Review

e Inheritance:

— Represents the “is-a" relationship between classes
— Represents specialization of classes (subsets)
— Represents a way of describing alternatives (alterna-

tive subclasses)
— Is a mechanism for reusability

D McGill

Inheritance

e Whenever we have a situation which states that “every
A is a B", we model this as

class A extends B { ... }

e All attributes and methods from the parent class (or
super class) B are “inherited” by the subclass (or derived

class) A.

e Class A can have (and usually does have) additional
attributes and methods.

represents:
"every A is a B"
(inheritance)

B

f

A

represents:
"every A has a B"
(aggregation)

D McGill

Inheritance

e The silogism “if every A is a B and every B has a C
then every A has a C’, means that all the attributes
that B has, are also attributes of A. A may have other
attributes as well which B doesn’t. A is more specific or
specialized than B.

class C{ ... }
class B {

C v;

/] ...
}

class A extends B {
// Has an implicit C v;
/]

}

D McGill

Inheritance

e |nheritance represents also a spectrum of possibilities or
alternatives, given by the subclasses of a class

e |f every Bisan A and every Cis an A, and nothing else
is an A, then an A is eithera Bora C

— (e.g. if every racing car is a car, and every sedan is a
car, and nothing else is a car, then a car is either a
racing car or a sedan.)

class Animal { ... }

class Dog extends Animal { ... }
class Cat extends Animal { ... }
class Bird extends Animal { ... }

// In some client

Animal al = new Dog();

Animal a2 = new Cat();

Animal a3 = new Bird();

Dog d = new Animal(); // Wrong!

D McGill

Inheritance

class C{ ... }
class D { ... }
class E{ ... }
class B {

C vl, v2;

D u;

void m() { ... %}
}
class A extends B {

E x;

Cy;

void p() { ... }
void s() { ... %}

¥

D McGill

Inheritance

// In some client
A obj = new AQ);

obj.pQO);
obj.m();
// We can refer to ... obj.x ... obj.y ...
// ... obj.u ... obj.vl ... obj.v2 ...
some frame
A
Obj — ()
vl
v2 B
u
. .X)
y

D McGill

Shadowing variables

e An attribute or instance variable can be redefined in a
subclass. In this case we say that the variable in the
subclass shadows the variable in the parent class.

class M extends A {

E z;
D r, x;
void q() { ... }
t
some frame
M
Obj — 4)
vl
v2 B
u
X A
y
Z
r M
X
_ J

D McGill

Accessing variables from the super
class

e The super reference is used to access an attribute or
method in a parent class.

class M extends A {

E z;
D r, x;
void q()
{
. this.x ... super.x ...
Iy

D McGill

Overriding methods

e A method can be redefined in a subclass. This is called
overriding the method.

class M extends A {
E z;
D r, x;
void q()
{

... this.x ... super.x ...
¥
void p()
{

}

D McGill

Multiple inheritance

Animal
Mammal Fish
+sleep(): void +sleep(): void
Dolphin
class A extends B, C{ ... } // Error

e Java does not support multiple inheritance

D McGill

Polymorphism

e Polymorphism means "many forms.”

e Polymorphism is the characteristic of being able to assign
a different meaning or usage to something in different
contexts

e A polymorphic method is a method which can accept
more than one type of argument

e Kinds of polymorphism:

— Overloading (Ad-hoc polymorphism): redefining a
method in the same class, but with different signa-
ture (multiple methods with the same name.) Dif-
ferent code is required to handle each type of input
parameter.

— Parametric polymorphism: a method is defined once,
but when invoked, it can receive as arguments objects
from any subclass of its parameters. The same code
can handle different types of input parameters.

D McGill

11

Polymorphism

class Creature {
boolean alive;
void move ()
{
System.out.println("The way I
}
}

class Human extends Creature {
void move()
{
System.out.println("Walking. ..
+
+

class Martian extends Creature {
void move()
{
System.out.println("Crawling. .
+
+

move 1s by..

l),

.u);

D McGill

12

n) .
.)

Ad-hoc Polymorphism (Overloading)

class Zoo {
void animate (Human h)

{

h.move();

}

void animate(Martian m)

{
m.move() ;
}
}

public class ZooTest {

public static void main(String[] args)

{
Zoo my_zoo = new Zoo();
Human yannick = new Human();
Martian ernesto = new Martian();
my_zo0o0.animate (ernesto); // Polymorphic call
my_zoo.animate(yannick); // Polymorphic call

¥
¥

D McGill

13

Ad-hoc Polymorphism (Overloading)

class Penguin extends Creature {
void stumble()
{
System.out.println(‘“‘Ouch’);
b
b

class Zoo {
void animate (Human h)

{
h.move() ;
b
void animate(Martian m)
{
m.move() ;
+
void animate(Penguin p)
{
p.move() ;
+

¥
D McGill

14

Parametric Polymorphism

class Zoo {
void animate(Creature c)
{
c.move() ;
}
}

public class ZooTest {

public static void main(String[] args)

{
Zoo my_zoo = new Zoo();
Human yannick = new Human() ;
Martian ernesto = new Martian();
my_zoo.animate(ernesto); // Polymorphic call
my_zoo.animate(yannick); // Polymorphic call

D McGill .

Parametric Polymorphism

class Zoo {
void animate(Creature c)
{
c.move(); // Dynamic-dispatch
// move *must* be defined in class Creature
}
}

public class ZooTest {
public static void main(Stringl[] args)
{
Zoo my_zoo = new Zoo();
Human yannick = new Human() ;
Martian ernesto = new Martian();
Penguin paco = new Penguin();

my_zo00.animate (ernesto) ;
my_zoo .animate (yannick) ;
my_z00.animate (paco) ;

}

by
D McGill

16

Accessing super

class Human extends Creature A
void move()
{
super .move () ;
System.out.println(‘“Walking. ..

}
¥

class Martian extends Creature A
void move()
{
super .move ()
System.out.println(““‘Crawling. .

¥
¥

n) .
. ’

D McGill

17

Casting and instanceof

e (Casting is like putting a special lens on an object

e A casting expression is of the form
(type) expr

where type is any type (primitive or user-defined) and
expr is an expression which evaluates to an object
reference whose type is compatible with type.

e Not all casts are possible

(int) ‘‘Hello”’
(Engine) yannick

D McGill

18

Casting

e If a variable is a reference of type A, it can be assigned
any object whose type is a subclass of B.

Human greg = new Human();
Creature c = greg;

e But a reference of type B cannot be assigned directly
reference of type A, if B is a subclass of A (because A
has less attributes than required by B):

Creature d = new Creature();
Martian m = d; // Error

e __however, if we know that a reference x of type A
points to an object of type B (and B is a subclass of A))
then we can force to see x as being of type B by using
a casting expression:

Creature e = new Martian();
Martian f = (Martian)e;

D McGill

19

Casting

class Creature {
boolean alive;

/] ...
¥

class Martian extends Creature {
int legs, wings;
/] ...

+

// Somewhere else...

Creature d = new Creature();
Martian m = d;

int k = m.legs + m.wings; // Error!

// ...because d does not have legs or wings

D McGill

20

Casting

class Creature {
boolean alive;
void move() { ... }
+
class Martian extends Creature {
int legs, wings;
void move() { ... }
void hop() { ... %}

}

// Somewhere else. ..
Creature d = new Creature();
Martian m = d;

m.hop(); // Error!

// ...because d cannot hop

D McGill

21

Casting

e ._however, if we know that a reference x of type A
points to an object of type B (and B is a subclass of A))
then we can force to see x as being of type B by using
a casting expression:

Creature e = new Martian();

Martian f = (Martian)e;

int n = f.legs * f.wings;

((Martian)e) .hop(); // same as f.hop();

D McGill

22

Checking the type of a reference

e To find out whether a reference r is an instance of a
particular class C we use the boolean expression:

r instanceof C
e This is normally used whenever we do casting:

class Human extends Creature {
void move ()

{
System.out.println(‘“Walking...”’);

¥
void jump()
{
System.out.println("Up and down");

D McGill

23

Checking the type of a reference

class Martian extends Creature {
void move()

{
System.out.println("Crawling...");
ks
void hop()
{
System.out.println("Down and to the left");
I

¥

class Zoo {
void move(Creature c)
{
if (¢ instanceof Human)
((Human)c) . jump () ;
else if (c instanceof Martian)
((Martian)c) .hop();
c.move() ;

}

¥
D McGill

24

Narrowing and Widening casts

e Suppose class A has B as a subclass.

e Narrowing casts make a reference to a B object into an
A object

B z = new B();
Aw = (A)z; // Narrowing; Same as A w = z;

e Widening casts make a reference to an A object into a
B object

A x
By

new B(); // Narrowing
(B)x; // Widening

e Sometimes it is necessary to make an explicit narrowing
conversion if we want to force an object to behave as one
of its ancestors, for example to access some overriden
method.

D McGill

25

Narrowing and Widening casts

class FlyingMartian extends Martian {
void move ()
{
System.out.println(‘‘Gliding..."");
b
b

class ZooTest {

public static void main(String[] args)

{
FlyingMartian peng = new FlyingMartian();
peng.move() ;
((Martian)peng) .move () ;
((Creature)peng) .move () ;
((Human)peng) .move(); // Error peng is not Hum

¥
¥

D McGill

26

Polymorphism

e Polymorphism is a tool that permits abstraction and
reusability

e A polymorphic method is a method which can receive
as input any object whose class is a subclass of the
methods's parameter.

e Ad-hoc polymorphism is overloading (providing separate
methods for each expected parameter type)

e Parametric polymorphism relies on dynamic-dispatching.
Dynamic-dispatching is the process by which the run-
time system directs the message of an object to the
appropriate subclass.

e A dynamic-dispatch can be decided only at run-time,
not at compile-time, because the compiler cannot know
which is the actual object passed as argument to a
polymorphic method. Furthermore, the same method
might be called with different objects from different
classes during the execution of the program.

D McGill

27

Object

e Object is a class in the standard Java library which is a
superclass to all.

e It contains methods

public boolean equals(Object o)
protected Object clone()
public String toString()
public Class getClass()

e A method whose argument is of type Object can receive
any object from any class as argument. (maximum
possible polymorphism.)

e \Whenever an object appears in a String expression, the
method toString is invoked automatically

D McGill

28

Object

class Human {
String name;
public String toString()
{
return ‘“My name 1s ‘‘“+name;
¥
¥

class Test {
public static void main(String[] args)
{
Human h = new Human() ;
h.name = “Kelly’’;
String s = ‘“’+h;
// Same as String s = ‘““’+h.toString();

D McGill

29

Abstract classes

e A class with default behaviour:

class Creature A1
boolean alive;
void move ()
{
System.out.println(‘“‘Here we go...”’);
}
}

e An abstract class: subclasses must provide implementa-
tion

abstract class Creature {
boolean alive;
abstract void move() ;

¥

D McGill

30

Abstract classes

e An abstract class is a class that has at least one
abstract method

e An abstract method is a method which is not imple-
mented (i.e. has no body) and must be overriden (i.e.
must implemented by the subclasses.)

e An abstract class is used to represent an abstract concept
which captures the common structure and behaviour of
several classes, but leaves some detail to the subclasses.

e Abstract classes force the use of parametric polymor-
phism.

D McGill

31

Abstract classes

e [here cannot be instances of abstract classes.

Creature kowe = new Creature(); // Wrong!
//because
kowe.move(); // What would be executed here?

e The abstract methods must be implemented in the
subclasses of an abstract class (unless the subclass itself
is also abstract.) This is, there is no default behaviour
for an abstract method.

D McGill

32

Abstract classes

e An abstract class can have non-abstract methods (which
usually represent the “default behaviour” of a method:)

abstract class Creature
{
boolean alive, hungry;
abstract void move();
void eat()
{
System.out.println(‘“‘Hmmm..."’");
hungry = false;
+
+

D McGill

33

Interfaces

e Interfaces are (equivalent to) purely abstract classes, i.e.
classes where all the methods are abstract

interface Creature

{

void move() ;
void eat();

}

is the same as

abstract class Creature

{

abstract void move() ;
abstract void eat();

}

D McGill

34

Interfaces

class Human implements Creature

{

void move()

{
System.out.println(“‘I’m walking. .

b
void eat ()
{
System.out.println(“‘I’m eating. ..
b
void jump()
{
System.out.println(“Up and down. .

¥
¥

n) .
.)

n) .
.)

D McGill

35

Using interfaces for generalization

class CDPlayer {
int song;
boolean stopped;
CDPlayer()
{
stopped = true;
song = 0;
}
void play() { stopped = false; }
void ff() { song++;
void pause() { stopped = true; }
void stop()
{
stopped = true;
song = 0;
¥
¥

D McGill

36

Using interfaces for generalization

class TapeRecorder {
boolean stopped, recording;
Tape t;
TapeRecorder () {
stopped = true;
recording = false;
t = null;
¥
void play() { stopped = false; }
void ff() { }
void pause() { stopped = true; }
void stop() {
stopped = true;
recording = false;
¥
void record(Tape x) {
recording = true;
t = x.clone();

}
¥

D McGill

37

Interfaces

interface MusicPlayer {
void play();
void ff();
void pause();
void stop();

¥

D McGill

38

Interfaces

class CDPlayer implements MusicPlayer {
int song;
boolean stopped;
CDPlayer()
{
stopped = true;
song = 0;
b
void play() { stopped = false; }
void ff() { song++;
void pause() { stopped = true; }
void stop()
{
stopped = true;
song = 0;
b
b

B McGill

39

Interfaces

class TapeRecorder implements MusicPlayer {
boolean stopped, recording;
Tape t;
TapeRecorder () {
stopped = true;
recording = false;
t = null;
¥
void play() { stopped = false; }
void £ff() { }
void pause() { stopped = true; }
void stop() {
stopped = true;
recording = false;
}
void record(Tape x) {
recording = true;
t = x.clone();

B McGill

40

Interfaces

class PlayerTest {
static void test(MusicPlayer p)

{
p.play();
p.ff0);
p.pause();
p.play(Q);
if (p instanceof TapeRecorder) {
((TapeRecorder)p) .record(new Tape());
¥

p.stop();

D McGill

41

Interfaces

class SoundStudio {
public static void main(String[] args)
{
MusicPlayer[] players = { new CDPlayer(),
new TapeRecorder(),
new CDPlayer() };
for (int 1 = 0; i < players.length; i++) {
PlayerTest.test(players[i]);
// polymorphic call.

D McGill

42

The end

D McGill

43

