
kiltera: a simulation language for timed, dynamic structure systems

Ernesto Posse and Hans Vangheluwe

Modelling, Simulation and Design Lab
School of Computer Science

McGill University
Montreal, Quebec, Canada

Abstract

In recent years there has been an increased interest in
modelling systems whose structure changes dynamically,
for example to study mobility. At the same time, there is
a plethora of simulation languages for discrete-event sys-
tems that include an explicit notion of time, but few, if any,
support explicitly the notion of structural change. In this
paper we introduce a process description language which
addresses these issues explicitly. We discuss an application
to modelling networks of servers.

1. Introduction

Modelling and simulation are concerned with the de-
scription of dynamic systems. A system is an aggregate
of components. A dynamic system is a system which un-
dergoes changes over time. A dynamic system has structure
and behaviour. The structure refers to how a system’s com-
ponents are related to each other and to the whole. The
behaviour refers to the actions or events of a system with
respect to its environment and to the passage of time.

Discrete-event modelling and simulation [11] focus on
the notions of state and event. These assume an underly-
ing notion of time: at any given point in time a system is
in some state, and events change the state. These notions
are at the core of the description of behaviour of discrete-
event systems. When a system has two or more compo-
nents, the behaviour of one can affect the others. Interaction
between components becomes a central aspect of a system’s
behaviour. Therefore structure and behaviour are closely in-
tertwined.

Most modelling and simulation approaches attempt to
make a clear-cut distinction between structure and be-
haviour. The result are languages and formalisms in which
the dynamics refer to changes of state where state is unre-
lated to structure. Hence only systems with a static stucture
can be described in such languages. However, many real

world systems are not static in this sense but have a dynamic
structure: relations between components change over time.
Examples abound in many fields. In telecommunications
and computing we have systems such as mobile-phone net-
works and adaptive computer and network architectures as
well as complex software architectures. In biology we can
see anything from molecules reacting to full eco-systems as
systems undergoing structural change. In the social sciences
we can see human organizations as systems with dynamic
structure as well.

Linking structure to state, as is done in [2], can give
us the power to describe structural changes, but emphasis
on explicit descriptions of state often lead to verbose for-
malisms. Furthermore, the notion of state itself is an ab-
straction which we use as a means to describe a system’s
condition at one point in time. But what is important about
a state is not the state itself, but whatever relevant informa-
tion we can observe from it, or what actions or events are
possible in that state. Thus, an alternative approach is to fo-
cus on the actions, in particular the interactions in which the
system can engage. If we focus on interaction, component
interconnection, the network of communications, becomes
the central aspect of structure.

Process description languages such as CSP [4], CCS [7],
and LOTOS [5], provide such emphasis on component in-
teraction. Some languages, in particular the so-called π-
calculus [8], go further and support structural changes. An-
other approach is that of the Actor model of Agha and He-
witt ([1], [6], [3]). Nevertheless, to the best of our knowl-
edge, none of these combine the ability to undergo struc-
tural changes with an explicit notion of time familiar in the
discrete-event setting.

In this paper we introduce a language which we call kil-
tera that combines the ability to observe the passage of time
and describe a system’s behaviour in a time-dependent man-
ner, with the ability to describe changes in the network of
communications between components. We believe that the
modelling and simulation community can benefit from lan-
guages that combine these features.

1

The rest of the paper is organized as follows: section
2 provides a general description of the language’s computa-
tional model; section 3 introduces the core of the language’s
syntax; section 4 introduces the language’s semantics; sec-
tion 5 discusses some applications, and finally section 6 pro-
vides some concluding remarks.

2. The kiltera computational model

kiltera is a language for describing concurrent, interact-
ing, mobile components which “live” over time.

A kiltera system consists of one or more dynamic com-
ponents or processes. A process is a modular component
with a well defined interface consisting of a set of ports.
The only way to interact with a process is through its ports.
Each process is an independent computational unit and pro-
ceeds concurrently with all other processes. Processes ex-
ecute a number of different actions. The most important
kind of actions performed by processes are communication
actions.

A process is not necessarily a purely sequential computa-
tion, as it may be itself composed of parallel subprocesses.
In other words, a network of processes is a process, thus en-
abling modularity. This nesting of subprocesses is central
aspect of the structure of a process.

2.1. Interaction

Processes communicate through channels by message-
passing. Processes have ports. A channel connects two or
more processes through their ports. There are two primitive
communication operations: sending a message and receiv-
ing a message through some channel. When a process sends
or receives a message it does so by specifying the port con-
nected to the relevant channel.

There are two kinds of communication: synchronous and
asynchronous.

Synchronous communication means that the sender and
the receiver of a message engage in the interaction simul-
taneously. In other words, execution of a communication
action (sending or receiving a message) is a blocking oper-
ation: the process executing the action will be blocked until
some other process is ready to engage in the interaction. If
a process attempts a receiving operation on a synchronous
channel, it will be blocked until some other process sends
a message through that channel, and dually, if a process at-
tempts a sending operation on a synchronous channel, it will
also be blocked until some other process executes a receiv-
ing action on that channel.

An alternative way of viewing synchronous communica-
tion is in terms of acknowledgement: a send operation waits
for acknowledgment from the receiver before completion.

Asynchronous communication means that the sender and
receiver do not need to engage in the interaction simulta-
neously. In other words, only the receiving operation is
blocking, while the sender of a message can proceed with
execution without waiting for acknowledgement from the
receiver.

In the rest of this paper we consider only the
synchronous-communication fragment of kiltera.

Channels can connect more than two processes, but com-
munication is by “unicasting” or “two-way” communica-
tion rather than “multicasting” or “multi-way” communica-
tion. This is, when a process sends a message through a
channel connected to two or more receivers, only one of
the receivers will get the message and the rest will remain
blocked. The selection is non-deterministic: the receivers
are considered to be competing for the message. The same
is true if there are many senders and one receiver.

2.2. Link mobility

A process network is a set of processes connected
through channels. A configuration is a particular topology
of this network. Channels are first-class values and there-
fore can be communicated between processes. This means
that the configuration of a network can change dynamically
when processes execute. In particular processes can acquire
access to channels and therefore to other processes to which
they didn’t have access. This is known as link mobility and
it is the kind of dynamic-structure supported by kiltera.

2.3. Time

kiltera processes execute over time (whether it is logical
or physical time.) The execution of a process occurs with
respect to a global clock. The time base is the real numbers.

The execution of each action is an event which takes
place at a particular point in time. Most normal actions do
not take (logical) time to complete.

Synchronization actions (blocking actions such as wait-
ing to receive a message,) might take some time: from the
point in time when the action is initiated or attempted un-
til the point in time when the synchronization (exchange of
information) actually occurs: for instance, if process P1 at-
tempts to receive a message through some channel a at time
t0 but no input is available on the channel at that time, it will
block and wait until some other process sends data. When
another process P2 sends data through a at time t1 > t0
then synchronization occurs, and the receiving action of P1

is said to have taken t1 − t0 time units. The actual synchro-
nization is not considered to take any time itself.

Processes can be made to wait for a given amount of
time, or equivalently, a process may schedule events in the
future. Processes can also specify timeouts: the scheduling

2

of future events which cancels another process which has
not yet finished. Processes can also measure the passage of
time and change their behaviour accordingly.

3. Syntax

Table 1 gives a subset of the constructs in kiltera. We call
P the set of all process expressions, D the set of process
definitions, A the set of actions, E the set of expressions,
and N the set of all possible names. We use the following
convention in the syntax: P , Pi range over P , D,Di range
over D, A over A, E, Ei range over E , a, ai, x, xi, t, f , u,
ui range over N , n ranges over the set of (floating-point)
numbers, and s ranges over the set of strings. For brevity
we use {...} to describe nesting and disambiguation, but in
the actual implementation, indentation is used instead.

The full language contains more constructs to make it
more practical, in particular it contains constructs to de-
scribe arrays of processes and channels, useful when de-
scribing large systems.

4. Semantics

In this section we give first an informal description of the
semantics of the constructs in Table 1. We later provide a
formal description.

The process definition process a[u1,...,un]: P defines
a class of processes named a, with ports u1, ..., un and
body P . A process definition defines a class of processes
that can be instantiated. The process definition process
a[u1,...,un](x1,...,xm): P is the same but declares addi-
tional parameters to be passed at the moment of instanti-
ation.

The function definition function f (x1,...,xn): E defines
a (pure) function.

The nil process is the process that does nothing. In par-
ticular, it does not interact with any process. The process
done is used to represent successful termination.

Processes of the form A → P execute the action A,
which may be blocking as described below, and then con-
tinue to behave as process P . Processes of the form Aatt →
P behave the same way but bind the variable t to the time
elapsed between the start of the action and the time the ac-
tion finishes. This will be 0 if the action is non-blocking.

A process of the form send E to u→ P sends the value
of the expression E to the port u of the process in which
it occurs and then continues as P . This operation is block-
ing: the sender waits until some receiver is ready to take the
message. Since communication is “two-way,” only one re-
ceiver gets the message even if more than one are connected
to the port u.1

1We describe here the synchronous communication semantics, but the

A process of the form receive x from u→ P blocks un-
til a message arrives at port u. This message is then bound
to the variable x and the process continues as P . The pro-
cess receive x from u at t→ P is the same, but the variable
t gets bound to the time elapsed from the time the action is
attempted until the message is received.

A process of the form let x = E in P behaves like P with
all the free occurrences of x replaced by the value of E.

A process of the form if E then P1 else P2 behaves as
P1 if E evaluates to true or as P2 otherwise. A process of
the form if E then P behaves as if E then P else done.

A process of the form match E with E1 → P1 | ... |
En → Pn does pattern matching: the value of E is matched
against the patterns E1, ..., En in that order. If the pattern
Ek succeeds, then process Pk is executed, binding the free
variables of Ek to the corresponding values of E.

A process of the form wait E → P blocks the process
for t time units where t is the value of the expression E.
Then the process continues as P .

A process of the form timeout P1 after E → P2 behaves
as P1, but if after t time units, where t is the value of the
expression E, P1 has not finished and it has not engaged in
any external interaction (i.e. it has not performed any sends
or receives,) then P1 is aborted and the process P2 starts. If,
however, P1 does finish or engages in external interaction
before t time units, then P2 is discarded.

A process of the form channel x1,...,xn in P creates
new local channels x1, ..., xn and executes process P . The
scope of the names x1, ..., xn is P , hence these channels
cannot be directly accessed by another process. This con-
struct provides encapsulation and hiding.

A process of the form par { P1,...,Pn } executes the sub-
processes P1, ..., Pn in parallel.

A process of the form D1 ... Dn in P executes the pro-
cess P in an environment with the process classes defined
by D1, ..., Dn. The scope of these definitions is P .

A process of the form a[x1,...,xn] creates and runs an in-
stance of the process class a (as defined in the current scope)
connecting the channels x1, ..., xn to the ports u1, ..., un of
the process, and executing the body of the process defini-
tion, assuming the process is defined in the current scope as
process a[u1,...,un]: P. The process a[x1,...,xn](E1,...,En)
does the same, but passes as parameters the values of ex-
pressions E1, ..., Em if the process class declared parame-
ters.

Expressions are either booleans, numbers, strings, tu-
ples, the unit constant (representing a token value), vari-
ables or function applications. Channels are considered
first-class values and can be sent as messages. This allows
the modelling of link mobility as described in section 4.1.

implementation also supports asynchronous communication.

3

D → process a[u1,...,un] : P
| process a[u1,...,un](x1,...,xm) : P
| function f(x1,...,xn) : E

P → nil
| done
| A → P
| A at t → P
| let x = E in P
| if E then P
| if E then P1 then P2

| match E with E1 → P1 | ... |En → Pn

| wait E → P
| timeout P1 after E → P2

| channel x1, ..., xn in P ′

| par {P1, ..., Pn}
| D1 ... Dn in P
| a[x1,...,xn]
| a[x1,...,xn](E1, ..., Em)

A → send E to u
| receive x from u

E → unit
| n
| x
| true
| false
| “s”
| (E1,...,En)
| unop E′

| E1 binopE2

| f(E1,...,En)
unop → −| not
binop → + | − | ∗ | /

| and | or | =
| < | > | <= | >=

Table 1. kiltera syntax.

4.1. Structural changes

As explained in 2.2, the structural changes supported by
kiltera are changes to the topology of the network connect-
ing a system’s components. This is achieved, as in the π-
calculus, by making channels first-class values which can
be communicated. A typical example is the following:

process A[x,y]: send y to x→done
process B[x]: receive w from x→send 1 to w→done
process C[z]: receive m from z→ ...
in

channel x in
par {

B[x],
channel y in

par { A[x,y], C[y] } }

Here we have three components A, B and C. A and C
are linked together through channel y, and B is linked to
A through channel x. B is waiting for a message on this
channel, and A sends the channel y as a message through
x. When B receives this message it sends a message (1)
through that channel, so C receives a 1. Hence, initially C
could communicate only with A, but after A sent y, it could
also communicate with B, and thus, the network’s topology
changed.

Apart from link mobility, other forms of structural
changes are supported: creation of components is achieved
with process instantiation, and destruction is achieved either
by voluntary termination or by timeout.

4.2. Formal semantics

The operational semantics is given, in the style of Struc-
tural Operational Semantics [9], by a timed-labelled tran-
sition system defined inductively by inference rules of the
form: “RULE: if B1, B2, . . . , Bn then C”. A rule with no
premises is an axiom. These rules are presented in Table 2.

We describe the semantics in terms of configurations. A
configuration ∆ ` P consists of a multiset ∆ of process
definitions, representing the execution environment, and a
process P . The semantics are given by a timed-labelled
transition system (C,L,→,) where C is the set of con-
figurations, L is the set of possible action labels described
below, →⊆ C × L × C is the transition relation defined
in Table 2, and ⊆ C × R+

0 × C is the evolution rela-
tion defined in Table 2, where R+

0 denotes the set of pos-
itive reals including 0. We write ∆ ` P

α−→ ∆′ ` P ′

for (∆ ` P, α,∆′ ` P ′) ∈→, to mean that process P
in an environment ∆ can become process P ′ in an envi-
ronment ∆′ by performing action α. Similarly, we write
∆ ` P

d
 ∆′ ` P ′ for (∆ ` P, d,∆′ ` P ′) ∈ ,

to mean that process P in an environment ∆ evolves into
process P ′ in an environment ∆′ after an amount of time
d. For brevity of notation we write P

α−→ P ′ to mean that
∆ ` P

α−→ ∆ ` P ′ for any ∆. Similarly, we write P
d
 P ′

to mean that ∆ ` P
d
 ∆ ` P ′ for any ∆.

Intuitively the transition relation is intended to capture
the notion of instantaneous change of state while the evolu-
tion relation is intended to capture the passage of time.

4

match(p, v, σ)
def
=

σ if p = v and v ∈ K or p ∈ dom(σ)
and σ(p) = v

σ ∪ {p 7→ v} if p ∈ N and p 6∈ dom(σ)
σn if p = (p1, ..., pn) and v = (v1, ..., vn),

where ∀i ∈ {1, ..., n},
σi

def
= match(pi, vi, σi−1)

and σ0
def
= σ

∅ otherwise

Figure 1. Pattern-value match

We denote V for the set of possible values, which in-
cludes the booleans, the real numbers, strings, tuples of val-
ues and channels. We call K ⊆ V the set of constants in-
cluding booleans, strings, numbers, and channels (but not
tuples.) We assume there is a function eval : E → V , that
evaluates an expression. We omit the details here due to
lack of space.

We take the set of action labels L to be the set of ele-
ments of the form c!v, c?x, τ or

√
. An action c!v repre-

sents a message v sent over a channel c, with c ∈ N any
name and v ∈ V any value. An action c?x represents the
reception of a message through a channel c, where x ∈ N .
τ is a special action used to denote an unobservable (in-
ternal) event and

√
denotes termination. For notational

convenience we define a function act : A → L associating
syntactic actions with action labels as follows: act(send E

to u)
def
= u!eval(E) and act(receive x from u)

def
= u?x.

We need the following definitions. A name x is bound
in P if P is a process definition and x is either a port, a
parameter or the name of the process definition, or if P is a
process of the form channel x in P ′, receive x from u →
P ′, A at x → P ′, or let x = E in P ′. A name substitution
is a function σ : N → N . We write {x1 7→ y1, . . . , xn 7→
yn} for the substitution σ where σ(x1) = y1, ..., σ(xn) =
yn and σ(z) = z for all z 6∈ {x1, . . . , xn}. The notion
of substitution is extended to processes in the natural way
taking care of avoiding capture. For full details see [10].
We write Pσ for σ(P) denoting the process where all free
occurrences of each x ∈ dom(σ) have been substituted by
σ(x).

In order to define the semantics of pattern-matching we
need the following definitions: a pattern is an expression
that may have variables, a datum is an expression with no
variables, and (general) substitution is a mapping σ : N →
V . We call S the set of substitutions. We now define a
function match : E × V × S → S as shown in Figure 1.

The core rules defining the transition and evolution rela-
tions are given in Table 2.

Some constructs are defined as syntactic sugar: wait t→
P is short for timeout nil after t → P . if E then P1 else
P2 is short for match E with true→ P1 | false→ P2 and
if E then P is short for match E with true→ P | false→
done. channel x1,...,xn in P is shorthand for channel x1

in channel x2 in ...channel xn in P . We omit the rules for
the parametrized forms of process definition and process in-
stantiation due to lack of space, but the corresponding rules
are straight-forward.

We impose the following restriction on the definition of
our timed-labelled transition system (C,L,→,): for any
configuration γ ∈ C such that there is a configuration γ′ ∈ C
where γ

τ−→ γ′ then for all d ∈ R+ there is no configuration
γ′′ ∈ C such that γ

d
 γ′′. This restriction requires internal

transitions to be urgent, this is, actions are performed as
soon as they are enabled.

Given the definitions of transition and evolution we can
now define a computation.

For a pair of configurations γ, γ′ ∈ C we write

γ
α̃=⇒ γ′

where α̃
def
= α1, ..., αn−1 is a sequence of actions if there

are configurations γ1, ..., γn such that

γ = γ1(
τ−→)∗ α1−→ (τ−→)∗ · · · (τ−→)∗

αn−1−−−→ (τ−→)∗γn = γ′

Note that if γ
d
 γ′ and γ′

d′

 γ′′ then γ
d+d′

 γ′′. There-
fore any computation has the form:

γ
α̃1=⇒d1

α̃2=⇒d2 · · · α̃m=⇒dm γ′

5. Applications

In this section we describe an application of kiltera to the
problem of distributing tasks among a group of servers.2

For this example it will be useful to have buffers. Fig-
ure 2 shows a possible implementation of bounded buffers.
Here each cell process can hold a value which is passed to
whomever requests it. A bounded buffer is then simply a
finite connection of these cells.

We will also use a “generator” process to produce jobs
for the servers, as well as a “statistics manager” that will
keep track of average waiting times and a “consumer”
which will receive the finished jobs. These are depicted in
Figure 3.

2In this example we use a built-in function supported in the current im-
plementation of kiltera, random, which generates a pseudorandom num-
ber between 0 and 1. We also use indentation to denote nesting instead of
{...} as described in section 3. Semantically, these examples also rely on
some key features, namely synchronous two-way communication (as op-
posed to asynchronous or multi-way communication,) the ability to create
new processes, to send channels in messages, as well as the time-related
constructs.

5

NIL: nil 6 α−→ ENIL: nil
d
 nil DONE: done

√
−→ nil ACT1: A → P

act(A)−−−−→ P ACT2: A at t → P
act(A)−−−−→ P{t 7→ 0}

EACT1: A → P
d
 A → P EACT2: A at t → P

d
 P{t 7→ t + d} LET: let x = E inP

τ−→ P{x 7→ eval(E)}
MTCH: matchE with E1 → P1 | ... |En → Pn

τ−→ Piσ if σ 6= ∅ where σ
def
= match(Ei, eval(E), ∅)

TMOUT1: if P
α−→ P ′ and α 6= τ then timeoutP after E → Q

α−→ P ′

TMOUT2: if P
√
−→ nil then timeoutP after E → Q

√
−→ nil

TMOUT3: if P
τ−→ P ′ then timeoutP after E → Q

τ−→ timeoutP ′ after E → Q

TMOUT4: if eval(E) = 0 then timeoutP after E → Q
τ−→ Q

ETMOUT: if P
d′

 P ′ and 0 < d′ ≤ eval(E) then timeoutP after E → Q
d′

 timeoutP ′ after E − d′ → Q

CHN: channel x inP
τ−→ P{x 7→ x′} where x′ is a fresh name PAR: if P

α−→ P ′ then par {..., P, ...} α−→ par {..., P ′, ...}
EPAR: if ∀i ∈ {1, ..., n}. Pi

d
 P ′

i then par {P1, ..., Pn}
d
 par {P ′

1, ..., P
′
n}

COMM: if P
c!v−−→ P ′ and Q

c?x−−→ Q′ then par {..., P, ..., Q, ...} τ−→ par {..., P ′, ..., Q′{x 7→ v}, ...}
DEF: ∆ ` D1...Dn inP

τ−→ ∆ ∪ {D1, ..., Dn} ` P

INST: if process a[x1, ..., xn] : P ∈ ∆ and ∆ ` P{x1 7→ u1, ..., xn 7→ un}
α−→ ∆′ ` P ′ then ∆ ` a[u1, ..., un] α−→ ∆′ ` P ′

Table 2. Operational semantics

process Cell[inp, outp]:
receive x from inp ->

send x to outp ->
Cell[inp, outp]

process Buffer[i,o](n):
if n = 1 then

Cell[i,o]
else

channel h in
par

Cell[i,h]
Buffer[h,o](n-1)

Figure 2. Bounded buffers.

process Generator[output](g0, g1, s0, s1, c, t):
let d = (g1-g0)*random()+g0 in

let s = (s1-s0)*random()+s0 in
wait d ->

send ("job", c, t+d, s) to output ->
Generator[output](g0,g1,s0,s1,c+1,t+d)

process StatsManager[stats](c, sum, avg):
print ("stats ", c, fit(sum,6), fit(avg,6)) ->

receive t from stats ->
StatsManager[stats](c+1,sum+t,

(sum+t)/(c+1))

process Consumer[inp]:
receive result from inp ->

Consumer[inp]

Figure 3. Generators and statistics.

The generator process has parameters specifying the de-
lay between generated jobs (uniformily distributed over the
interval [g0, g1)) and the size of the generated jobs (also
uniformily distributed over the interval [s0, s1),) the num-
ber of jobs so far (c) and the current time (t.) The generated
jobs are tagged with an id, the time of creation and their
size.

In this example we model a system consisting of a set
of nodes, each of which has a number of servers that will
perform tasks assigned to them. Each node receives job re-
quests from the outside and assigns each of them to one of
its servers. If all servers are busy, a node asks some other
node for help, and if the other node has some idle server, it
“moves” it to the requesting node. If job requests continue
to arrive, all servers are busy and a neighbouring node can-
not provide a spare server, then jobs are queued until some
servers becomes free.

In order to distribute tasks and handle other nodes’ re-
quests, a node has, in addition to its servers, a buffer for
jobs, a job dispatcher and a “move-handler.” Figure 4 shows
the structure of a node. The specification for nodes is shown
in Figure 5. A node has an input port, an output port, a port
used to send requests to other nodes for help (ask,) a port
where such requests are received (move,) and a port to link
with the statistics manager. The parameters are the max-
imum time the node will wait before asking another node
for help (busyt), and the size of the buffer (bsize). Note
that all servers share one link (b) with the dispatcher (and
the move handler.) The dispatcher uses the ask link to send
requests for servers to other nodes when required, and the
move-handler takes care of such requests coming from the
move link.

Servers are shown in Figure 6. Each server has two ports:

6

Figure 4. Nodes

process Node[input, output, ask, move,
stats](busyt, bsize):

channel a, b in
par

Buffer[input, a](bsize)
Dispatcher[a, output, b, ask, stats](0, busyt)
MoveHandler[move,b]
Server[b, output](idlet)
Server[b, output](idlet)

Figure 5. Nodes

one linking it to a dispatcher, and one output port. A server
can be in one of two modes: idle or processing. When idle,
a server waits for messages. Messages are either jobs or
“move” requests. If a message arrives with a job, it changes
to the processing mode. If a move request arrives, it comes
with links to the requesting node’s dispatcher and output. In
this case the server remains idle but becomes connected to
the channels received. Since the only way to observe and
interact with a process is through its ports, from the point
of view of the dispatchers the server behaves as if it moved.
In processing mode, the server will remain busy, without
accepting any messages for an amount of time associated
with the task. When this time is due, the server sends a
“done” message to the output port and returns to idle mode.

The specification of dispatchers is shown in Figure 7.
Each dispatcher has a port to link to the queue, an output
port, a “server link” to connect with all the servers, a port
to send requests to other nodes (other,) and one for linking
with the statistics manager. Its parameters are the current
time (time), and the maximum time before asking another
node for help (busyt).

process Server[dispatcher, output]:

process Idle[dispatcher, output]:
receive message from dispatcher ->

match message with
("job", id, t0, size) ->

Processor[dispatcher,output](id,size)
| ("move", new_disp, new_out) ->

Idle[new_disp, new_out]

process Processor[dispatcher,output](id,size):
wait size ->

send ("done",id) to output ->
Idle[dispatcher, output]

in
Idle[dispatcher, output]

Figure 6. Servers

A dispatcher waits for jobs coming from the buffer, and
when one arrives the dispatcher attempts to send it through
the server link. If one of the servers gets the job, the dis-
patcher sends a message to the statistics manager and goes
back to waiting for more jobs. If after a certain amount of
time (busyt) none of the associated servers takes the job,
it sends a request to some other node, passing along its
server’s link and output channel. Once it has been taken,
it sends the job to the server link again. At this point sev-
eral things can happen: 1) the other node has a spare server
which got the “move” message with the new links and so
receives the job, 2) one of the busy servers in the request-
ing node becomes idle and accepts the job, or 3) all servers
in both nodes are busy, in which case the dispatcher re-
mains blocked (since the send is blocking) and new jobs are
buffered. Once the job is taken, it sends a message to the
statistics manager and goes back to waiting for more jobs.

Figure 8 shows the “move handler.” This is the com-
ponent in charge of handling requests for free servers from
other nodes. It has two ports: one where moving requests
are expected from other nodes and one linking with the
node’s servers (and dispatcher.) When it receives a re-
quest, together with the other node’s channels, it sends a
“move” message through the server channel. If one server
accepts the message it goes back to listening for requests.
Otherwise it remains blocked until some server accepts the
message, and therefore the requesting dispatcher remains
blocked as well.

Finally Figure 9 shows a sample network consisting of a
generator a statistics manager and two nodes connected.

7

process Dispatcher[queue, out, servers,
other, stats](time, busyt):

receive message from queue at e1 ->
match message with

("job", id, t0, size) ->
let t1 = time + e1 in

timeout
send message to servers at e2 ->

let t2 = t1 + e2 in
send t2 - t0 to stats ->

Dispatcher[queue,out,servers,
other, stats](t2, busyt)

after busyt ->
send ("req",servers,out) to other ->

send message to servers at e2 ->
let t2 = t1 + e2 + busyt in

send t2 - t0 to stats ->
Dispatcher[queue,out,servers,

other, stats](t2, busyt)

Figure 7. Dispatcher

process MoveHandler[other,server_link]:
receive message from other ->

match message with
("req", other_disp, other_out) ->

send ("move",other_disp,other_out)
to server_link ->

MoveHandler[other,server_link]

Figure 8. Move handler

6. Final remarks

We have introduced a process description language with
an explicit notion of time and support for dynamic struc-
tural changes. While this language shares many charac-
teristics with some existing process description languages
such as CSP, CCS and the π-calculus, it differs from them in
that, with respect to CCS and CSP, it supports mobility, and
with respect to the π-calculus, it supports timed-systems.
However the closeness with these languages means that we
might be able to take advantage of the theoretical frame-
works developed for them.

We have built a thread-based interpreter for this language
and we are pursuing several lines of research: we are explor-
ing the possibility of supporting full active-process migra-
tion, which may be more adequate in a distributed setting;
we are investigating the relationships with other languages
and formalisms; and we are working on an event-based sim-
ulator supporting both virtual and real-time simulation.

The implementation can be obtained at
http://moncs.cs.mcgill.ca/people/eposse/projects/kiltera.

process Network[]:
channel gen, stats, sink, a, b in

par
StatsManager[stats](0, 0.0, 0.0)
Generator[gen](1.0, 2.0, 1.0, 3.0, 0, 0.0)
Node[gen, sink, a, b, stats](4.0,100)
Node[gen, sink, b, a, stats](4.0,100)
Consumer[sink]

Figure 9. Node network.

References

[1] Gul A. Agha and Carl Hewitt. Concurrent program-
ming using Actors. In Object-Oriented Concurrent
Programming. MIT Press, 1987.

[2] F. Barros, M. Mendes, and B. Zeigler. Variable DEVS
— variable structure modeling formalism: An adap-
tive computer architecture application. 1994.

[3] M.-W. Jang et al. An actor based simulation for study-
ing uav coordination. In Proc. of 15th European Sim-
ulation Symposium, 2003.

[4] C. A. R. Hoare. Communicating sequential processes.
Comm. ACM, 21(8):666–677, August 1978.

[5] ISO. LOTOS - language of temporal ordering specifi-
cation. Technical Report ISO DP 8807, 1987.

[6] M.-W. Jang and G. Agha. Agent framework ser-
vices to reduce communication overhead in large-
scale agent-based simulations. Simulation Modelling
Practice and Theory, 14(6):679–694, August 2006.

[7] Robin Milner. A Calculus of Communicating Systems.
Springer-Verlag, 1980.

[8] Robin Milner, Joachim Parrow, and David Walker. A
calculus of mobile processes, parts I and II. Reports
ECS-LFCS-89-85 and 86, Computer Science Dept.,
University of Edinburgh, March 1989.

[9] Gordon Plotkin. A structural approach to operational
semantics. Lecture Notes DAIMI FN-19, Dept. of
Computer Science, Aarhus University, 1981.

[10] Ernesto Posse. kiltera: a language for concurrent,
interacting, timed mobile systems. Technical Re-
port SOCS-TR-2006.4, School of Computer Science,
McGill University, 2006.

[11] Bernard P. Zeigler, Herbert Praehofer, and Tag Gon
Kim. Theory of Modeling and Simulation. Academic
Press, second edition, 2000.

8

