Timed languages
for discrete-event systems

Ernesto Posse

» Introduction & Motivation

» Real-time

» Time in modelling formalisms

» Time in general purpose programming languages
» Properties of time

» A mini-timed language

» An example

» Conclusion

s Why time?
» Dynamic systems: change of state over time
s Implicit vs. explicit time

s [0 describe time-dependent behaviour (modelling):
Do a task with given time-constraints

s To answer questions (analysis):
When? How long?

Will it happen before/after/between ...?
s> Need for observing the time of events or changes

» Existing modelling formalisms:

s Timed Automata (Alur & Dill 90, Lynch & Vaandrager
'91)

s Timed Petri Nets (Merlin "74)
s Statecharts (Harel '84)
s DEVS (Zeigler '76 '2000)

» Existing languages:
s LOTOS, E-LOTOS and G-LOTOS
» Esterel
s Lustre
s Signal
s Argos

’ LB B)

» Process algebras with timing:

s Timed CSP
s Timed CCS
s Timed ACP

» Modal logics

» Real-time CTL
s Real-time LTL

» Who uses these?
s Companies

s European Space Agency, NASA, Airbus, Lockheed
Martin, Texas Instruments, Philips, ...

» Areas

s Avionics & Aerospace

s Defence & Military

s Transportation (railways & automotive)
s Semiconductors & hardware

s Telecom

» Human-computer interaction

» Real-time: reactive systems

» Real numbers (continuous-time) vs. natural numbers
(discrete-time)

» Discrete Event Systems: continuous-time but only
discrete changes of state

o Dinosaurs and circuits

o Dinosaurs and circuits

«f5E§

» Physical clock vs. "logical" clock

» Gates have time delays before firing

Correct history

> (true concurrency)
a time |0 | 2| ...
o a [(0]0]..
b [O0O[1]..
0O/1]..

C

» Gates have time delays before firing

Incorrect history

> (naive simulation)
. time |0 2|4 ...
l E - a [0/0]0]..
b ([0]1]|1]..
0/01]..

C

» Solution:

s Modelling & Analysis:

« Abstract physical time as logical time

« Timed-traces (seqguences of events tagged with
time-stamps)

« Abstract simulation algorithms

s Simulation: event-scheduling

s In timed languages and formalisms, time could be
considered either physical or logical.

» Logical trace +— physical trace

» Statecharts: after(delay)

» DEVS: time-advance and elapsed-time

» Timed Petri Nets: (interval) timed-transitions

P

» Timed Automata: multiple clocks, clock guards, clock
reset

Clocks: z,y

@ X S“i’?‘.O &£20<y< 5.0;"q; Y ::’9 @

Guard Action or Input Reset

» Library functions/procedures:

s Sleep
s Timeout
s Interrupt

» Implemented based on the underlying OS
» Dependent of the system’s clock

» Not primitive language constructs

def taskl():
do_sonet hi ng()

def task2():
do_sone ot her thing()

tl
t2

Timer (30.0, taskl)
Timer(25.0, task?2)

tl.start()
t2.start ()

sl eep(20. 0)

t 1. cancel ()
e 31

class A(Thread):
def run(self):
sl eep(5.0)
class B(Thread):
def _init_ (self, other):
Thread. 1nit_(self)
sel f.other = other
def run(self):

self.other.join(3.0)

A)
B(a)
.start ()

.start ()
e

o 9 T QO

class A(Thread):
def run(self):
sl eep(5.0)
class B(Thread):
def _init_ (self, other):
Thread. 1nit_(self)
sel f.other = other
def run(self):
self.other.join(3.0)
I f self.other.isAlive():
course_of action_1()
el se:

course_of action_2()

» Time models: set of assumptions and properties of time
and systems w.r.t. time.

» Assumptions

s Events are instantaneous

s Newtonian time: single global logical clock
s Real numbers as time-base

s Maximal parallelism

s Maximal progress

» TIme base:

» Real numbers vs. natural numbers
s Total linear order vs. partial order

to
\t

to \t /

\

— 15

3
1 4

» Distinguish between “event transitions" and “evolution”
» Event (or action) transitions

P4 p

» TIme evolution

P ~s P

o Evolution is deterministic

» Time additivity and time interpolation

» TIme closure

» Zeno seguence (infinite sequence of evolution with finite
duration)

» Time closure: every Zeno sequence has a limit

—_— —_—
— — — — — — —

» NoO progress
» Zeno-divergence: Never reaching a limit

(B V@) M)

o

1_

» NoO progress

» Spin-divergence: getting stuck in an instant

.041 a1 .042 .042.042
@ @ e S

» Common primitives

s Sleep

s Delay (uninterruptable sleep)
s Timeout

s Interrupt

s Event-time dependence

» Describing simple reactive and interactive processes
» Based on Timed CSP and Timed CCS

» Processes exist and execute in parallel

» Communication by message-passing over channels

o Abstraction mechanisms

» The dead process

» Single action

a— P

®)

» Example

Printer = accept.job — print.job — 0

DolnternalStuff =7 —>17—>17—0

» Alternative actions

041—>P1|042—>P2|...|Ozn—>Pn

» Example

Printer = accept.job — print.job — 0 | shutdown — 0

» Output action (sending a message over a channel)

clv - P

» Input action (receiving a message over a channel)

ctlr — P(x)

» Example

Printer = accept?job — print!job — 0

» Recursion: loops

N = P(N)
» Example

Printer = accept.job — print.job — Printer

OneCellBuf fer = m?x — out!lx — OneCellBuf fer

» Parallel composition

» Example

Leqy = up.l — down.1 — Leg

Legy = down.2 — up.2 — Legs
Robot = Leg || Lego

» Sequential composition

» Example
Runner = run — 0
Walker = walk — 0
Jumper = jump — 0

Group = (Runner || Walker); Jumper

» (Limited) support for dynamic structure:

Virus = reproduce — (Virus || Virus)

: reproduce . :
Virus s Varus || Vairus

reproduce . : :
s Varus || Virus || Virus

reproduce

> Virus || Virus || Virus|| Virus

reproduce\

4

» Communication:

s Message-passing over channels
s Unicasting vs. Multicasting
s Synchronous vs. asynchronous

» Communication

Cell = in?x — outlx — Cell

intxl \out'z m OUt

Boss = linelorder — Boss
Worker = line?x — do(x) — Worker

Factory = Boss||Worker

4 N\ 4 N\
Boss Worker
lline line|

_ linelorder,

» Channels are common names

BigFactory = Boss||Worker || Worker

[Boss }line line{ Worker]

line{ Worker]

» Unicasting vs. Multicasting

» Unicasting leads to non-determinism

Boss = linelorder — Boss
Worker = line?x — do(x) — Worker
Factory = Boss||Worker

» Synchronous communication: (rendez-vous or
handshake) send action is blocking

» Asynchronous communication: send action is
non-blocking

» Channels are common names

Cell = in?x — outlx — Cell

e ™
e ™
m out
m (Cell i
m 9 D out
0 —
Cell || Cell - N
m out
m (Cell i
N\ Y,

But what if we want

- ™
- ™ - B\
m | wn out |out
m——1m (ell il m (Cell m—1f
N Y, N Y,

» Process interface: parameters in its definition

Cell(in, out) = in?x — out!lx — Cell(in, out)

in and out are now private

» Such definition can be thought of as a “class” of
processes

» Process instantiation
Cell(a,b)

becomes

a?’r — blx — Cell(a,b)

Cell(a,b) || Cell(b, c)

a?r — blxr — Call(a,b) || b?x — cle — Cell(b, c)
s 2 s \
a b b C
—a (Clell il m (Clell il

Cell(a,b) || Cell(b, c)

a?r — blxr — Call(a,b) || b?x — cle — Cell(b, c)
s \
s 2 s \
a | a b b C C
m—a (ell 0 m (Cell p—
N y N Y
N & Y

» Hiding (abstraction)

P\{x1,x2,...,xn} OF new x1, 23, ..., Ty : P

out

» Example
TwoCellBuf fer(in,out) = (Cell(in,m) || Cell(m, out))\{m}

s \

s \ s
mn | n out

m——1m (ell il m (el —1]
N Y N

N Y

» Timed-prefix (when)

a@t — P(t) a@t

» Example

Timer(in, out) = begin — in7xQe — outle — Timer(in, out)

» Time-out (non-blocking walit)

p P d | P
P1 |>P2

» Example

100
Printer = (accept?job — print!job — 0) > (shutdown — 0)

AtomicDEV Sstate = (in7x@Qe — Sq(x,e)) S S

» Simple delay (blocking walit)

d
a— P

d
a— (0> P)

» Interval delay (non-deterministic delay)

D
a— P

» Examples:

[6.0,20.0

]> finnish — 0

Runner = ready — set — go!

Sem(seg) = Red(seg)
Red(seg) = 0 b Green(seg)(10)
Green(seg)(n) = (seg!@Qe — Green(seg)(n —e)) > Red(seg)

length/speed

> seq!

Car(seg)(speed) seg?length

— Clar(seg)(speed)

Seg(in,out)(length) = in?car — carllength
— car? — outlcar

— Seg(in, out)(length)

mnlcar — carll — car?

SemSeg(in, out, sem)(l)
— sem? — outlcar

— SemSeg(in, out, sem)(l)

Gen(seg)(p)

new car : (Car(car)(20)
| seglear 2 Gen(seq)(p))

Network = newa,b,c,d, e, f: (Gen(a)(5)

Seg(a,d)(20)
SemSeg(d, f,e)(10)

Seg(f,¢)(30)
Sem(e))

s DEVS and Statecharts: easy to model with timeouts &
timed-prefix

s Timed Petri Nets: ?
s Timed automata: no multiple clocks

s LOTOS = CSP + ACT ONE, E-LOTOS = Timed CSP +
ACT ONE

» Esterel: natural numbers as time-base; “counting"
signals; deterministic

s CSP vs. CCS: multiway synchronization
s CSP, CCS vs ACP: non-blocking delay

	{}
	{Outline}
	{Introduction & Motivation}
	{Introduction & Motivation}
	{Introduction & Motivation}
	{Introduction & Motivation}
	{Introduction & Motivation}
	{Real-time}
	{Real-time}
	{Real-time vs. simulated time}
	{Real-time vs. simulated time}
	{Real-time vs. simulated time}
	{Real-time vs. simulated time}
	{Time in modelling formalisms}
	{Time in modelling formalisms}
	{Time in modelling formalisms}
	{Time in modelling formalisms}
	{Time in programming languages}
	{Time in programming languages}
	{Time in programming languages}
	{Time in programming languages}
	{Properties of time}
	{Properties of time}
	{Properties of time}
	{Properties of time}
	{Properties of time}
	{Properties of time}
	{Properties of time}
	{Properties of time}
	{Properties of time}
	{Timed languages}
	{A mini-timed language}
	{A mini-timed language}
	{A mini-timed language}
	{A mini-timed language}
	{A mini-timed language}
	{A mini-timed language}
	{A mini-timed language}
	{A mini-timed language}
	{A mini-timed language}
	{A mini-timed language}
	{A mini-timed language}
	{A mini-timed language}
	{A mini-timed language}
	{A mini-timed language}
	{A mini-timed language}
	{A mini-timed language}
	{A mini-timed language}
	{A mini-timed language}
	{A mini-timed language}
	{A mini-timed language}
	{A mini-timed language}
	{A mini-timed language}
	{A mini-timed language}
	{A mini-timed language}
	{A mini-timed language}
	{Example: a traffic network}
	{Example: a traffic network}
	{Example: a traffic network}
	{Example: a traffic network}
	{Example: a traffic network}
	{Example: a traffic network}
	{Example: a traffic network}
	{Comparison of languages and formalisms}

