V‘,).
) . )

g€, (e.) ek, (e.s) 7

Ifpe Y(exz,Vy) , then we found ap Y(exz,Vy) ,suchthatpe £, (a) , and hence
proving expression [12].

Ifpe Y(exz,Vy), then

P e Y(exZ’Vy)
= dve EJ( )Ad (q,Vy): veE, (p) [Deﬁnition of Y(exz,Vy )]
qeE, (x
=3ve u 4er,)veE, () [E(x)c E,e ()]

This is similar to expression [13], where p replaces a, v replaces p, with p € E, (a),

and veEp(p).

So, by repeating the above argument, we can either deduce the following
statements:

dve qujexz)Ad (q’Vy): ve Ep(P) ,du e qujexz)Ad (q, Vy): uek, (v),
ifV < Y(exzaVy),u € Y(eXZ’Vy), etc.

(WherepeEp(a),veEp(p), u eEp(v), o)

Or prove expression [12] ifveY (exz,Vy) ,ueyY (exz,Vy) , since we would have

founda v/u e Y(exz,Vy),, such that v/u eEp(a).
(Note thatv e Ep(a), sincev € Ep(p)e Ep(Ep(a))e Ep(a))

This sequence is repeated along the parents of a (p, v, u, s, ..., r) until either
expression [12] is satisfied at some point in the hierarchy, or the root of the tree, 7,
is reached. In the worst case where the sequence reaches the root », we similarly
get
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dte U 4 (qV):teEp(r)

qeE,.(e,2) Y

But, since no such ¢ can exist since » is the root of the tree, we conclude
’

thatr g Y (exz,Vy), and it must be the case thatreY (exz,Vy) , also satisfying

expression [12].

Therefore, in all cases, expression [12] is satisfied.

Now, reconsider the equation for Bi( €., y) in [11]:

B,.(exz,vy)z{ae(y(eﬂ, U o A(ny)j.

neky(e,,)

(ﬁame(y(eﬂ, v,JU o A Sy )j:meEp(a)j/\C}

nek,.(e (

One can add the Y (exz,Vy) set to the set of elements to choose from in the

expression for B, (exz v, ), since these added elements will not satisfy the condition

of the Bi(exz,Vy)set: [—Elme(Y( €, y) U v )A ( )):meEp(a)J/\C,

nek,, (

since from [12], we know that forVaeV (exz,Vy), the expression

(EImeY(e 4 ), :meEp(a)jistrue.

x2°" y

Therefore, [11] can be rewritten as:
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Bleat)={ae(Vear, 0T, Uy afer):

neky (e,

(ﬁame(y(ﬂ U A Vy)];meEp(a)jAc}

nek,. (e,

oe g Abnu, g, b))
(ﬁame(y(@2 v,) U <. A(nV)j:meEp(a)J/\C}

neEy (e 2)

={a e U Ad(n,Vy):

nek(e.)

(ﬁame(y(eﬂ I A(ny)j;meEp(a)jAc}

nek,.(e ( 2)

We now prove:

Va eBi(exz,V},):(—Elm € Y(e V,):m eEp(a))

x2°" y
Assume the inverse of [15]. That is:
Jda e B[(exz,Vy): (Hm € Y(e V ): me Ep(a))

x2°7 y

For this a, we know that (Elm € Y(ex2 v, ): mek, (a))

meY(e V)

x2>"y
=dpe ;}( )Ad (q,V ) pE E [Deﬁnltlon of Y( €V, )]
qeE . (x
=3pe A (@.7,):p<E, (M) [E.(x)c E,.(e.,)]

p eY(exz,Vy)' Vpe Y(exz,Vy),

since p € - u( . )Ad (q,Vy), andqu:[J(exz)Ad (q,Vy)D Y(exz,Vy).

But, p ¢ Y( €.rs y) Since

PEE, (m) [from[17]]
=>pek, (Ep( )) [meEp(a),from[16]]
= PpeEE, (a)
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and

aeBi(exz,VV)

= (came(rear JU_y, Alor))ime £, @]ac Frompa]

neb(e.)

= (—.Elm S Y(exZ’I/y)’ -me Ep(a))

That is, if(—.EImeY(e V,)’ :meEp(a)]andp eEp(a),thenp eéY(e V,)'.

x2>7 y x2°"y

Therefore,
peY (exz R Vy)
Now,

pEY(exz,Vy)
= dve U Ad(,Vy):veEp(p) [Deﬁnitionon(e V)]

g<E. (x) Yy
3EVEqEEKjez)Ad(q,V},)IVEEp(p) [Ec(x)CEnc(exZ)]

This is similar to expression [17], where, where p replaces m, v replaces p with,
p eEp(m) andveEp(p).

So, by repeating the above argument, the following statements can be deduced:

ve U 4 (q, y) veEp(p), Ju e u( A (q, y) ueEp(v),...

qeE,.(e.2) 2)
wherev e Ep (p), ue Ep (v),
This sequence is repeated along the parents of a (m, p, v, u, ..., ) until the root of
the tree, r, is reached, and concluding that

dte U Ad(q vV ):ZeEp(r)

]
qEEoc (ex2 ) 7

But, since no such ¢ can exist since r is the root of the tree, we conclude that
assumption [16] is false.

Hence [16]’s inverse, [15] is true.

v,) in [14]:

Now, reconsider the equation for Bi( €.V,
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B, (exZ v ) = {a € neEtfexz)Ad (n, v, ):

(ﬁam c (Y(exz,Vy JU o 4,7, )j mek, (a)j A c}

nek,.(e., )

We know from [15] that forVa e B, (exz,Vy ), (—Elm € Y(exz,Vy): mek, (a)) is
true.
Therefore, [14] can be rewritten:

B/le..7,)

x2°"y

={ae v, Ad(n,Vy):

neEC(exz)
(—Elm € (Y(e)C2 Y, )’ U EU(
neLlige

/\(—Sm € Y(exz,Vy): mek, (a))}

A (n,Vy)j ‘me Ep(a)j/\c

€x2

)
(—Elm € (Y(ex2 Y, )U Y(.ex2 Y, ) U Eu(

n&Lge\€xa

A (n7, )) ‘meE, (a)j A c}

nek,(eq
(—Elme eE:J 2 Ad(n Vv) meEp(a))/\C}
zAi(exZ’Vy)
Now
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Ba (ex2 s Vy) = Bi (ex2 s Vy )U Ad (exZ > Vy ) [from [4]]
=4, (e)r2 v, )U A, (e)r2 v, ) [from [1 8]]
= 4,(e.0.7,) [19]
Combining [18] and [19], we get
(Ai(ex2’Vy) = Bi(eXZ’Vy))/\ (Aa (exZ’Vy) = Ba (eXZ’Vy))
We have now proved that [5] is true for e, assuming [5] is true for
ve)cl € Ec (ex2) ([8])

And, given that [5] is true for the leafs of the model ([6] and [7]), then by
induction, this proves [5] for Ve € E,

C.2 Proof 2
Prove that
(Ep(ey)ﬂneéj(ex)Ad(n Vy)ZQJ
Ale, e 4,le,.7,)
A (Ep (ey)ﬂ Ad(ev Vy) = ®)
A (EC(ey)ﬂ Ad(eX’Vy) = ®)
=

AEL,)N4,e..7,)=2)

We first prove that

156



Appendix

N NEEN
S S Q
N
K v RR
< < <
D

[1]

&

S~—"
_ Ad\ﬂ/y ﬂy
SOER RN
S I~ S )
o8 s
< < <

Now,
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€
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neEC(eX)
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= —dxe Ep(ey):

e

neEC(

= —dxe Ep(ey): xXe Ai(ex,Vy)

= (£,(e, )N 4fe.,)=2)

Hence,
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(—Elx € Al.(ex,Vy): xXe Ep(ey))
Ale, 2 /e 1)
A (Ep(ey)ﬂ Ad(ex,Vy) = @)
AE(eN4fe,.7,)=2) 3]
Now, assume that

Jae U Ad(n,Vy):a € Ep(ey)

nek, ex) [4]

ae Al.(ex,Vy)v ae Ai(eX,Vy)l ,sincea € EU( )Ad(n,Vy),
V)

and

ne c (e/\

)Ad(n’Vy)D Ai(ex’Vy)'

But a ¢ Al.(ex,Vy), since from [3], we have —dx € Aj(ex,Vy): X € Ep(ey), and from
[4] we have a € Ep(ey).
Therefore,

ace Ai(ex,Vy)/

From the definition of 4, (ex, Vy) (section B.5.1.1), we get that for a € 4, (ex,Vy)

(—Elm € Eu( )Ad(n,Vy): me Ep(a)j

A (—Elm € Ad(ex,Vy): me Ep(a)v m= a)

]

That is,

(Elm € Eu( )Ad(n,Vy): me Ep(a))

v(EImeAd(ex,Vy):meEp(a)/\mia) [5]
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Considering the second predicate of [5]:
dme Ad(ex,Vy): me Ep(a)/\ m#a

= dme Ad(ex,Vy): me Ep(Ep(ey))/\ m#a [from [4] we havea e Ep(ey)]
= dme Ad(ex,Vy): me Ep(ey)/\m #a
But, this is false since it is given in [3] that £, (ey)ﬂ Ad(ex,Vy) =0

Hence [5] becomes:
(Hm € Eu( )Ad(n,Vy): me Ep(a))

This is similar to assumption [4], where m replaces a with, aeEp(ey)
andmeEp(a).

So, by repeating the argument above, the following statements can be deduced:
(Elp € nEIEL(J(ex)Ad(n,I/’V): pE Ep(m)j , (Elq € ne;(ﬁ)@(n,%): qe Ep(p)j s e

where peEp(m),qup(p),...

This sequence is repeated along the parents of e (a, m, p, ¢, ..., ) until the root of
the tree, r, is reached, and concluding that

(Elv S ne;(ﬁ)@ (n,Vy): Vv e Ep(r)j
But, since no such v can exist since 7 is the root of the tree, we conclude that
assumption [4] is false.
That is

—dae U Ad(n,Vy): ae Ep(ey)

nek, (et)
or

BN, )

Now, [6] is proven true based on [3], and we hence can write:

Ad(n,Vy)z %) (6]
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(—Elx € Ai(ex,Vy): xe Ep(ey))
A (ey £ 4, (ex,Vy ))
A (Ep(ey)ﬂ Ad(ex’Vy) = @)
A (Ec(ey)ﬂ Ad(ex,Vy) = @)

Aoy} =2)
el )2
(6o o, Alar)-o)

Combining [2] and [7], we get:
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Hence, we prove [1].

Now,

(£, (e, N4l v, )=2)r(E, e, N4, e..v,)=2)

(E,(e,)N4,(..v,)-2)
Ai(ex’Vy)UAd(ex’Vy)

Since 4, (ex , Vy)

Hence,

,

(Ep(ey)ﬂ Aa(ex’Vy) = Q)
rle, 2 aife. )
AEL N4 7)

C.3 Proof 3

Prove that
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We now prove that
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But since no such v can exist, we can conclude that [5] is not valid.

Therefore, [4] becomes
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Combining [3] and [6], we get
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and thus proving [2].
Combining [1] and [2], we get:
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Prove that
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First,
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Abstract

Software Configuration Management and Product Data Management systems
have been developed independently, but recently the need to integrate them to
support multidisciplinary development environments has been recognised. Due
to the difference in maturity levels of these disciplines, integration efforts have
had limited success in the past. This paper examines how the move towards
model-based development in software engineering is bringing the discipline
closer to hardware development, permitting a tighter integration of their data
management systems. An architecture for a Model Data Management system
that supports model-based development is presented. The system aims to
generically handle the models produced by the different tools during the
development of software-intensive, yet multidisciplinary, products. The
proposed architecture builds on existing technologies from the mature
discipline of mechanical engineering, while borrowing new ideas from the
software domain.



C.1 Introduction

C.1. Introduction

Organisations involved in the development of large and complex products need to
deal with a large amount of information, created and modified during the
development and product life cycle. To support this need, an organisation
normally adopts some kind of product management environment. Many such
management solutions are currently available, and it is generally the case that each
tends to focus on a specific class of products, determined by the major engineering
domain involved in the product development. The development of software-
intensive products relies on Software Configuration Management (SCM) systems,
while mechanical system development uses Product Data Management (PDM)
systems.

In the development of products that involve the collaboration of various
engineering disciplines, a number of these management environments come into
simultaneous use. This is necessary since developers from each discipline require
the specific support provided by its corresponding system. An automotive system
is a typical such product, where traditional engineering disciplines such as control,
software, mechanical and electrical engineering, need to interact to meet the
demands for dependable and cost-efficient integrated systems.

Considering the central role these environments take in controlling the
development process as well as facilitating the communication between
developers, integrating them becomes essential for the successful integration of the
efforts of all disciplines involved. In multidisciplinary development, allowing the
environments to run unsynchronised creates a source of inconsistencies and
conflicts between the disciplines. In other words, it is equally important to provide
(where possible) a common set of support mechanisms and principles within, as
well as between, the disciplines.

While most of the general facilities provided by these solutions overlap, variations
in the details exist due to the differing needs of the domains. This leads to
complications and difficulties when attempting to integrate them [1]. In this paper,
we discuss how the move towards a model-based development approach in
software engineering is bringing it closer to the hardware engineering discipline,
allowing for a tighter integration of their management systems. We advocate a
common model-based management system that borrows from the technologies of
each of these disciplines. In the next section, we discuss the differences between
conventional SCM and PDM tools and investigate the effect of adopting model-
based development in software engineering in bringing these solutions closer.
Section C.3 presents a management system architecture that takes advantage of
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this change. This is followed by a discussion of related work in the area of
PDM/SCM integration, before concluding the paper in section C.5.

C.2. Model-based Development — Bringing Software
Development towards Hardware Development

Model-based development (MBD) refers to a development approach whose
activities emphasise the use of models, tools and analysis techniques for the
documentation, communication and analysis of decisions taken at each stage of the
development lifecycle. Models can take many forms such as, (but not limited to,)
graphical, textual and prototype models. It is essential however that the models
contain sufficient and consistent information about the system, allowing
reproducible and reliable analysis of specific properties to be performed.

With the maturity of the software discipline, the need to move towards a more
model-based development approach is being recognized. This need is exemplified
in (but certainly not limited to) the OMG efforts [2][3], and the wide range of
tools supporting them.

In this section, we will investigate how the adoption of model-based development
in software engineering can help bridge a gap between software and hardware
development, leading towards a common solution for the data management of
multidisciplinary products. In [1], three crucial factors for a successful integration
of PDM and SCM are presented: processes, tools and technologies and people. We
follow this categorisation in this investigation. New challenges facing such a
common solution are also discussed.

C.2.1. Processes

The difference in the development process of software and hardware products has
been most influential in the divergence between their management tools. The more
mature hardware development expects support during the complete product life
cycle from the early concept design phases down to manufacturing and post-
production phases [4]. All product data from all these phases is expected to be
handled and related through the PDM system. In comparison, as with any new
discipline, early software development occurred in a relatively more ad-hoc
manner with no, or little, early design and analysis phases. Consequently, these
early phases were beyond the scope of SCM tools [4][5], and SCM was only
expected to manage the large amount of source files produced during the
implementation phase of software development.

In software engineering, the application of the model-based approach throughout
the complete development process implies the need to handle different kinds of
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documentation from the early design and analysis stages, as well as
implementation. Conventional SCM tools have so far incorporated these additional
documents by simply treating them as files, without differentiating them from
source code files. However, one cannot claim that SCM handles the development
process appropriately, since no distinction is made between the types of
documents produced during the different development phases. For this to be
possible, we argue that the development process itself needs to be reflected in the
product information model.

In [1], it is argued that the life cycle processes of the software and hardware
development should be integrated for the successful integration of PDM/SCM.
The challenges for such integration and a simple solution are then suggested. What
seems to be missing in the discussion is how process integration would be
beneficial for the integration of PDM and SCM systems. Studying the
functionalities of PDM/SCM, one can see that such systems simply provide the
infrastructure to enforce a given process (see section C.2.2) and play no direct role
in integrating the development processes. Instead, PDM/SCM functionalities focus
on the product data produced. For this reason, while process integration may be
desired within an organisation, for the purpose of integrating PDM/SCM systems,
it is even more important to focus on the integration of the outcomes/artefacts
produced at each phase of the product lifecycle. The ultimate goal is the tight
integration of the hardware and software components of the final product, and not
the process of getting there.

C.2.2. Tools and Technologies

This category is further divided into six basic functionalities expected of
PDM/SCM systems: data representation, version management, management of
distributed data, product structure management, process support and document
management.

C.2.2.1. Data Representation

A major difference between PDM and SCM lies in the kind of data that the
support tools are expected to handle [6]. In hardware development, the need to
provide a seamless workflow from design to manufacturing phases has forced
PDM systems to not only handle the documents produced, but much of their
internal contents (metadata) as well. A detailed information model of the product
data is an integral part of a PDM system [7]. Software development, on the other
hand, has so far adopted a file-based approach, only managing the files produced
during development, and where the only relations handled between the files is that
of the file system itself (a small amount of meta-data is also handled such as file
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author and modification date). The internal structure of these files and the
semantical relationships between them has so far been outside the scope of SCM
tools. PDM can be interpreted as managing product representations, while SCM
manages the final product itself [8].

With the maturity of the software discipline, and its move towards a more model-
based development approach, many documents (analysis models, uses cases, etc.)
will be produced during development. These documents act as models
representing certain aspects of the product and will not necessarily end up in the
final product. Nevertheless, the different types of documents need to be identified
in the management system and related to specific development stages.

The information stored in the documents is interrelated. For this reason, SCM
systems supporting model-based development would need to, not only manage the
files storing the models, but also the internal content of these models, allowing
fine-grained relationships between the document contents to be setup. An
information model of the complete information space contained in the models
need to be an integral part of a SCM system.

In a model-based development approach, developers need to be shielded from the
file structures used to store the models built, allowing them to focus on the models
and their structures. This strategy is adopted by many modern modelling tools that
may use database systems to store and hide models, and a modern management
system should follow in this track.

C.2.2.2. Version Management

In PDM systems, revisions of an object are manually managed by the user and
form a sequential series, with no possibility of performing parallel changes. In
contrast, versions in SCM systems form a graph structure, with the possibility to
perform branching in the development, followed by merging of the branched
tracks. Due to these differences, the later approach facilitates concurrent
engineering, which is limited in the former.

Accepting that SCM systems need to focus on modelling items, and not only the
files storing these items, it becomes essential for version management
functionality in SCM systems to similarly focus on the contents provided in these
files. Instead of differentiating between the lines of text in different versions of a
file, it is differences between the modelling items in different versions of a model
that need to be identified and managed.

Since conventional SCM systems do not handle the internal semantics of files, it
has also been out of its scope to ensure that parallel changes to the same item (file)
are consistent upon a merge. SCM simply provides the mechanism to branch and
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merge changes made to unrelated lines of text. The burden is placed on the user to
ensure that merged changes from different development tracks are consistent
semantically. It was hence relatively easy to provide such semantic-free
functionality.

Model-based version management becomes a challenge for SCM systems.
Complexity arises due to the different kinds of modelling items that may exist in a
model compared to the single type (lines of text) that are conventionally handled.
It is no longer possible to provide the exact versioning functionalities for all kinds
of documents in the system. In the best case, customisation of a generic
mechanism will allow the reuse of much of this functionality.

An additional challenge is to ensure consistent parallel changes to the models
stored in the files during version management. While lines of text in a file can be
treated individually, modelling items in a model are generally tightly interrelated.
Changes to one item may have implications on other items in the model. This
implies that even though each individual set of changes in two parallel change
tracks is semantically valid, merging these changes into a consistent set is not as
simple as the union of the changes since the relations between the modelling items
need to be taken into account. For example, in a class diagram, one track of
changes may have deleted a certain class, while in another track a new association
is created between that class and another. In merging these changes, it is first
necessary to establish if the deleted class needs to be reintroduced before allowing
the presence of the new association.

In dealing with this problem, an SCM system can adopt the approach of PDM of
disallowing parallel changes and in this way preventing the problem from
occurring in the first place. Another approach is to develop branch/merge
mechanisms that work on model structures, maintaining support of concurrent
development of models for software developers. A successful implementation of
the latter approach can also be beneficial for hardware development, where the
possibility to concurrently develop models becomes possible, leading the way for
new development processes.

The need for concurrent changes to the same source code files partly originates
from the less mature adhoc development of earlier software systems before
software “engineering” became a discipline. It is argued that a structured model-
based development approach would reduce the need for parallel access to the same
product data and hence the former approach becomes more appropriate. In the case
where concurrent changes remain a necessity, the latter approach needs to be
supported.

Nevertheless, branch/merge mechanisms in SCM remain a necessity for the
management of product variants. However, in model-based development, this
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implicit management of variants should be made more explicit, by representing
variants in the product information model.

As discussed in section C.4, the model-based approach to versioning and
branching/merging is gaining ground in the SCM community. In this paper, we
advocate taking advantage of this new trend in the integration of PDM and SCM
systems.

C.2.2.3. Management of Distributed Data

The need to manage geographically distributed data seems to be common for both
disciplines, with the difference being in the technical solution provided by the
management systems. PDM systems provided a more limiting functionality by not
allowing concurrent access to distributed data. This difference is closely related to
that discussed in the previous subsection, and synchronising the earlier difference
will naturally lead to the synchronisation of this functionality. Technically, a
common solution will choose either the currently adopted PDM or SCM solution
based on whether concurrent access is desired or not.

In a model-based approach to distributed data management, the functionality
would focus on the management of distributed fine-grained model data items and
not the files storing these items.

C.2.2.4. Product Structure Management

In hardware systems, the physical structure of the final product is the single
predominant structure. This structure is used throughout the development phases
as a basis for the information model to which all other information is related.
Conventional SCM systems do not explicitly support the structure of the product,
focusing instead on the directory structure of the files it manages.

In a model-based approach to software development, an SCM system would need
to focus on the internal structures of the models stored in the files instead. Unlike
hardware products, when using models throughout the development phases, the
software structure will vary widely, and hence the product structure management
functionality of a model-based SCM needs to handle many different parallel
structures. Relationships between these structures will also need to be taken into
account.

Given the possibility to manage multiple structures, it becomes easier to also
manage products resulting from the integrated effort of hardware and software
development. Each discipline would be able to maintain its own structure. The
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possibility to set up relationships between the structures results in a tight
integration of hardware and software components.

C.2.2.5. Process Support

As mentioned in section C.2.1, it is necessary to integrate the process support
functionalities of PDM and SCM systems. Software and hardware development
would need to follow different development processes, and this functionality
should be able to support each of the chosen processes, yet based on common
fundamental mechanisms: workflow management, user assignment, approach rule
mechanisms, etc. As mentioned in [1], such functionality is already quite similar in
PDM and SCM systems.

C.2.2.6. Document Management

Document management is an integral part of PDM systems, and such functionality
is missing in conventional SCM systems. The need for document management by
software developers is apparent, and hence a common efficient support ought to be
technically feasible.

C.2.3. People and Cultural Behaviours

In [9], some of the differences in the terminologies used by software and hardware
engineers are highlighted. These differences are attributed to the differences in the
development phases generally focused on by these disciplines. For example, in
software engineering, “design” is traditionally defined as building a model of the
system up to the point at which coding begins. In hardware development,
however, “design” would also include broader activities such as requirements and
testing activities.

In adopting a model-based approach in both disciplines, and as a by-product of
integrating the outcomes of each of the phases of the development processes as
advocated earlier, it becomes necessary to integrate the meaning of some of the
terminology used.

An important function of models is communication. While models are domain-
specific and can only be understood in details by engineers of the specific
disciplines, such models can be still used to communicate certain aspects of the
design to other engineers, if presented at the right level of abstraction. If models
from the various disciplines can be successfully interrelated to form a consistent
whole view of the system through a common management system, such
interrelations can also act as interaction points between the disciplines, reducing
any risks of inconsistencies and conflicts.
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C.2.4. Conclusion

The fundamental differences between SCM and PDM systems stem from the
different needs of the disciplines they aim to support. As software development
becomes increasingly model-based, and requires support throughout its
development life cycle, its needs become closer to those of hardware development.
In particular, the process management and information modelling functionalities
expected of SCM systems come closer to those provided by PDM systems for
hardware development.

This leads the way for an easier and more effective integrated management
platform satisfying the needs of both disciplines using a common set of
mechanisms. The management functionality ought to take advantage of the
commonality between the disciplines — the use of models — in the development
process by focusing on models and their internal content as central entities. This
allows the same model-based functionalities to be used by both disciplines. We
term such an approach as Model Data Management (MDM).

C.3. Model Data Management

In this section, we present an architecture for a Model Data Management (MDM)
system that aims to generically support and control different kinds of models
produced from a set of different tools and disciplines.

C.3.1. Tool Architecture

The envisaged architecture is shown in figure 33. The platform consists of two
main parts: A set of tool-specific adaption layers and a data repository with
mechanisms to handle this data. The data repository stores the data for each of the
tools. To perform this role in a generic way, the data from the different tools is
expected to be presented in a neutral form, and this functionality is provided by
the adaption layer. Triggered either by a tool or the repository, the corresponding
adaption layer permits the data flow between a tool and the repository, in a
predefined format. The following subsections will further discuss these
components.

Given its maturity, we aim to base the proposed MDM system on a configurable
PDM system. The major advantage of using a PDM system is the possibility to
define information models, with a high level query language to access and modify
the model data in the repository. These facilities generally do not exist in
conventional SCM systems. In addition, it is envisaged that the development of the
remaining MDM functionalities is made easier given the already developed
functionalities of PDM such as the support for distributed development, change
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management, workflow control, etc. The adoption of a PDM system is not
indispensable and one can envisage building an independent MDM that supports

both disciplines.

Adaption Layer

[ Adaption Layer ]

[ Adaption Layer ]

Data Model
. update
mapping
Model Data Management j
Tool-independent format
Model, | | Modelg | | Modelc |
Version Control Change Software Hardware
Management Specific Specific

Information Model

Modelg
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Process (Workflow, roles, ..)

Common meta-meta model 5

Common database

Tool interface

Management
functionalities

Data
repository

Figure 33. The major components of the MDM architecture. (Note that the
graphical tools are mock-ups shown here for illustration purposes only.)

C.3.1.1. Data Repository

The data repository stores the data from each of the tools integrated into the
platform. Tool data can be separated into graphical and model data [10] and both
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types of data need to be managed by the system, giving full control over the
models.

It is important to note that the data repository is not expected to be the primary
storage medium for each integrated tool, and to which each tool implementation
needs to conform. Similar to the a-posteriori approach in [24], an integrated tool is
self-sustained, and is only a-posteriori integrated through an adaption layer (See
next subsection).

The content of a model is generally defined using a specific meta-model that
reflects its internal structure and constraints of how modelling elements can be
combined to form a valid model. In many tools such as in Simulink [11], a meta-
model is implicitly assumed, while others, such as any UML tool [3], are strongly
based on a given meta-modelling framework.

This meta-model acts as a basis for the data schema used by a tool to internally
manage and store the model contents. Similarly, the MDM system managing an
integrated model needs to map the corresponding meta-model onto the data
schema of the repository. Since different types of models assume a different meta-
model, each model type would occupy a separate space in the repository with a
different data structure. However, in order to simplify the specification of a
schema for each integrated model, a meta-meta-model is adopted as a basis for the
repository. This meta-meta-model is instantiated to reflect a given meta-model,
which is then further instantiated when mapping the internal data of its tool to the
information model of the repository.

We adopt a simple meta-meta-model which generalises among established meta-
meta-modelling languages such as MoF [12], Dome [13] and GME [14], and based
on a broad survey of modelling languages for embedded computer systems [15]. A
model can be generally viewed as consisting of a hierarchical structuring of
modelling objects that may possess properties; ports defining interfaces of these
objects; and relationships (such as associations, inheritance and refinement)
between ports. Modelling languages differ in the kinds of objects that can be
specified, their relationships and the kind of properties they possess. When
integrating a particular model, a meta-model is instantiated by defining the kind of
objects, ports and relations that exist in a model. (Note that the main aim is not to
suggest yet another meta-meta-model that claims to cover any modelling language.
A simple, generalised meta-meta-model was adopted, allowing focus to be placed
on the PDM/SCM integration aspects of the platform.)

Figure 34 shows a UML class diagram of the object types, attributes and relations
defining the generic meta-meta-model. As an example, the lower part of the figure
illustrates the meta-model of a Data Flow Diagram (DFD) [21] model as
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interpreted by the Simulink tool [11], which is defined by specialising the generic
objects.

In this approach, the granularity at which the MDM system operates on the models
is controlled by the definition of the meta-model, implemented in the adaption
layer. MDM mechanisms will understand the model semantics down to the level at
which the elements, ports and properties are defined. Finer semantics within these
entities are not the concern of MDM. For example, if a property of an element is
defined as a blob of text, an MDM functionality cannot be expected to interpret
the detailed semantics of this property.

PDM

i3 generlc

‘wisrzionable Object

walid From'zrzion Humber
“walid Tohsersion Mumber

‘ T_connec‘tsTo MDM

);‘F‘I;\ generic
isParert Elf—T

1
1
1
1
1
1

B nt 1 1

1 e 3z Evtemal Port: ExtemalPort {42 \ntemal Port IntemalPort X
D 0.1 '
1
1

el ol ________ T---
Function | | :
Line S Enternal Part '

Sintemal Port DFD
name path name e specific
pasition signalame number e

type position :

e e e e e e e e e e e e e e e e e e e e e e = = 4.

Figure 34. The PDM information model implementing the meta-meta model, and
showing how a tool-specific meta-model is defined.

Adopting a common meta-meta-model between the models is not sufficient if
there is a need to integrate the various model contents into a whole. For this to be
possible, a unified information model of the set of models is necessary, specifying
more detailed semantics of the models and their interrelations. While such
information models are standardised for hardware products [16], no such standard
model is currently available that also encompasses models from the software
discipline. In [17], ongoing work on how such integration can be achieved is
presented.
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C.3.1.2. Tool Interface

Access to the tool data and the mapping of this data to the repository is performed
by an adaption layer. An adaption layer is developed for each tool to be integrated
into the MDM system. This layer isolates the tool-specific issues allowing MDM
to operate generically on many tools implementing different technologies. The
adaption layer fulfils three purposes. As discussed in the previous section, it maps
the specific meta-model of its designated tool onto the repository.

Second, the adaption layer maps the tool-specific format used internally to manage
the model data to a generic format of the repository. In this way, the management
functionalities can operate uniformly using a single format.

Different technologies are available for a tool to internally store its model data. A
tool can use either a computer file system to store model data in a file, or a
database management system. Various standards exist that specify how data
should be handled using these technologies, yet one cannot assume that tools will
not implement their own solutions.

In a set of tools in which the tools adopt a combination of technologies (standard
or not), it becomes necessary to translate these technologies onto a common
format, in order to make the interface to the MDM platform generic. This role is
fulfilled by the adaption layer, making the tool-specific data technology
transparent to the rest of the platform. The adaption layer translates the format
used by its designated tool to the chosen format of the repository. In the platform
advocated in this paper, we adopt the data neutral XML format to interface the
adaption layer to the repository.

Third, the adaption layer accommodates the different techniques used to gain
access to the tool’s internal data. Different tools use different technologies to
provide automated access to its internal data. In the simplest case, the adaption
layer can access and interpret the textual file produced by the tool. A tool can also
provide ‘export’ functionality, an Application Programming Interface (API), or a
query language.

For a potential tool to be integrated into the MDM system, specific automation
support is expected. In order to allow fine-grained accessibility to parts of models
and the manipulation of models, a modelling tool whose models are to be managed
need to:

e Provide access to the model data either through an API or using parsable text
[16].

e Provide fine-grained mechanisms for the construction and modification of
models through an API.
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Again, in this a-posteriori approach, an integrated tool needs neither to conform to
the meta-meta-model, nor format, nor data access approach adopted by the MDM
platform. Such demands would create a tight, undesired, dependency between the
integrated tools and the platform. It is the adaption layer’s role to map these
technologies to those of the platform.

C.3.1.3. Management Functionalities

MDM functionalities ought to generically store and handle models from the
various tools and disciplines. The functionalities of the union of typical SCM and
PDM tools would include: Version management, product structure management,
build management, change management, release management, workflow and
process management, document management, concurrent development,
configuration management and workspace management [4].

The model-based approach to data management unifies the disciplines by unifying
the kinds of objects it manages — models. The management functionalities should
focus on the models and their contents, transparent of the file structure used to
store them.

While as much of the functionalities can be shared by the disciplines, discipline-
specific functionalities need still to be supported such as build management for the
software discipline. In certain cases, it may also be desired to provide different
solutions of the same functionality for different disciplines. For example, software
development might require the complex version control mechanisms and
concurrent development normally provided by SCM systems, while hardware
development is satisfied with sequential revision control. There should be no
problem providing different solutions in MDM, depending on the kind of data
items the functionality operates on. It would however be advantageous to base the
different solutions on generic mechanisms for reusability purposes. The different
solutions ought to be also based on the same user interface and terminology.

In order to test the proposed architecture, we have investigated in details the
version management functionality of models. This functionality is termed Model
Version Control (MVC). While version control is needed in both domains, the
functionality differs between SCM and PDM systems (section C.2.2). This allows
us to investigate how far such mechanisms can be aligned between the disciplines.
Version control is also critical since it will put to the test the other crucial factors
discussed in section C.2, such as the possibility of having a common product
structure and data representation. A short summary of MVC is presented in section
C.3.2.
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C.3.2. Model Version Control Implementation

The MDM platform is currently developed using the Matrix PDM system [19]. As
shown in figure 34, it was necessary to specialise the meta-meta model provided
by the tool in order to perform the desired version control algorithm.

A simple model version control functionality (MVC) has been implemented. This
should be seen as an exploration of the integration possibilities of model-based
development. The implementation borrows from the general ideas from the fine-
grained version control algorithms such as [5] and [20]. However, instead of using
conventional databases, we base our implementation on the MDM architecture.

The algorithm supports the versioning of any model that can be mapped to the
meta-meta-model assumed in the platform. In the current implementation, data
flow diagram (DFD) [21] models from the Matlab/Simulink [11] tool and
Hardware Structure Diagram models [22] in the Dome [13] tool, are handled.

Even though each tool’s models contain a different kind of modelling objects, with
different set of properties, MVC operates generically on all kinds of models,
owing to the adoption layer which presents the model instances using a common
format and structure.

Compared to version control mechanisms in conventional SCM systems, the major
difference with the model-based approach is that entities have relations between
them that also need to be handled. Such relations do not exist between files in the
file-based approach. In file-based version control, the versioning of an entity (file)
is done independently, and does not affect the versioning of other entities in the
system, since no relations exist between them. In contrast, the versionable objects
of a model are interrelated and creating a new version of an object might influence
the versions of others.

Similar to file-based SCM systems, by only saving the changes between versions
of a model, this algorithm maintains efficient storage in the repository and avoids
the duplication of information. In addition, comparison between different versions
of a model can be efficiently deduced.

MVC provides mechanisms that allow a user to save and extract any part of the
system model. In a ‘checkin’ operation, changes to the model since the last
checkin operation are saved in the repository. When performing a ‘checkout’
operation, the specified element is reconstructed for a given version, together with
its subparts, forming an XML document of the information in the repository. This
document is then further transformed by the adaption layer to create a tool-specific
format that can be used by the tool. The details of these operations are performed
transparently to the user, allowing him/her to interface with the modelling tool’s
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interface and format. Further details on the implemented algorithm can be found in
[18].

C.3.3. Integration versus Unification

As an alternative to integrating PDM and SCM systems as proposed in [4] and [6],
the MDM architecture ought to be interpreted as a unified solution that aims to
support the needs of both disciplines, assuming model-based development.

The need to move from the file-based approach of SCM to focus on models
instead, makes much of the mechanisms currently available technically obsolete.
So, the only advantage of maintaining both systems using the integration approach
would be to maintain the user interface and terminologies software engineers are
accustomed to. Integration techniques struggle with trying to synchronise and
balance between the two disciplines.

Instead, the unification approach imposes new common mechanisms with common
terminology that are expected to be accepted by both disciplines. Naturally, this
approach faces more resistance from established developers and disciplines.
However, the shift to model-based development would require a paradigm change
that the software community may have to face anyway.

Failures in PDM/SCM integration efforts due to cultural differences [1] ought to
be seen as integration problems in the organisation itself that have to be dealt with.
In the best case, a unified approach can only bring the conflicts to the surface to be
dealt with appropriately.

Accepting the resistance and time it takes tool vendors to change, integration may
be the first step, but the future is unification.

C.4. Related Work

SCM systems targeting models, instead of file objects, are increasingly appearing
in the literature ([5], [20] and [23]). In these approaches, an information model of
the documents to be handled is assumed, allowing for the management of the
internal information stored in the documents, as well as the specification of
relations between information from different documents. While focused on
software models, these approaches are helpful since the mechanisms can be
extended to apply to any kind of models throughout the development lifecycle.
The MVC implementation advocated in this paper is inspired by these approaches,
broadening their use for more general model types. More importantly, basing the
implementation on the facilities already available in PDM systems, instead of
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using conventional databases, helps in the integration with the mechanisms in the
discipline of hardware development.

In [4], three techniques of integrating PDM and SCM systems are proposed. Of
these, the full integration technique was considered ideal and most desired. In the
full integration solution, the systems’ functionalities are separated from their own
repositories, and reintegrated into a common repository with a common
information model. A common user interface is also built on top, in order to give
all users a common look and feel. However, it is argued that full integration is
difficult to implement using today’s tools due to the tight integration of the tools’
components. All the suggested approaches accept the status quo of software and
hardware development and consequently needed to deal with fundamental
differences. This lead to limited integration success. Rejecting the status quo and
focusing on the commonality between the disciplines (model-based development),
should instead lead to a smoother integration.

In [6], a configuration management system is suggested that can be applied to both
software and hardware design documents. The system also allows for
relationships, such as dependencies, to be established between documents.
However, the entities handled by the system are file documents with no fine-
grained management of their content.

C.5. Conclusion

In multidisciplinary development, the integration of the various management
systems used by different disciplines is of critical value. An integrated
environment allows the efforts of all developers to be well communicated and
reduces any risks of inconsistencies and conflicts between them.

Due to the difference in maturity levels of these disciplines, such integration
efforts has had limited success in the past. Specifically, the implementation-
centred development approach of software systems expected a coarse-grained
support from SCM systems, where documents are the smallest entities managed,
while ignoring the internal model semantics contained within them. In
comparison, mechanical development expects the handling of the detailed product
data by their corresponding PDM systems using standard information models.

However, with the move towards model-based development, where the use of
models becomes the central activity in making, communicating and documenting
de-sign decisions, disciplines share a common need to handle the same kind of
entities — models. In this way, management systems can be brought closer
together.
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This paper presented an architecture for a Model Data Management (MDM)
system that aims to provide the support functionalities expected of a model-based
development environment. The system aims to generically handle and control the
various kinds of models produced by the different tools during the development of
software-intensive, yet multidisciplinary, products. The proposed architecture
builds on existing technologies from the more mature discipline of mechanical
engineering, while borrowing new ideas from the software engineering discipline.

To illustrate the MDM solution, an initial implementation of a Model Version
Control (MVC) functionality was performed, allowing for the fine-grained version
management of two types of models from two different tools. MVC permits
stakeholders to perform design activities in terms of models, where they can
organise, share and modify their models, transparent to the underlying file
structure. A simplified version control functionality has been realised. The ability
to perform branches and merges in the changes of an element is a very important
feature of version control, specifically desired in software development. This is
needed in order to study different design alternative, provide product variants, or
deal with a bug fix from an earlier release. MVC needs to handle this functionality
in the future.

The major aim of the current platform implementation has been to experiment and
illustrate the concepts discussed in this paper. While the current implementation
has only been validated through the use of a small case study, a more commercial
size case study would be needed to appropriately validate the usability of this
approach. This remains to be done in the future.

The advantage of MDM over conventional PDM/SCM systems is the inclusion of
the internal content of its supported models, allowing for a tighter integration of
the design information between different models. In addition, functionalities are
generically applicable for many kinds of models, simplifying the process of adding
new tools into the toolset. However, an initial effort is required to integrate new
models in the development of the adaption layer. The fine-grained management of
models is bound to require more computational effort that the coarse-grained
approach.

The development process of software and hardware products will always differ
due to the nature of the products themselves. However, in a unified approach the
same mechanisms ought to be used to support these differing processes. Moreover,
by providing different strategies for different kinds of models, the development
needs of both disciplines can be satisfied, using variants of the same basic
mechanisms in a unified management system. It is essential however to base the
strategies on the same basic mechanisms and user interface, allowing the reuse of
basic components and preventing confusion in terminologies.
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In the case where development is not (completely) model-based, MDM facilities
may still be used. Any product data inputted into the platform is restructured and
interpreted to form model data. For example, a MDM system can manage the files
of a Java project by reinterpreting each file as a class model, extracting and
managing the attributes and methods contained within each file as fine-grained
structured data.

The approach is currently implemented using a PDM system. It is our ideal vision
that with the acceptance of model-based development, one no longer needs to
discuss the integration of PDM and SCM systems. Instead, a truly unified
approach to model data management can be used by both disciplines.
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Platform

Abstract

An architecture for a Model Data Management (MDM) system that supports
model-based development is being developed. The system aims to generically
handle the models produced by the different tools during the development of
software-intensive, yet multidisciplinary, products. The proposed architecture
builds on existing technologies from the mature discipline of mechanical
engineering, while borrowing new ideas from the software domain. To
illustrate the architecture, an initial implementation of a Model Version Control
(MVC) system, which allows the fine-grained version management of models,
is developed.
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D.1. Introduction - Model Data Management
Functionality

This paper presents the model-based version control algorithm implemented in the
Model Data Management (MDM) platform, presented in [1].

The MDM platform aims to generically store and handle models from the various
tools used in the development of mechatronics products. Such a platform is viewed
as a unification of the management functionalities typically provided by the
discipline-specific PDM and SCM systems traditionally used in the hardware and
software disciplines respectively. The model-based approach to data management
unifies the software and hardware disciplines by unifying the kinds of objects it
manages — models.

The functionalities of the union of typical SCM and PDM tools would include:
Version management, product structure management, build management, change
management, release management, workflow and process management, document
management, concurrent development, configuration management and workspace
management [2].

In order to test and exemplify the proposed architecture, we investigate in details
the version management functionality of models. This functionality is termed
Model Version Control (MVC). While version control is needed in both domains,
the functionality differs between SCM and PDM systems. This allows us to
investigate how far such mechanisms can be aligned between the disciplines.

Naturally, a full validation of the approach needs to investigate the feasibility of
the remaining management functionalities using the model-based approach.
However, version control is most fundamental and best validates our MDM
approach. It will put to the test the other crucial factors discussed in [1], such as
the possibility of having a common product structure and data representation.

The aim of the current implementation is to investigate the potential of
implementing model-based management functionalities using the technology
offered by a typical PDM system. Specifically, the implementation of a fine-
grained version control algorithm is investigated. As a result, the extensions
necessary for a PDM system in order to support such functionality will be
highlighted.

The MDM architecture is shown in figure 35. The platform consists of two main
parts: A set of tool-specific adaption layers and a data repository with
mechanisms to handle the stored data. The data repository stores the data for each
of the tools. To perform this role in a generic way, the data from the different tools
is expected to be presented in a neutral form, and this functionality is provided by
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the adaption layer. Triggered either by a tool or the repository, the corresponding
adaption layer permits the data flow between a tool and the repository, in a
predefined format.
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Figure 35. The major components of the MDM architecture.

D.2. Model Version Control

A simple MVC algorithm is implemented. This should be seen as an exploration
of the integration possibilities of the model-based approach to data management.
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The algorithm supports the versioning of any model that can be mapped to the
meta-meta-model assumed in the platform.

Even though each tool’s models contain different kinds of modelling objects, with
different set of properties, MVC operates generically on many model types. This
owes to the adaption layer which presents the model instances using a common
format and structure.

D.2.1. Meta-model

The content of a model is generally defined using a specific meta-model that
reflects its internal structure and constrains how modelling elements can be
combined to form a valid model. In many tools such as Simulink [3], a meta-
model is implicitly assumed, while others, such as any UML tool [4], are strongly
based on a given meta-modelling framework. The meta-model acts as a basis for
the data schema used by a tool to internally manage and store the model contents.

Similarly, the MDM system managing an integrated model needs to map the
corresponding meta-model onto the data schema of the repository. Since different
types of models assume a different meta-model, each model type would occupy a
separate space in the repository with a different data structure. However, in order
to simplify the specification of a schema for each integrated model, a meta-meta-
model is adopted as a basis for the repository. This meta-meta-model is
instantiated to reflect a given meta-model, which is then further instantiated when
mapping the internal data of its tool to the information model of the repository.

In the current implementation, the instantiation to a specific meta-model is not
explicitly specified in the system, and is only implicitly assumed by the
corresponding adaption layer of a tool when performing the mapping between the
tool-specific meta-model and that assumed by MDM.

The MVC functionality (or any other MDM functionality for that matter) is
expected to work generically on any instance of the meta-meta-model. This is
made possible by providing the instantiation information for a specific meta-model
(such as the specific element type names) as input to the generic algorithm through
an adaption layer. Section D.2.5 further discusses the process of mapping a
specific meta-model to this meta-meta-model.

We adopt a simple meta-meta-model which generalises among established meta-
meta-modelling languages such as MoF [5], Dome [6] and GME [7], and based on
a broad survey of modelling languages for embedded computer systems [8]. In
view of this meta-meta-model, a model can be considered as consisting of a
hierarchical structuring of elements that may possess properties; ports defining
interfaces to these elements; and relations (such as associations, inheritance and
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refinement) between ports. Modelling languages differ in the kinds of elements
that can be specified, their relationships and the kind of properties they possess.
When integrating a particular model, the meta-meta-model is instantiated to reflect
a given meta-model by defining the kind of elements, ports and relations that will
exist in that particular model. The meta-model is then further instantiated when
defining a specific model for a specific system. Figure 36 shows a class diagram of
the object types, attributes and relations defining the generic meta-meta-model. A
more detailed and formalised definition of the meta-meta-model can be found in

[9].
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Figure 36. The generic meta-meta-model represented as a class diagram.

In this approach, the granularity at which the MDM system operates on a
particular model is controlled by the definition of its respective meta-model,
implemented in the adaption layer. MDM mechanisms will understand the model
structure down to the level at which the elements, ports and properties are defined.
Finer structures within these entities are not the concern of MDM. For example, if
a property of an element is defined as a blob of text, an MDM functionality cannot
be expected to interpret the detailed semantics of this property. This provides the
necessary flexibility when integrating a particular model to decide on the level of
granularity at which the MDM functionalities ought to operate.

D.2.2. Versioning Model

The MVC algorithm supports the following operations to be performed on a
model:

e An element can be created as a child of a parent element.

e An element can be deleted.

e An element can be modified, when one of its properties are modified.
e An external port can be created for a containing element.

e An external port can be deleted.
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e An external port can be modified, when one of its properties are created,
deleted or modified.

e An internal port can be created for an external port.
e An internal port can be deleted.

e An internal port can be modified, when one of its properties are created,
deleted or modified.

e A relatedTo relation can be created between a set of external/internal ports.
o A relatedTo relation can be deleted.
The following operations are not supported:

e Moving an element from one parent to another (Changing the end entities of
an isParentOf relationship).

e Moving an external port from one containing element to another (Changing
the end entities of a hasExternalPort relationship).

e Moving an internal port from one external port to another (Changing the end
entities of a hasInternalPort relationship).

e Exchanging one or more of the end entities of a relatedTo relationship.

e Modifying a relatedTo relationship, by creating, deleting or modifying one of
its properties.

We refer to versionable objects as those objects of the model to which new
versions can be created when changes to them occur. In the current approach, only
elements, ports (external ports and internal ports) and the relatedTo relations of a
model are versionable. Currently, a relatedTo relation can be created and deleted
between different versions of the system. However, changes to a relation’s
properties are ignored and hence change operations cannot be version controlled.
The reason of this limitation is mainly due to the current PDM system being used,
in which the built-in relations cannot have revisions. Allowing versions of
relations would require the further extension of the provided facilities. While not
technically impossible, this extension is left for future development. Given the
current implementation, in the case where relations need to be versioned, then they
ought to be defined as elements.

The remaining relationships (isParentOf, hasExternalPort, hasinternalPort) need
not be versioned since such relationships do not contain properties that can
change. The creation/deletion of such a relationship reflects a creation/deletion of
one of its end entities. Such actions are version controlled through the versioning
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of the end entities. (The relatedTo relation differs from these relationships in that
the creation/deletion of such a relation cannot be reflected in any one of its end
entities, and hence need to be specified at the relation itself.)

A move operation, in which one end of the relationship is changed from one entity
to another, is not supported. The version control of move operations can only be
supported by version controlling the relationships. Such support would also allow
changes to the end elements of a relatedTo relation to be supported. While it may
be desired, the current implementation does not support such move operations.
Instead, a move is interpreted as a deletion of the old relationship and recreation of
anew one.

Finally, an attribute is not a versionable object. While changes to a versionable
object’s attributes are used to define whether a new version of the object is created
or not, the attributes are not versioned themselves.

Figure 37 shows an extension to the class diagram of figure 36, highlighting the
properties of versionable objects, to be discussed in this section.
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Figure 37. Extending the adopted meta-meta-model to support the MVC algorithm.
The relatedTo relationship has the attributes validFromVersionNumber and
validToVersionNumber, not illustrated in the model.

Each versionable object needs to have a uniqueldentifier that is unique within its
context. The uniqueldentifier of an element is unique in the context of its parent
element, meaning that no two sibling elements can have the same identifier. The
context of an external port is its containing element. An internal port’s context is
its external port, and hence no uniqueldentifier is needed since there is a maximum
one-to-one relationship between them. Since changing the end entities of a

196



D.2 Model Version Control

relatedTo relation is not supported, a relation can be fully identified by its end
elements. For this reason, relations need not have a uniqueldentifier.

Compared to version control mechanisms in conventional SCM systems, the major
difference with the model-based approach is that the entities to be versioned have
relations between them that also need to be handled. Such relations do not exist
between files in the file-based approach. In file-based version control, the
versioning of an entity (file) is done independently, and does not affect the
versioning of other entities in the system, since no relations exist between them. In
contrast, the versionable objects of a model are interrelated and creating a new
version of an object might influence the versions of others. For example, when a
given element’s properties are changed, not only has this element changed, but the
parent element can be considered as changed, although none of its direct properties
has. No new version of the parent needs to be created, but it becomes necessary to
indicate that the parent’s version is valid for both the child’s old version as well as
the new version. This change propagation is recursively performed up the
hierarchy, which implies that every time a set of changes is performed on elements
of a model (and new versions are created), a new version number (but no new
object versions) of the entire model needs to be created, in order to encompass
these changes.

We differentiate between a direct change to a versionable object in which the
object’s properties are changed, and an indirect change in which a change to one
of its dependent versionable objects is changed (in turn either directly or indirectly
changed).

e An element is indirectly changed if one of its direct children or one of its
direct external ports is changed (either directly or indirectly).

e An external port is indirectly changed if its internal port is changed.

e A relatedTo relation cannot be changed in the current implementation. (Once
supported, changing any of its end entities would be considered an indirect
change.)

A consequence of these change rules is the propagation of indirect changes from
any entity up in the model hierarchy. Since a model is defined as a single rooted
tree, any direct change to any entity in the model implies an indirect change to the
root of the model. This in turn implies that the complete model has changed.

In order to handle the propagation of changes in the hierarchy, two kinds of
versions need to be differentiated:
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e A local version of an object that is associated with direct changes to the
object, ignoring its related objects. (Denoted by V;, V3, Vs, etc.). Each local
version manages the corresponding set of valid properties.

o A global version of the entire model that is associated with the set of local
versions of each object in the hierarchy that forms a consistent version of a
complete model (denoted by the numbers 1, 2, 3, etc.).

Note that one talks about the ‘local version of an object’ and the ‘global version of
the entire model’. In addition, since the number of local versions (V;, V5, ...) is
less relevant, the terms ‘local object version’ and ‘global version number’ can be
shortened in this discussion to ‘object version’ and ‘version number’ respectively.

Now, whenever a direct change to an object occurs, a new local version is created
for that object. This new local version records the new properties of the entity.
Since any single direct change implies an indirect change - and hence a new
version - of the complete model, a new global version is also created. The new
global version is associated with the new local version of the directly changed
entity, as well as the previous local versions of any other unchanged entity in the
hierarchy. In the case when more than one entity is directly changed (within a
single check-in operation), a single global version number is created, which is
associated to these new local versions and the remaining unchanged objects.

Each local version of a versionable object has a validFromVersionNumber and
validToVersionNumber property defining the range of global version numbers for
which the local version is valid. Only one local version in the sequence of local
versions of an object can be valid for a specific global version of the model. It is
possible to represent the set of global versions valid for each local version as a
range of numbers - [validFromVersionNumber validToVersionNumber] -
assuming the global version number is incremented between different versions of
the model. This is because once a local version, V,, is created and made valid for
the new validFromVersionNumber global version, V, remains the valid version to
use for any newer global version until a new local version, V., is created. Once
the newer V., is created, V,‘s range is closed and it cannot become valid for any
new global version.

For example, in figure 38, the local version V; of the element Speed Control is
valid for more than one global version (1 to 3) since its children elements have
changed in these versions without any changes being performed on the element
itself. This also means that the number of local and global versions of an object is
not necessarily the same.

In the implementation of the algorithm, if an object’s version is valid for the latest
global version number of the model, then the validToVersionNumber of that
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version is set to oo. This feature is used simply to avoid updating the
validToVersionNumber of all the objects in the model, whenever a new global
version number is created, unless an object is deleted or a new local version is
created. For example, in figure 38, assuming a new global version number 6 is
created, the last version V3 of Speed Control is made automatically valid for this
new version number.

V] V2 V3
Speed validFromVersionNumber| 1 | 4 | 5
Control |validToVersionNumber 3 14|
Arbitrator |validFromVersionNumber| 1 3
validToVersionNumber 2 3
Speed validFromVersionNumber| 3
Sensor  |validToVersionNumber ©

Figure 38. The relationships between the local and global versions of elements in
the model hierarchy.

Note that the range of valid versions of a parent includes the range of any of its
children since a child cannot exist without its containing parent. When an element
1s deleted, validToVersionNumber is set to the last version at which the element
exists. For example, in figure 38, the Arbitrator element is deleted in the global
version 4. This is deduced since there exists a version 5 of the parent Speed
Control element, but the versions of Arbitrator terminate at 3. The above
discussion also applies for the other relations between versionable objects
(between an element and its external ports, and between an external port and its
internal port).

A consequence of this versioning model is that whenever a user performs any
small set of changes to any parts of the model, a new version number of the
complete model is created. Elements from the other unchanged branches of the
model hence inherit this new version number, yet no changes have been performed
on them or any of their own children. This behaviour, while necessary, may be
confusing, and need to be handled appropriately by good tool support. (For a
given element, the tool can easily work out the set of relevant version numbers for
which the element or any of its children has changed.)
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The approach of assuming a global configuration for the entire model tree is
similar to modern file-based SCM systems such as Subversion [10], in which any
changes to any of the files, is associated with a global version number of the entire
file tree. Each version number N represents the state of the repository/ file-system
after the N commit.

Similar to file-based SCM systems, by only saving the changes between versions
of a model, the versioning model maintains efficient storage in the repository and
avoids the duplication of information. In addition, comparison between different
versions of a model can be efficiently performed. In this way, additional functions
such as the merging of models and the visual presentation of model changes can
be readily implemented.

MVC provides mechanisms that allow a user to save and extract any part of the
system model through check-in and check-out operations respectively. These
operations will be further detailed in section D.2.3.

D.2.3. Versioning Algorithm

As discussed in section D.2.1, a model can be viewed as a tree structure of
elements forming a parent-child relationship. In the versioning algorithm, the
model tree is assumed to be single rooted. This assumption forms no limitation
given that the platform aims to support multiple models and model types.
However, each root contains its own global version number, and changes in one
rooted tree are not directly reflected in another.

Since the focus of this work is not in developing new versioning algorithms, we
attempted to borrow from existing efforts, while ensuring their broad usage for
more general model types. The MVC algorithm is mainly inspired by the
algorithm in [17], borrowing ideas such as assuming a unique identifier for each
node in the model tree and versioning all changes within an editing session as a
single change. However, instead of using conventional databases, the
implementation is based on the MDM platform facilities (and indirectly on the
facilities already available in a PDM system).

D.2.3.1. Check-out Operation

The general behaviour of the check-out operation is illustrated in figure 39. When
performing a check-out operation, the user is first prompted for the element in the
model hierarchy stored in the repository to be checked-out, as well as the
particular global version number for that element.

200



D.2 Model Version Control

The saveWorkspacelnformation operation saves relevant information about the
checked-out element together with the model outputted. This information is later
used in the check-in operation to identify the location of the element just checked-
out in the repository. Different techniques can be used to save the workspace
information. One solution is to save a special text file in the file system to control
the list of the checked-out elements. For each element, the location in the file
system where the checked-out model is placed, the element’s identifier in the
repository and the version number with which it is checked-out are stored. The
specific details of managing the workspace information will not be discussed in
this report.

void checkout () {
Element element = promptForElement () ;
int versionNumber = promptForVersionNumber (element) ;
saveWorkspaceInformation (element, versionNumber) ;
checkoutElement (element, versionNumber, outputFile);

Figure 39. Pseudocode for the check-out operation

Once the element and global version number are determined, the checkoutElement
operation (illustrated in figure 40) is performed.

public void checkoutElement (Element element,
int versionNumber, FileWriter out) {
checkoutProperties (element, versionNumber) ;

loop Vp € externalPorts (element, versionNumber)
checkoutExternalPort (p, versionNumber, out);

loop Vc € directChildren (element, versionNumber)
checkoutElement (c, versionNumber, out);

loop Vr € internalRelations(element, versionNumber)
checkoutInternalRelation (r, versionNumber, out);

Figure 40. Pseudocode for the checkoutElement operation

The first step in the checkoutElement operation is to check-out the element
properties. This is followed by checking-out each of the element’s external ports
(illustrated in figure 41), as well as its direct children and internal relations. Note
that checkoutElement operates recursively over the direct children of the element.
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public void checkoutExternalPort (ExternalPort externalPort,
int versionNumber, FileWriter out) {
checkoutProperties (externalPort, versionNumber) ;

loop Vp € internalPorts (externalPort, versionNumber)
checkoutInternalPort (p, versionNumber, out);

Figure 41. Pseudocode for the checkoutExternalPort operation

D.2.3.2. Check-in Operation

In a check-in operation, changes to the model since the last check-in operation are
saved in the repository. The general behaviour of the check-in operation is
illustrated in figure 42. The first step is to determine the position in the existing
tree structure where the model sub-tree, with root modelRoot, needs to be checked-
in. This can be determined based on information already saved in the user
workspace. In the case where modelRoot is an update of an existing sub-tree in the
repository that has been checked-out earlier, the workspace would contain the
necessary information, produced during the last check-out operation (as detailed in
section D.2.3.1). In the case where a new sub-tree needs to be added, the
workspace would contain no such information and the user is prompted for the
location in the tree structure of the repository (A new model is created in the
repository in this way.).

void checkin (Node modelRoot) {
Element parent = findParent (modelRoot, Workspace);
if (parent == null)
parent = promptUserForParent () ;
boolean newVersionCreated = checkinChild (parent, modelRoot) ;
if (newVersionCreated)
incrementGlobalVersionNumber () ;

Figure 42. Pseudocode for the check-in operation

Once the parent of modelRoot is determined, the checkinChild operation
(illustrated in figure 43) is performed. The operation returns a boolean value
indicating whether the model was modified in any way since the last check-out. In
this case, the complete model is considered modified, and the global version
number of the complete model is incremented.
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boolean checkinChild (Element parent, Node modelRoot) ({
incrementGlobalVersionNumber = false;

Element child = locateChild (parent, modelRoot);
if (child == null) {
incrementGlobalVersionNumber = true;
child = createNewChild (parent, modelRoot) ;
}
elseif (changed(child, modelRoot)) {
incrementGlobalVersionNumber = true;
createNewVersion (child, properties (modelRoot));

}

//checkinDirectChildren
loop VcedirectChildren (modelRoot) {
if (checkinChild (child, c))
incrementGlobalVersionNumber = true;
}
loop Vc € directChildren(child)

s.t. ¢ ¢ directChildren (modelRoot) {
incrementGlobalVersionNumber = true;
delete(c);

}

//checkinExternalPorts
loop Vp € externalPorts (modelRoot) {
if (checkinExternalPort (child, p))
incrementGlobalVersionNumber = true;
}
loop Vp € externalPorts(child)
s.t. p ¢ externalPorts (modelRoot) {
incrementGlobalVersionNumber = true;
delete (p);
}

//checkinInternalRelations
loop Vr € internalRelations (modelRoot) {
if (checkinInternalRelation (child, r))
incrementGlobalVersionNumber = true;
}
loop Vr € internalRelations(child)
s.t. r ¢ internalRelations (modelRoot) {
incrementGlobalVersionNumber = true;
delete (r);
}

return incrementGlobalVersionNumber;

Figure 43. Pseudocode for the checkinChild operation

203



Paper-D-The Version Control Algorithm Implementation in the Model Data Management (MDM)
Platform

The first step in the checkinChild operation is to version control the modelRoot
node itself. An attempt is made to locate the modelRoot node to one of the
designated parent’s direct children. The locateChild operation searches the direct
children of parent for the child that equals the umiqueldentifier signature of
modelRoot.

If no such element is found, then modelRoot is considered to be a new child of
parent. Parent is hence modified by creating a new direct child with the properties
of modelRoot. The operation createNewChild(parent, modelRoot) creates a new
child of parent. The relationship between the new child and its parent, together
with the values of their validFromVersionNumber and validToVersionNumber
before and after the createNewChild operation are illustrated in figure 44.

Before: GVN =n After: GVN =n+1

parent : Element parent : Element
validFromVersionNumber = 1 CreateNewChild validFromVersionNumber = 1

validTorsionNumber = oo validTorsionNumber = co

fsParentOf iSWWﬁOf

child, : Element child, : Element child, : Element
validFromVersionNumber = 1 validFromVersionNumber = 1 || validFromVersionNumber = n
validTorsionNumber = co validTorsionNumber = oo validTorsionNumber = oo

Figure 44. The effect of performing the createNewChild(parent, child,) operation,
illustrated as an Object Diagram.

If a corresponding child is found, then the child’s properties are compared with
those of modelRoot. A change in any of the properties since the last version of the
element would indicate that a new version of the existing child needs to be created.
The operation createNewVersion(child, properties(modelRoot)) creates a new
version of child. The relationship between child and the new version, together with
the values of their validFromVersionNumber and validToVersionNumber before
and after the createNew Version operation are illustrated in figure 45.

Second, the checkinChild operation is operated recursively over the direct children
of modelRoot, where each direct child is assumed to be a modelRoot to be
checked-in as a child of the current child element. In addition, any direct child of
child that is no longer a direct child of modelRoot is considered deleted. The
operation delete(element) deletes element in the new version of the model. The
values of element’s validFromVersionNumber and validToVersionNumber before
and after the delete operation are illustrated in figure 46.
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Before: GVN =n After: GVN =n+1

element (V) : Element - element (V) : Element
validFromVersionNumber = 1 CreateNewVersion validFromVersionNumber = 1

validTorsionNumber = oo validTorsionNumber = n

versionOf
\ 4
clement (V5) : Element
validFromVersionNumber = n+1
validTorsionNumber = oo

Figure 45. The effect of performing the createNewVersion(element,
newProperties) operation, illustrated as an Object Diagram.

Before: GVN =n After: GVN =n+1

Element : Element element : Element
validFromVersionNumber = 1 validFromVersionNumber = 1

validTorsionNumber = oo validTorsionNumber = n

Figure 46. The effect of performing the delete(element) operation, illustrated as an
Object Diagram.

These latter steps are analogously repeated for the external ports of modelRoot,
where each external port of modelRoot is checked in as an external port of child,
using the checkinExternalPort operation shown in figure 47. In addition, any
external port of child that is no longer an external port of modelRoot is deleted.

Note the similarity between the checkinExternalPort and checkinChild operations.
Specifically, each internal port of externalPortNode is checked in as an internal
port of externalPort, using the checkinlnternalPort operation shown in figure 48.
In addition, any internal port of externalPort that is no longer an internal port of
externalPortNode (The equivalent of externalPort in the repository) is deleted.

Once the direct children and external ports of modelRoot are synchronised with the
child element in the repository, it becomes possible to also synchronise the
internal relatedTo relations between ports of modelRoot’s direct children. An
internal relation of an element is a relatedTo relation between two ports from the
set of external ports of all its direct children, as well as the element’s internal
ports.

The internal relations synchronisation is analogous to that of the direct children
(and external ports) described earlier. Each internal relation of modelRoot is
checked in using the checkinlnternalRelation operation shown in figure 49. In
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addition, any internal relation of child that is no longer an internal relation of
modelRoot is considered deleted.

boolean checkinExternalPort (Element containingElement,

Node externalPortNode) ({
incrementGlobalVersionNumber = false;

ExternalPort externalPort = locateExternalPort (containingElement
, externalPortNode) ;
if (externalPort == null) {
incrementGlobalVersionNumber = true;

createNewExternalPort (containingElement, externalPortNode) ;

}

elseif (changed(externalPort, externalPortNode)) {
incrementGlobalVersionNumber = true;
createNewVersion (externalPort, properties(externalPortNode)) ;

}

//checkinInternalPorts

loop Vp € internalPorts (externalPortNode) ({
if (checkinInternalPort (externalPort, p))
incrementGlobalVersionNumber = true;
}
loop Vp € internalPorts (externalPort)
s.t. p ¢ internalPorts (externalPortNode) {
incrementGlobalVersionNumber = true;
delete(p);
}

return incrementGlobalVersionNumber;

Figure 47. Pseudocode for the checkinExternalPort operation

boolean checkinInternalPort (ExternalPort externalPort,
Node internalPortNode) (

incrementGlobalVersionNumber = false;

InternalPort internalPort = locateInternalPort (externalPort,
internalPortNode) ;

if (internalPort == null) {

incrementGlobalVersionNumber = true;
createNewInternalPort (externalPort, internalPortNode) ;
}
elseif (changed(internalPort, internalPortNode)) {
incrementGlobalVersionNumber = true;
createNewVersion (internalPort, properties (internalPortNode));

}

return incrementGlobalVersionNumber;

Figure 48. Pseudocode for the checkininternalPort operation
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boolean checkinInternalRelation (Element parent,
Node internalRelationNode) {

incrementGlobalVersionNumber = false;
PortRelatedTo internalRelation = locateInternalRelation (parent,
internalRelationNode) ;
if (internalRelation == null) {
incrementGlobalVersionNumber = true;

createNewInternalRelation (parent, internalRelationNode) ;
}

return incrementGlobalVersionNumber;

Figure 49. Pseudocode for the checkininternalRelation operation

Note the similarity between the checkinlnternalRelation and checkinChild
operations. Specifically, since relatedTo relations cannot be versioned (as
discussed in section D.2.2), the only check that can be performed is whether the
internal relation is newly created.

D.2.4. Tool Implementation

The MDM platform is currently developed using the Matrix PDM system [11]. In
the current implementation, Data Flow Diagram (DFD) [12] models from the
Matlab/Simulink [3] tool and Hardware Structure Diagram models [13] in the
Dome [6] tool are handled.

The Matrix system manages its data using a relational database. However, the
database is made transparent by providing an interface allowing the modeller to
indirectly define the database schema using an object-oriented approach, which is
more appropriate in modelling the product data.

Two user-levels in the Matrix system are relevant for the purposes of this report:

e The Business Modeller usage level - where the user defines types of objects,
along with the attributes, process rules, and persons associated with those
objects. This information represents the company’s business model and is
used to set up the database schema.

e The Matrix Navigator usage level - where the user creates specific instances
of the object types that were defined in the Business Modeller.

At the Business Modeller usage level, the following kinds of objects can be
defined:
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o A business object type - defines the kind of business objects that can be
instantiated at the Matrix Navigator level. The definition of a business object
type includes a definition of a collection of attributes as well as an (optional)
specification of the object type from which it is derived. Inheritance provides
the specialising type with the attribute collection from the inherited parent as
well as the relationship connections in which the parent type plays a role.
Given that many types can inherit from the same parent type, an inheritance
hierarchy is formed.

o A relationship type - defines a connection that can be made between business
objects. The definition of a relationship determines the types of objects that
can be specified at each end of the relationship as well as any attributes it
may have.

e An attribute — defines a characteristic or property that can be assigned to an
object or to its relationship with other objects.

The Business Modeller usage level is a way of extending and configuring the
Matrix system for specific needs. For the implementation of the MDM platform,
the information model is configured to reflect the desired meta-meta-model of the
MDM platform (figure 50). The VersionableObject business type is defined to
allow the generic definition of Element, ExternalPort and InternalPort with the
attributes uniqueldentifier, validFromVersionNumber and validToVersionNumber.
The relationship types between these object types reflect the meta-meta-model
definition of the platform. The versionOf relation is a built-in relation, used to
relate the revisions history of business objects. This relation is used to relate the
different local versions of objects in the platform.

Any integrated model is defined by specifying business object types that inherit
from these objects. Section D.2.5 presents the necessary steps that need to be
performed when integrating a specific model.

Besides the configuration capabilities of the Business Modeller, further
customisation capabilities are available through an Application Development Kit
(ADK), allowing programmers to write custom applications in either C++ or Java.
These custom applications can be used for the integration of Matrix with other
applications. The provided API provides applications with access to the product
data in the repository, allowing typical operations such as creating and deleting
business objects and relationships; modifying attribute values of business objects
and relationships; and querying objects about attribute values, revisions history,
ownership, etc.

The MVC algorithm is implemented as a Java application that takes advantage of
the provided API to perform the necessary queries and modifications of the
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repository data. By basing the implementation on the MDM-generic object types
and relationships, the algorithm is designed to be applicable to any kind of
specialising business objects, and hence any kind of integrated model.
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Figure 50. The PDM information model implementing the meta-meta-model and
the version control data model.

The details of the check-in/out operations are performed transparently to the user,
allowing him/her to interface with the modelling tool’s interface and format. The
input to the check-in operation is a model represented in an XML document, with
the predetermined structure as presented in section D.2.5. Such a document is
produced by the adaption layer of the corresponding tool which maps the tool-
specific model format to that expected in the platform. The document is
hierarchically structured, where the element is represented as an XML-element,
with the properties, external ports, direct children and internal relations forming a
list of child XML-elements. Each direct child of an element contains in its turn
internal child elements of its constituting external ports, elements and internal
relations. When performing a check-out operation of a specific element within a
model, that element is reconstructed for a given version, together with its children,
producing a model of the information in the repository as an XML document. This
document is then further transformed by the adaption layer of the corresponding
tool to produce a tool-specific format and structure. The output document of the
check-out operation for a given element is equivalent to the input to the check-in
algorithm for that same element, with the exception that the ordering of the XML-
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elements may not be reserved. Given the meta-meta-model definition adopted, the
ordering of sibling elements is not considered and hence the order difference has
no semantic relevance.

Limited testing has so far been performed on the MVC algorithm. However, given
its application to two different tools, confidence in the generality of the algorithm
is gained.

In addition, performance issues need to be evaluated in the future. The current
implementation’s performance is not satisfactory. However, no final judgement
can be made, since having focused on the functionality, no attempts has been made
to optimise the algorithm. In addition, neither measurement nor control of the
hardware performance onto which the PDM system resides, were made.

The current implementation aimed to evaluate whether the functionalities offered
by a PDM system are sufficient to implement a fine-grained version control
system. It remains to see if the expected performance can be provided by PDM,
given that such a system is not normally designed to deal with a large number of
fine-grained data items. Such an evaluation will provide valuable feedback on to
the expected performance of new MDM solutions.

D.2.5. Integrating a Specific Model/Tool

We advocate for the decoupling of the modelling tools from the MDM platform,
permitting an open architecture where various tools can be integrated as desired.
For this to be possible, the tool-specific format and meta-model, used internally to
manage the model data, are mapped to the generic format and meta-model of the
corresponding adaption layer. This mapping is performed by the adaption layer. In
this way, the management functionalities can operate uniformly using a single
format. The data neutral XML format is adopted to interface the adaption layer to
the platform. It is these XML files that are communicated between the modelling
tool and the platform through the adaption layer. This format, as well as the whole
adaption layer, is transparent to the user. The user is expected to interact with the
modelling tool only and perform the check-in/out activities based on modelling
items.

The process of integrating a specific model of a specific tool is exemplified by
integrating the traditional data flow diagram (DFD) model used in the
Matlab/Simulink tool.

The model of computation is a simple variant of the data-flow model making the
definition of the information model quite easy. However, the number and variety
of properties of each object that needs to be handled provided an interesting
complexity to deal with. There exist more than 100 different types of functions
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blocks, with at least 100 parameters in each. These properties deal with both the
model properties as well as graphical properties. This provided a challenge to
define a generic mechanism to handle these properties. In this case, the properties
of an object are bundled as an XML node, with a tool-specific structure which the
adaption layer can parse and reparse when saving and extracting the properties
respectively.

Figure 51a illustrates an example DFD model. In a DFD model, two types of
elements are defined: Functions and Communication Links. A function element
designates certain functionality that given a certain input, produces a certain
output. A communication link element designates a link that transports data
between functions. We here choose to model the links between functions as first-
class elements of their own, and not simply as connection relations between
functions. Such an approach is also advocated in [14] and [15]. The interface of an
element is a set of ports, specifying the data items that are externally accessible to
other elements. Furthermore, a DFD is generally hierarchically decomposed,
where an element designates an aggregation of other elements. In this sense, the
terms ‘element’ and ‘model’ can most often be used interchangeably, where an
element is internally described (modelled) through its children elements and their
relations.

In integrating the Simulink tool, a meta-model of Simulink’s DFD model is
defined to conform to the meta-meta-model defined in section D.2.1 and
implemented according to section D.2.4. This is illustrated as a class diagram in
Figure 52. In this figure, the generalisation association between the meta-model
and its meta-meta-model items is used to illustrate this relationship from meta-
meta-model to meta-model level. While it may not be appropriate to represent the
two modelling (meta-meta-model and meta-model) domains using the same class
model, this illustration is however closer to the realisation mechanism used in the
Matrix system.

In the Matrix platform, the elements Function and Communication Link are
defined in the Business Modeller as subtypes of the abstract object type Element.
Similarly, SExternalPort and SinternalPort are defined as subtypes of
ExternalPort and InternalPort respectively. It is not necessary to define the
relations between the DFD specific object types since such relationships are
inherited automatically.

For each of the specialising subtypes, the tool-specific attributes necessary are also
defined. In figure 52, a small subset of these properties is illustrated. In reality,
given the large number of attributes needed for each object types, it was chosen for
this particular tool to bundle the properties into a single attribute (properties).
Since the MDM platform does not handle the semantics and internal structure of
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the attributes, the adaption layer can freely determine the bundling and later
unbundling of these properties. Different tools can hence be handled differently.
Unless the properties need to be individually defined in the MDM information
model, a single XML structure of the properties is sufficient in most cases.

Speed <Element type="Simulink Function" name="Speed Control"
Control uniqueldentifier="Speed Control">
<Properties type="struct ">
<Name type=""char">Speed Control</Name>

<Position type="double">260 74 360 116</Position>

</Properties>
<ExtemalPort type="SimulinkExtemalPort" name=""
uniqueldentifier="mport 1">
<Properties type="struct">
<P ort Number type="double">1</P ort Number>

</Properties>
</ExtemalPort>
<ExtemalPort type="SimulinkExtemalPort" name=""
uniqueldentifier="mport 2">

</ExtemalPort>
<Element type="Simulink Function" name="Decelerator"
uniqueldentifier="Decelerator">
<Element type="SimulinkLine" name=""
uniqueldentifier="mport 1 outport 2">
<Properties type="struct">
<Name type="char"/>
<Description type="char"/>

</Properties>
</Element>

</Element>

</Element>

(@) (b)

Figure 51. (a) An example DFD model of parts of a hypothetical truck electrical
architecture. (b) The model representation using XML as defined by the DFD
adaption layer.

The adaption layer is expected to produce an XML document of any Simulink
element (Function or Communication Link) as illustrated in figure 51b. The
document reflects the hierarchical structuring of the model as defined in the meta-
meta-model. Each element contains within its definition the definition of its child
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elements (recursively), its contained external ports (each containing the definition
of its internal ports), and the internal relations.

In addition, each XML-element is accompanied with a type attribute that reflects
the specific MDM object type that the element refers to. This type information is
used by the generic MDM functionalities for their configuration and adaptability
to any tool-specific meta-model.
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Figure 52. Extending the generic meta-meta model to define a tool-specific meta-
model (DFD).

The XML document also defines a uniqueldentifier attribute for each XML-
element representing an element or port as required by the MVC algorithm
(section D.2.2). The uniqueldentifier is expected to be unique within a limited
context (the parent element for an element, the containing element for an external
port, and the external port for an internal port). This uniqueldentifier is determined
by the adaption layer independent of the MDM platform, and can be determined in

213



Paper-D-The Version Control Algorithm Implementation in the Model Data Management (MDM)
Platform

different ways depending on the integrated tool. Two main solutions can be
envisaged:

¢ In the case where the tool already allocates an identifier for its entities, this
identifier can be adopted. This is generally the case when a database is used
by the tool to manage its model content.

e A combination of properties is used to form a uniqueldentifier. This approach
is adopted for the Simulink tool for determining the uniqueldentifier for
function elements, since the tool allows no two functions within a subsystem
to have the same name property. For external ports, the combination of the
port type (inport/outport) with the port number attribute are guaranteed to be
unique within each function element.

The adaption layer of the Simulink tool uses the tool’s available API to query the
model when creating the XML document as well as when recreating the model
given an XML document. Such an approach is more suitable than performing a
transformation between the XML document and the specific file format expected
by the tool. This is based on the assumption that over different versions of the tool,
the published API is expected to be more stable than the internal file format and
structure. In this way, modifications to the internal workings of the tool have less
impact on the integration platform.

D.3. Future work

A simple MVC algorithm has been developed, with many future extension
possibilities available. A list of potential extensions follows:

e The visualisation of the differences between two versions of a model needs to
be developed. Naturally, differences in graphical models would need to be
represented graphically.

e As discussed in section D.2.2, the current implementation does not identify
the move of one branch of the model tree across the hierarchy. Instead, such a
move is considered as a deletion and recreation of each element in the
branch. Future implementation may need to handle this feature. It would also
be desired to support the version control of changes to a relatedTo relation’s
properties as well as changes to its end ports.

e A limitation ought to be placed so that changes to the interface of the root
element checked-out cannot be performed. This is necessary to ensure the
consistency of the complete model. Any changes to the interface need to be
synchronised with changes to the interfaces and relations of its connected
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elements. To perform such a change, the user should check out the parent
element of the element of interest.

e It would be interesting to develop a number of version control algorithms
based on the same MDM platform. The system can then be configured so that
different algorithms can be applied depending on the object types being
managed. Such a feature can be advantageous allowing different disciplines
to apply different versioning strategies. For example, software development
might require the complex version control mechanisms and concurrent
development normally provided by SCM systems, while hardware
development is satisfied with sequential revision control. There should be no
problem providing different solutions in MDM, depending on the kind of
data items the functionality operates on. It would however be advantageous
to base the different solutions on generic mechanisms for reusability
purposes. The different solutions ought to be also based on the same user
interface and terminology.

e Concurrent development support needs to be developed. This can be divided
into two categories: Inter-model concurrent development and intra-model
concurrent development. These two kinds are further detailed in the
following subsections.

D.3.1. Intra-model Concurrent Development

In the current implementation, no conflicts occur when users check-out and
modify elements from different branches of the hierarchy. However, the
synchronisation of concurrent changes between users is necessary when one user
attempts to modify an element of the model that is a child of, or the same as, an
element being modified by another user. Changes performed would need to be
safely merged into a consistent one. There exist two strategies to handle this issue
in the future:

e Lock-unlock - A user locks the elements to be checked out (and recursively
all children elements), and hence prevents other users from simultaneously
modifying these elements, avoiding the need for future merging effort.

o Copy-merge - Users are allowed to check-out and modify elements along the
same hierarchy concurrently. When checking-in changes, MVC merges the
changes performed by each user into a consistent model, dealing with
conflicts in parallel changes in the process. Analogous to the merging of
source code files in conventional SCM systems, model branching/merging
mechanisms need to be developed.
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The choice of which strategy to adopt is left to the development team. It is
interesting to note that traditionally, mechanical engineering have adopted the
former strategy while software engineering tools generally allow the latter. By
providing different strategies for different kinds of models, the development needs
of both disciplines can be satisfied, using variants of the same basic mechanisms in
a unified management system.

D.3.2. Inter-model Concurrent Development

As mentioned earlier, MVC operates on a single rooted model hierarchy.
However, a system description generally consists of a set different models or
views covering its different aspects [16]. This multi-view need is supported in the
MDM platform by handling each view as an independent single-root model
hierarchy.

But, since these views are not necessarily independent, changes in one view need
to be synchronised with changes in another view. For example, a class diagram
and the source code further implementing the classes in the diagram share much
information that needs to be synchronised in order to maintain consistency in the
system specification. For example, changes to attribute names in the former need
to be reflected in the attributes in the source code, which could themselves have
been changed concurrently.

This kind of synchronisation between different types of views is here termed inter-
model merging/branching and would need to be developed in the future. It differs
from the intra-model merging/branching discussed in the previous subsection since
the merging mechanisms depend on inter-view relationships defining the
dependencies between the views.

Compared to intra-model merging, merging of seemingly independent models may
be a source of confusion for the users that are generally not aware of the
dependencies between the system views.

D.4. Related Work

Version control systems targeting models, instead of file objects, are increasingly
appearing in the literature ([17], [18] and [19]). In these approaches, an
information model of the documents to be handled is assumed, allowing the
management of the internal information stored in the documents. While focused
on software models, these approaches are helpful since the mechanisms can be
applied to any kind of models throughout the development lifecycle.

Version control algorithms can be broadly divided into two categories:
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e Algorithms based on the tree-to-tree correction problem [20].
e Algorithms assuming a unique identifier for each node in the hierarchy.

Any algorithm from any of these two groups can be adopted for our purposes. The
first group of algorithms does not assume a persistent unique identifier, making it
more generally applicable. However, this comes at the cost of reduced
performance due to the need to match nodes between the model trees to compare.

For our purposes, the MVC algorithm is implemented based on the second
category. The algorithm is applicable as long as a unique identifier can be
produced either by the modelling tool or the adaption layer as detailed in section
D.2.5. Such a requirement can be satisfied with many modern modelling tools.

D.5. Conclusion

In order to illustrate the MDM solution, an initial implementation of a Model
Version Control (MVC) functionality was performed, allowing for the fine-
grained version management of two types of models from two different tools —
Simulink DFD and Dome Hardware Structure models. MVC permits stakeholders
to perform design activities in terms of models, where they can organise, share and
modify their models, transparent to the underlying file structure. A simplified
version control functionality has been realised. Less focus is however currently
placed on advanced capabilities of the version control algorithm such as branching
and merging of models.

MVC provides mechanisms that allow a user to save and extract any part of the
system model. In a check-in operation, changes to the model since the last check-
in operation are saved in the repository. When performing a check-out operation,
the specified element is reconstructed for a given version, together with its
subparts, forming an XML document of the information in the repository. This
document is then further transformed by the adaption layer to create a tool-specific
format that can be used by the tool. The details of these operations are performed
transparently to the user, allowing him/her to interface with the modelling tool’s
interface and format.
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