Hybrid System Modelling and Simulation with Dirac Deltas

Cláudio Gomes, Yentl Van Tendeloo, Joachim Denil, Paul De Meulenaere, Hans Vangheluwe

Modeling, Simulation, and Design Lab (MSDL)

April 25, 2017

Roadmap

Bouncing ball dynamics:

$$y'' = -g + F_c(t)$$

Bouncing ball dynamics:

$$y'' = -g + F_c(t)$$

Around a collision $[t_c^-, t_c^+]$:

$$y'(t_c^+) = y'(t_c^-) + \int_{t_c^-}^{t_c^+} -g + F_c(\tau)d\tau$$

Bouncing ball dynamics:

$$y'' = -g + F_c(t)$$

Around a collision $[t_c^-, t_c^+]$:

$$y'(t_c^+) = y'(t_c^-) + \int_{t_c^-}^{t_c^+} -g + F_c(\tau)d\tau$$

Conservation dictates $y'(t_c^+) = -y'(t_c^-)$ Therefore:

$$\int_{t_c^-}^{t_c^+} F_c(\tau) d\tau = -2y'(t_c^-)$$

Bouncing ball dynamics:

$$y'' = -g + F_c(t)$$

Around a collision $[t_c^-, t_c^+]$:

$$y'(t_c^+) = y'(t_c^-) + \int_{t_c^-}^{t_c^+} -g + F_c(\tau)d\tau$$

Conservation dictates $y'(t_c^+) = -y'(t_c^-)$ Therefore:

$$\int_{t_c^-}^{t_c^+} F_c(\tau) d\tau = -2y'(t_c^-)$$

Abstracting the shape of F_c .

Bouncing ball dynamics:

$$y'' = -g + F_c(t)$$

Let δ be a function abstraction, such that:

$$\int_{0^-}^{0^+} \delta(au) d au = 1$$

Bouncing ball dynamics:

$$y'' = -g + F_c(t)$$

Let δ be a function abstraction, such that:

$$\int_{0^-}^{0^+} \delta(au) d au = 1$$

Then:

$$F_c(\tau) = -2y'(t_c^-)\delta(t-t_c)$$

Bouncing ball dynamics:

$$y'' = -g - 2y'(t_c^-)\delta(t - t_c)$$

Let δ be a function abstraction, such that:

$$\int_{0^-}^{0^+} \delta(au) d au = 1$$

Then:

$$F_c(\tau) = -2y'(t_c^-)\delta(t-t_c)$$

Separation of Dynamics

- Split the dynamics into piece-wise continuous solutions;
- Solve each one in sequence with traditional numerical methods, properly (respecting Laws of Physics) re-initialize states.

Direct Manipulation

Separation of Dynamics

$$\begin{pmatrix} y'' &= -g \\ y(0) &= y_0 \\ y'(0) &= v_0 \end{pmatrix} \text{ for } 0 \leq t < t_c, \text{ and } \\ \begin{pmatrix} y'' &= -g \\ y(t_c) &= y(t_c^-) \\ y'(t_c) &= -y'(t_c^-) \end{pmatrix} \text{ for } t \geq t_c \end{cases}$$

Direct Manipulation

Separation of Dynamics

$$\begin{pmatrix} y'' &= -g \\ y(0) &= y_0 \\ y'(0) &= v_0 \end{pmatrix} \text{ for } 0 \leq t < t_c, \text{ and } \\ \begin{pmatrix} y'' &= -g \\ y(t_c) &= y(t_c^-) \\ y'(t_c) &= -y'(t_c^-) \end{pmatrix} \text{ for } t \geq t_c \end{cases}$$

Direct Manipulation

Compute integration over the impulses.

Separation of Dynamics

$$\begin{pmatrix} y'' &= -g \\ y(0) &= y_0 \\ y'(0) &= v_0 \end{pmatrix} \text{ for } 0 \leq t < t_c, \text{ and } \\ \begin{pmatrix} y'' &= -g \\ y(t_c) &= y(t_c^-) \\ y'(t_c) &= -y'(t_c^-) \end{pmatrix} \text{ for } t \geq t_c \end{cases}$$

Direct Manipulation

$$y'(t_c^+) = y'(t_c^-) + \int_{t_c^-}^{t_c^+} -g - 2y'(t_c^-)\delta(au - t_c)d au$$

Direct Manipulation of Impulses

Features:

▶ Handles derivatives of impulses (jerk, snap, crackle, pop,...)

Example:

 $y^{(n)} = \delta^{(n-1)}(t - t_c)$
for n > 1

Recap

Causal Block Diagrams

$$y'' = -g$$

Causal Block Diagrams


```
\begin{array}{l} \textbf{procedure CBDSimulator(Flat $D$, end\_condition)$ step $\leftarrow$ 0$ while not end\_condition $do$ schedule $\leftarrow$ LoopDetect(DepGraph($D$))$ for gblock $in schedule $do$ Compute(gblock)$ end for$ step $\leftarrow$ step $+1$ end while$ end procedure \\ \end{array}
```

A distribution is a function identified by the way it interacts with other *test* functions, and not by its shape.

A distribution is a function identified by the way it interacts with other *test* functions, and not by its shape.

$$\delta(x) = \lim_{k \to \infty} \begin{cases} \max(0, k + k^2 x) \text{ if } x \leq 0\\ \max(0, k - k^2 x) \text{ otherwise} \end{cases}$$

A distribution is a function identified by the way it interacts with other *test* functions, and not by its shape.

$$\delta(x) = \lim_{k \to \infty} egin{cases} \max(0, k + k^2 x) ext{ if } x \leq 0 \ \max(0, k - k^2 x) ext{ otherwise} \end{cases}$$

Properties:

Two distributions are equal if the result of their interactions with any smooth function is equal:

$$f = g \iff \underbrace{\int f(x)\phi(x)dx}_{\langle f,\phi \rangle} = \underbrace{\int g(x)\phi(x)dx}_{\langle g,\phi \rangle}$$
 for all ϕ

Two distributions are equal if the result of their interactions with any smooth function is equal:

$$f = g \iff \underbrace{\int f(x)\phi(x)dx}_{\langle f,\phi\rangle} = \underbrace{\int g(x)\phi(x)dx}_{\langle g,\phi\rangle} \text{ for all } \phi$$

Example:

Recap

Symbolic Manipulation

Signal Representation:

$$S(t) = s(t) + \sum_{i=0}^{n} \sum_{\tau_j \in \{\tau_j\}} a_{ij} \delta^{(i)}(t - \tau_j)$$

Symbolic Manipulation

Signal Representation:

$$S(t) = s(t) + \sum_{i=0}^n \sum_{ au_j \in \{ au_j\}} a_{ij} \delta^{(i)}(t- au_j)$$

Encoding:

$$S(t_i) \in \mathbb{R}^2 \times \mathbb{R}^m$$

Symbolic Manipulation

Signal Representation:

$$S(t) = s(t) + \sum_{i=0}^{n} \sum_{\tau_j \in \{\tau_j\}} a_{ij} \delta^{(i)}(t - \tau_j)$$

Encoding:

 $S(t_i) \in \mathbb{R}^2 \times \mathbb{R}^m$

Example:

Symbolic Manipulation – Sum

Symbolic Manipulation – Sum

$$\begin{split} Y(t) &= U(t) + V(t) \Leftrightarrow \\ \langle Y(t), \varphi(t) \rangle &= \langle U(t) + V(t), \varphi(t) \rangle \quad \text{ for any test function } \varphi \\ &= \langle U(t), \varphi(t) \rangle + \langle V(t), \varphi(t) \rangle \\ &= \left\langle u(t) + v(t) + \sum_{i=0}^{n_u} \sum_{\tau_j^u \in \left\{ \tau_j^u \right\}} a_{ij} \delta^{(i)}(t - \tau_j^u) + \sum_{i=0}^{n_v} \sum_{\tau_j^v \in \left\{ \tau_j^v \right\}} b_{ij} \delta^{(i)}(t - \tau_j^v), \varphi(t) \right\rangle \end{split}$$

Symbolic Manipulation – Integral and Derivative

Symbolic Manipulation – Integral and Derivative

$$\begin{split} \left\langle \int_{0}^{t} U(x) dx, \varphi(t) \right\rangle &= \\ \left\langle \int_{0}^{t} u(x) dx + \sum_{\tau_{j} \in \{\tau_{j}\}} a_{0j} H(x - \tau_{j}) + \sum_{i=1}^{n_{u}} \sum_{\tau_{j} \in \{\tau_{j}\}} a_{ij} \delta^{(i-1)}(t - \tau_{j}), \varphi(t) \right\rangle \\ \left\langle U'(t), \varphi(t) \right\rangle &= \\ \left\langle u'(t) + \sum_{t_{d} \in \{t_{d}\}} (u(t_{d}^{+}) - u(t_{d}^{-})) \delta(t - t_{d}) + \sum_{i=0}^{n_{u}} \sum_{\tau_{j} \in \{\tau_{j}\}} a_{ij} \delta^{(i+1)}(t - \tau_{j})(t), \varphi(t) \right\rangle \end{split}$$

Numerical Approximation of Impulses

Start from:

$$\delta(x) = \lim_{k \to \infty} H'_k(x) = \lim_{k \to \infty} \begin{cases} \frac{1}{2}k \text{ if } -\frac{1}{k} \le x \le \frac{1}{k} \\ 0 \text{ otherwise} \end{cases}$$

with

$$H_k(x) = \begin{cases} 0 & \text{if } x < -\frac{1}{k} \\ \frac{1}{2} + \frac{1}{2}kx & \text{if } -\frac{1}{k} \le x \le \frac{1}{k} \\ 1 & \text{if } x > \frac{1}{k} \end{cases}$$

Numerical Approximation of Impulses

Start from:

$$\delta(x) = \lim_{k \to \infty} H'_k(x) = \lim_{k \to \infty} \begin{cases} \frac{1}{2}k \text{ if } -\frac{1}{k} \le x \le \frac{1}{k} \\ 0 \text{ otherwise} \end{cases}$$

with

$$H_k(x) = \begin{cases} 0 & \text{if } x < -\frac{1}{k} \\ \frac{1}{2} + \frac{1}{2}kx & \text{if } -\frac{1}{k} \le x \le \frac{1}{k} \\ 1 & \text{if } x > \frac{1}{k} \end{cases}$$

With derivative approximation:

$$H_{1/h}'(\tau_d) \approx \frac{H_{1/h}(\tau_d) - H_{1/h}(\tau_d - h)}{h} \approx \frac{1}{h}$$

Numerical Approximation of Impulses

Start from:

$$\delta(x) = \lim_{k \to \infty} H'_k(x) = \lim_{k \to \infty} \begin{cases} \frac{1}{2}k \text{ if } -\frac{1}{k} \le x \le \frac{1}{k} \\ 0 \text{ otherwise} \end{cases}$$

with

$$H_k(x) = \begin{cases} 0 & \text{if } x < -\frac{1}{k} \\ \frac{1}{2} + \frac{1}{2}kx & \text{if } -\frac{1}{k} \le x \le \frac{1}{k} \\ 1 & \text{if } x > \frac{1}{k} \end{cases}$$

With derivative approximation:

$$H_{1/h}'(\tau_d) \approx \frac{H_{1/h}(\tau_d) - H_{1/h}(\tau_d - h)}{h} \approx \frac{1}{h}$$

Choose:

$$\delta(t-\tau_d) \approx H'_{1/h}(t-\tau_d)$$

Recap

Comparison – Without Impulse Derivatives

Example: Bouncing ball

<u>UnitBall</u>

Comparison - Without Impulse Derivatives

Example: Bouncing ball

Comparison – With Impulse Derivatives

$$S(t) = H(t - \tau_d)$$

$$S'(t) = \delta(t - \tau_d)$$

$$S^{(2)}(t) = \delta'(t - \tau_d)$$

...

$$S^{(n+1)}(t) = \delta^{(n)}(t-\tau_d)$$

Comparison – With Impulse Derivatives

Comparison – Impulse Derivatives

Differences:

- Numerical solution shifted by n × h time units;
- Maximum magnitude for a discontinuity *D*:

$$D\binom{n-1}{k-1}/h^k$$
 where $k = floor\left(rac{n}{2}
ight)$

Time	S(t)	S'(t)	$S^{(2)}(t)$	$S^{(3)}(t)$	 $S^{(n-1)}(t)$	$S^{(n)}(t)$
$\tau_d - h$	0	0	0	0	 0	0
τ_d	1	1/h	$1/h^{2}$	$1/h^{3}$	 1/h ⁿ	1/h ⁿ
$\tau_d + h$	1	0	$-1/h^2$	$-2/h^{3}$	 $-(n-2)/h^{n}$	$-(n-1)/h^{n}$
$ au_d + 2h$	1	0	0	$1/h^3$	 $\binom{n-2}{2}/h^n$	$\binom{n-1}{2}/h^n$
$ au_d + 3h$	1	0	0	0	 $-\binom{n-2}{3}/h^n$	$-\binom{n-1}{3}/h^n$
$\tau_d + (n-1)h$	1	0	0	0	 0	$(-1)^{n-1} \binom{n-1}{n-1} / h^n$
$\tau_d + nh$	1	0	0	0	 0	` 0

Conclusion

- For models that contain no impulse derivatives, both approaches are equivalent
- Otherwise, numerical approach is less accurate:
 - Delays signals
 - Computes large values

Thank you!