Semantic adaptation for FMI Co-simulation

Bart Meyers, Joachim Denil, Casper Thule, Kenneth Lausdahl Peter Gorm Larsen, Hans Vangheluwe, Paul De Meulenaere

(2018) Semantic Adaptation for FMI Co-simulation with Hierarchical Simulators, in SIMULATION. To appear.

Example - Original System

Busch, M. (2016). Continuous approximation techniques for co-simulation methods: Analysis of numerical stability and local error. *ZAMM - Journal of Applied Mathematics and Mechanics*, *96*(9), 1061–1081. http://doi.org/10.1002/zamm.201500196

Example – Co-simulation

FMU (Conceptual) Internals

Motivation for Semantic Adaptation

- Quick and sound way of adapting the behaviour of an interconnected set of FMUs
 - Data conversion
 - Interaction protocol modification
 - Time triggered vs Event triggered execution
 - Capability adaptation
- Support advanced co-simulation in importing tools

Example: Capability Interaction

Gomes, C., Legat, B., Jungers, R. M., & Vangheluwe, H. (2017). Stable Adaptive Co-simulation: A Switched Systems Approach. In *IUTAM Symposium on Co-Simulation and Solver Coupling* (p. to appear). Darmstadt, Germany.

Example: Capability Interaction

Example: Capability Interaction

https://github.com/into-cps/case-study_mass-springer-damper

Example: Capability Conflict

Semantic Adaptation

 Actions by which the behavior of an original set of interconnected FMUs is altered, following the transparency and modularity principles.

How?

Semantic Adaptation

 Actions by which the behavior of an original set of interconnected FMUs is altered, following the transparency and modularity principles.

How?

A DSL for Semantic Adaptation

A DSL for Semantic Adaptation

```
obj_detected (Bool)
                                                                                  passenger_up (Bool)
control rules {
                                                                                                                     up (Bool)
    var step size := H;
                                                                                  passenger_down (Bool)
                                                                                                         controller
    var aux obj detected := false;
                                                                                  passenger_stop (Bool)
                                                                                                                     down (Bool)
    var crossedTooFar := false;
                                                                                  driver_down (Bool)
    if ((not is close(p v, T, RTOL, ATOL) and p v < T)
                 and (not is close(f v, T, RTOL, ATOL) and f v > T)) {
                                                                                  driver_up (Bool)
                                                                                                                     stop (Bool)
        crossedTooFar := true;
                                                                                  driver_stop (Bool)
        var negative value := p v - T;
        var positive value := f v - T;
        step_size := (H * (- negative_value)) / (positive_value - negative_value);
    } else {
        if ((not is close(p v, T, RTOL, ATOL) and p v < T)
                     and is close(f v, T, RTOL, ATOL)) {
                                                                                                       controller sa
            c := true;
    }
                                                                                             obj_detected (Bool)
                                                                                                                                armature_current (A)
    if (not crossedTooFar) {
                                                                                                                 up (Bool)
        step size := do step(ctrl, t, H);
                                                                  passenger_up (Bool)
                                                                                                                                u (Real)
                                                                                                  controller
                                                                  passenger_down (Bool)
                                                                                                                 stop (Bool)
                                                                   passenger_stop (Bool)
    if (is close(step size, H, RTOL, ATOL)) {
                                                                                                                               d (Real)
                                                                  driver_down (Bool)
        p v := f v;
                                                                  driver_up (Bool)
                                                                                                                 down (Bool)
    return step size;
                                                                  driver_stop (Bool)
```

A DSL for Semantic Adaptation

obj_detected (Bool)

Summary & Future Work

- Motivation for semantic adaptations
- What are semantic adaptations
- How to implement them
- TODO: Higher level adaptations

Thank you!

Questions?