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Good afternoon, I’m Claudio Gomes, a PhD Student under the supervision of
Prof. Hand Vangheluwe, from the University of Antwerp. I’ve been working in
this field for two years now, but officially I got my PhD project accepted last
year, so I have a bit more time to work on such a large endeavor. This work is
but a small part of an ambiguous plan to develop the theory and techniques for
hybrid co-simulation.



Why?



Motivation

I Simulation has helped us so far. . .

I . . . but not to its full potential.
I Complex systems have to be partitioned into sub-systems,

developed by specialized teams.
I Their own M&S tools;
I Some are external companies;

I Leading to locally (but not globally) optimal solutions:
I Models of each partial solution cannot be integrated;
I IP cannot be cheaply disclosed;



Simulation has brought a tremendous increase in productivity when developing
systems.
However, as the complexity increases, these have to be partitioned into
sub-systems, that are developed by specialized teams, or provided by external
suppliers.
While this is a natural approach, it poses interesting challenges when it comes
to applying modeling and simulation techniques to the coupled system as a
whole:

• The teams/suppliers have their own domain specific tools to develop,
simulate and optimize the solutions to their sub-systems.

• The suppliers have intellectual property that cannot be disclosed.

Finally, the fact that the sub-systems are developed independently, under rigid

interfaces, allows for locally optimal solutions to be found, instead of globally

optimal ones.



Co-simulation

I Theory and techniques to enable global simulation of a
coupled system, via the composition of sub-system simulators.

I Sub-system simulators are virtual mock-ups:
I Executable binaries;
I Common API for communication. . .
I . . . but many different capabilities!
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Co-simulation is a pragmatic approach to solve these challenges.
It enables the simulation of the coupled system from a set of collaborating black
box simulators. We’re focusing on continuous time coupled systems. These are
two academic examples of such systems showing the different kinds of coupling.
This first system is composed of two sub-systems, each with its own simulator.
Each simulator packs a model and a solver, and has some inputs and outputs.
For this simulator, the model is the set of differential equations for the
mass-spring-damper and the solver is some numerical solver such as the
Forward Euler.
Simulators have inputs and outputs, and are otherwise assumed to be
independent, so an orchestration algorithm is necessary to move data around.
To properly support hierarchical co-simulation, the composition of a scenario
and an orchestration algorithm has to behave as a simulator.



Simulator
I Time-stepped communication;

I Continuous-time dynamics;

I Approximated inputs;

I Physical laws;

I Instantaneous reactions;
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A simulator provides a simple API for setting inputs, stepping through time and
getting outputs.
In the most general case, the simulator performs internal simulation steps, and
extrapolates the inputs across those micro-steps.

Naturally these simulators stand for physical systems, so they have to obey to

physical laws.



State of the art

I Many reported
applications;

I Most involve a small
number (≈2) of
simulators. . .

I . . . or homogeneous set
of capabilities;

I Not up-to-par with CPS
scale!
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We went through a portion of the state of the art and collected the reports of
co-simulation being applied in industrial case studies.
These reports have increased over the years, as you can see here. This last bar
includes the last two years only.

However, most of the use cases involve either a small number of simulators, or

simulators with a restricted set of capabilities, which falls short in the

development of truly complex systems.



What?
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So what makes the development of an orchestration mechanism for continuous
time co-simulation so interesting? There are conflicting concerns that need to
be addressed, and there is a combinatorial explosion of extra capabilities
provided by simulators that need to used to address the challenges.

As you can see, the simulators being used in the state of the art provide many

more extra features when compared to those assumed by the Functional

Mockup Interface standard, highlighted in green.



Concerns
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These are the concerns that I was talking about. Properly addressing them
increases the predictive power of the co-simulation, which is VERY important:
if someone is building a new coupled system, from well known sub-systems,
he/she wants the co-simulation to reflect what the coupled system will do. To
recognize and solve these situations, an orchestration mechanism requires extra
capabilities from the simulator.
To give a quick example, some sub-systems are more sensitive to each other
than others. The more sensitive a simulator is, the more frequently it should
get inputs to keep it from accumulating too large errors, so simulators should
be grouped in clusters that communicate more often. To recognize and form
clusters, information about the sensitivity is necessary, and that is given in
some simulators in the form of a Jacobian of the system.

. . .



How?



Overview

I Orchestration of co-simulation is a complex challenge:
I Multiple concerns to address;
I Require heterogeneous features of simulators;

I Existing orchestration mechanisms assume homogeneous set
of capabilities;

I Our approach: address concerns by adding artificial
simulators, and leverage existing orchestration mechanisms.



Ok so creating an orchestration algorithm is a relevant and interesting

challenge because there is a variety of extra capabilities provided by simulators,

and that need to be provided to solve a number of concerns in order to avoid

compromising the predictive power of the co-simulation. Existing orchestration

mechanisms assume a restricted set of features, which makes it difficult to

recognize and address the concerns that we’ve described before. Our solution is

based in the application of model based development to address the concerns

by rewriting the scenarios, adding artificial simulators and optimizing the

parameters, and then give those scenarios to existing orchestration mechanisms,

so that they can be simulated.



Solutions
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In the sensitive sub-systems example, we couple each cluster with a local

orchestration algorithm that makes the simulators inside the cluster

communicate more often. From the outside, this is a black box simulator.

Since these sub-systems also need data from the third sub-system, we introduce

an artificial proxy simulator, which mimics, at a higher rate, what the foreign

simulator is doing. To do its jobs well, more data has to be exchanged when

the cluster and the third simulator communicate. However, more data

communicated less often still yields a performance benefit while keeping an

approximate level of accuracy.



Big Picture
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This is a process model in the FTG+PM language. On the left you see the
main languages and transformations between them. And on the right side,
there is the concrete process. Overall, we establish an order in which the
independent concerns are addressed, to ensure that they do not resurface while
rewriting the scenarios. The conflicting concerns, such as the clustering and
distribution, are solved via optimization to satisfy the goals of the user.

In the end, one co-simulation scenario is generated, to be consumed by a simple

generic orchestration algorithm.



Conclusion

I Our approach, underpinned by MDD:
I Introduce artificial simulators to solve local concerns;
I Optimize conflicting concerns at global level;

I Correctness verified via:
I Analytical solutions with toy examples;
I Simulation of the coupled model;
I High accuracy co-simulation;

I Benefits:
I Leverage existing standards for co-simulation;
I Systematically address concerns while reusing existing

orchestration algorithms;

I Downsides:
I Keep scenarios readable;
I Huge search space for conflicting concerns;



The two biggest benefits of this approach is that the concerns can be dealt
with, leveraging extra capabilities of simulators, independently of what is
assumed by the existing orchestration mechanisms.

In the process, the scenarios become unreadable, due to the extra simulators

being introduced, which do not correspond to any physical part of the system.

Also, when optimizing the co-simulation scenario for accuracy and performance,

the search space is huge, and we are working to come up with heuristics to

accelerate this process.



Thank you!
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Other Solutions
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Cost distribution concern
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Improved cost distribution concern
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