

Co-simulation: Simulator Coupling Approaches

Bert Van Acker, Cláudio Gomes, Joachim Denil and Bart Meyers,

Paul De Meulenaere, Hans Vangheluwe

The modern car

- Complexity
 - 40+ subsystems
- Competitive Market
- Concurrent Development
 - Late Integration Problems
- Distributed Development
 - Specialized suppliers
 - Late Integration (due to IP)

Simulators

Co-simulation

Co-sim. Scenario = Simulators + Coupling Conditions

Co-Simulator = Co-sim. Scenario + Orch. Algorithm

Orchestration Algorithm Concerns

Heterogeneous Capabilities of Simulators

- Accuracy
- Algebraic Loops
- Distribution
- Modularity

Separation of Concerns via MDE

- Objective: Deal with Complex Orchestration Alg.
- How?
 - Transform Co-sim scenario to address each concern separately;
 - Reduce to a trivial form;
 - Add standard Orchestration Alg;

Example: Distribution Concern

- Across computers, small H incurs network communication cost.
- Large H leads to accuracy problem.
- Extrapolation made by simulators is inappropriate to the scenario.
- Complex orchestration mechanism required to deal with distribution correctly.

Thank you!