Aliases and shared data

e An alias of a variable which refers to an object is a
different variable which refers to the same object.

K a
K b

new K();
a,

o Aliases are useful when used in different objects to
represent shared information.

e Pointer (or physical) equality and structural equality are
two equivalence relations between objects of the same
class.

D McGill

Pointer equality

e Pointer equality represents sameness

e Two variables a and b, of the same class, are pointer
equal, written a==b, if the two variables refer to the
same object, i.e. if they are aliases.

e For example, if
K a=mnew K(), b =a, ¢ = new KO;

e then a==Db but c is not pointer-equal to neither a nor b

e |t can be used to detect shared information.

D McGill

Structural equality

e Structural equality represents equivalence of parts. This
is, two variables a and b, of the same class, are struc-
turally equal, if each attribute of a is equal to the same
attribute of b.

e For example, if we have

class M A
int q;
String r;
¥

e and we have
M a = new M(), b = new M();

e Then a is structurally equal to b if a.q is equal to b.q
and a.r is equal to b.r.

D McGill

Structural equality

e For example, in the following

M a =new M(), b = new M), ¢ = new M();

a.q = 6;
a.r = ‘“‘one’’;
b.q =3 + 3;

b.r — ((O”_l_‘(ne”;

c.q = 6;

€<)

c.r = “‘un’’;

e a is structurally equal to b but ¢ is not structurally equal
to either a or b.

D McGill

Shallow vs. deep structural equality

class F {
int 1;
String j;
F(int i, String j)
{
this.i = 1;
this.j = j;
by
boolean equals(F other)
{
return this.i == other.1

&% this.j == other.j;

D McGill

Shallow vs. deep structural equality

class G A
float v;
F u;
G(float v, F u)
{
this.v = v;
this.u = u;
}
boolean equals(G other)
{
return this.v == other.v
&& this.u == other.u; //tests for
//shared u
}
}

D McGill

Shallow vs. deep structural equality

public class Test {
public static void main(Stringl[] args)

{
F f1 =
F £2 =
F £3 =
G gl =
G g2 =
G g3 =
if (gl.

new F(17, ‘“‘pancakes’);
new F(17, ‘“‘pancakes”);
f1;

new G(1.618, f1);

new G(1.618, f2);

new G(1.618, £3);
equals(g2))

System.out.println("gl equals g2");

if (gl

.equals(g3d))

System.out.println("gl equals g3");

if (g2.

equals(g3))

System.out.println("g2 equals g3");

D McGill

Shallow vs. deep structural equality

main frame

f1 — i |17
f2 pancakes
f3

gl
92 F

g3 i [17
pancakes

—

—

D McGill

Shallow vs. deep structural equality

main frame

fl — |17

f2 j pancakes]
f3

gl I ﬁ

92 \ F
g3

i |17
pancakes
G
v |1.618
u —_

—

D McGill

Shallow vs. deep structural equality

main frame

f1
f2
f3
gl
g2
g3

17

pancakes]

e
v |1.618
u —

[~—
i |17
pancakes

1

—

v 11.618

D McGill

10

Shallow vs. deep structural equality

main frame =
f1 — jl 17]
f2 J | pancakes
f3
g1l e
g2 e F
g3 N\ i [17
N\] [pancakes

)

v 11.618 G
u —

v |1.618
y e

v 11.618
u —

c

D McGill

11

Shallow vs. deep structural equality

class G {
float v;
F u;
G(float v, F u)
{
this.v = v;
this.u = u;
+
boolean equals(G other)
{
return this.v == other.v
&& this.u == other.u;
+
boolean deep_equals(G other)
{
return v == other.v
&& u.equals(other.u);
by

D McGill

Shallow vs. deep structural equality

e Shallow structural equality is when the equality used to
compare the parts (attributes) of the objects is pointer
equality.

e Deep structural equality is when the equality used to
compare the parts (attributes) of the objects is some
structural equality (shallow/deep).

e Shallow equality compares only one level of indirectness,
while deep equality might compare many.

D McGill

13

Shallow vs. deep structural equality

e In the example, g1 and g3 are shallowly-structurally
equal; g1, g2 and g3 are deeply-structurally equal, but
g2 is not shallow-structurally equal to neither g1 nor
g3. And none of g1, g2, nor g3 is pointer-equal to any
of the others.

e Suppose that F had a deep_equals method, then we
could have a very_deep_equals method in G:

boolean very_deep_equals(G other)

{

return v == other.v
&& u.deep_equals(other.u);

D McGill

14

Copying and cloning

e Sometimes you don't want to share information, but
just give a copy.

e Hence, the purpose of copying an object is to produce
a structurally equivalent object to the original, which
is not pointer equivalent (i.e. a different object whose
attributes are equal to the original.)

e For primitive data types, this is done simply by using
the assignment statement:

X = V;
e Means copy the value of y in the memory location of x.

e But, for user-defined data types (classes), one must
explicitly create the copy (sometimes called clone) and
copy the each of attributes of the object into the copy.

D McGill

15

Copying and cloning

class Sheep {
String name;

int age;
int legs;
Sheep(String n)
{

name = n;

age = 0;

legs = 4;
¥

void grow_up() { age++; }
Sheep clone()
{
Sheep copy = new Sheep(name) ;
copy.age = this.age;
copy.legs = this.legs; //could be different
return copy,;

¥
¥

D McGill

16

Copying and cloning

public class SheepTest {

public static void main(String[] args)

{
Sheep dolly = new Sheep(‘“Dolly”’);
dolly.grow_up();
Sheep molly = dolly.clone();
dolly.grow_up();
System.out.println(dolly.age);
System.out.println(molly.age);

D McGill

17

main frame

Copying and cloning

dolly
molly

main frame

dolly
molly

main frame

dolly
molly

Sheep
name | Dolly
age 0
legs 4

Sheep
name | Dolly
age 1
legs 4

Sheep
name | Dolly
age 1
legs 4

Sheep
name | Dolly
age 1
legs 4

D McGill

mai n frame Sheep
dol 1y nanme | Dol |y
mlly [—— age 2
| egs 4
Sheep
name | Dol |y
age 1
| egs 4

D McGill

19

Shallow copy

class Brain {
String memory;
Brain()

€,

memory = ‘“’;

}

void learn(String something)

{
memory = memory + something;
¥
}

D McGill

20

Shallow copy

class Sheep {
String name;
int age, legs;
Brain br;
Sheep(String n)
{
name = n;
br = new Brain();
age = 0;
legs = 4;
b
void grow_up() { age++; }
void learn(String something)

{

br.learn(something) ;

¥

// Contintues below. ..

D McGill

21

Sheep clone()
{
Sheep copy = new Sheep(name) ;
copy.age = this.age;
copy.legs = this.legs;
copy.br = this.br; // Making an alias
return copy,;

¥
} // End of class Sheep

D McGill

22

Shallow copy

public class SheepTest {

public static void main(String[] args)

{
Sheep dolly = new Sheep(‘“Dolly”’);
dolly.grow_up();
Sheep molly = dolly.clone();
dolly.grow_up();
molly.learn(‘‘ to walk *’);
System.out.println(dolly.age);
System.out.println(molly.age) ;
System.out.println(dolly.br.memory) ;

D McGill

23

mai n frane

dolly

mol |y

Shallow copy

Sheep
-
nane | Dol | y
\\\\’> age 1
| egs 4
br s

Brain

\\ﬁ.[nennry

D McGill

24

main frame

Shallow copy

Sheep

4)
dolly name | Dolly
molly \ age 2
legs 4

br — Brain
\. J
\Tmemory to walk

Sheep

4)
name | Dolly
age 1
legs 4

br —

\. J

) McGill

25

Deep copy

class Brain {
String memory;
Brain()

€,

memory = ‘“’;

}

void learn(String something)

{

memory = memory + something;

¥

Brain clone()

{
Brain copy = new Brain();
copy.memory = this.memory,
return copy,

¥
¥

D McGill

26

Deep copy
class Sheep {
String name;
int age, legs;
Brain br;
// Same as before...
Sheep clone()
{
Sheep copy = new Sheep(name) ;
copy.age = this.age;
copy.legs = this.legs,;
copy.br = this.br; // Making an alias
return Copy,

¥

Sheep deep_clone()

{
Sheep copy = new Sheep(name);
copy.age = this.age;
copy.legs = this.legs;
copy.br = br.clone();
return copy,

}
¥

D McGill

27

Deep copy

public class SheepTest {

public static void main(Stringl[] args)

{
Sheep dolly = new Sheep(‘“Dolly”’);
dolly.grow_up();
Sheep molly = dolly.deep_clone();
dolly.grow_up() ;
molly.learn(‘‘ to walk *’);
System.out.println(dolly.age);
System.out.println(molly.age);
System.out.println(dolly.br.memory) ;

D McGill

28

Deep copy

main frame Sheep
()
dolly name | Dolly
molly —-\\ age 2
legs 4
or — T Brain
\. J
\‘[memory
Sheep
()
name | Dolly
age 1
legs 4
br e _
L) Brain

memory | to walk

D McGill

29

Shallow copy vs deep copy

e Shallow copying creates a new object with exactly the
same values in its attributes as the original.

— This s, the original object and its copy are structurally
equal, they are not pointer equal, but their attributes
are pointer equal.

e Deep copying creates a new object where the attributes
of the copy are copies (structurally equivalent) of the
attributes of the original.

— This s, the original object and its copy are structurally
equal, they are not pointer equal, and their attributes
are structurally equal.

D McGill .

Parameter passing by reference vs. by
value

e A programming language that has methods, procedures,
and/or functions can pass arguments to the function in
several ways:

— Passing parameters by value: The arguments received
by the function are a copy (usually shallow) of the
actual arguments.

— Passing parameters by reference: The arguments
received by the function are aliases of the actual
arguments.

e In Java, primitive data types are passed by value, but
all user-defined data types are passed by reference.

D McGill

31

Parameter passing by reference vs. by

value

public class PassingParameters {

public static void main(Stringl[] args)

{
Sheep dolly = new Sheep(‘“Dolly”’);
Sheep molly = new Sheep(“‘Molly’’);
do_something(dolly);
System.out.println(dolly.br.memory) ;
do_something(molly.clone());
System.out.println(molly.br.memory) ;
do_something(molly.deep_clone());
System.out.println(molly.br.memory) ;

b
static void do_something(Sheep s)

{

s.learn(‘‘ to eat ”’);

¥
}

D McGill

32

