L systems, Colonies and Eco-grammars

Ernesto Posse
School of Computer Science, McGill University
Montreal, Quebec, Canada
eposse@cs.mcgill.ca

August 23, 2001

1 Introduction

In recent years there has been a considerably growing interest in the fields of
Computational Biology (CB) and Artificial Life (Alife). These are concerned
with the study of living organisms and life-like behaviour through the construc-
tion of models for biological systems and processes.

Although Formal Language Theory has not been traditionally associated
with neither CB nor AlLife, its relation and influence on these goes as far back
as 1968 when Lindenmayer introduced the notion of L system as a mathematical
formalism to model growth in biological systems [5]. Since then, the Theory of
L Systems [6] has evolved into a rich mathematical framework, and it has been
applied in various disciplines such as Computer Graphics, where variations on
L grammars have been used to generate realistic images of trees and plants in
general ([3], [2]).

Early developments in the area were almost exclusively concerned with the
study and modeling of growth. More recent developments deal with modeling
systems constituted by several entities or agents ”living”, and possibly inter-
acting, in an environment. The notion of a system composed by several agents
is not exclusive of neither CB nor Alife. It is relevant to diverse areas such
as distributed databases and operating systems, computer networks, robotics,
parallel computing, etc. The study of these multi-agent systems in a formal
framework promises to provide an important insight in their understanding.

This paper intends to give a brief survey of different variants of L systems,
and some of the multi-agent formalisms introduced recently. The paper is orga-
nized as follows: Section 2 introduces the basic model of L systems, and several
of the most significant variants. Section 3 presents the concept of Colonies,
which intend to represent elemental multi-agent systems. Section 4 deals with
a more complex approach to multi-agent systems, known as Eco-grammars. In
Section 5, some theorems about the comparative generative power of these sys-
tems are presented.

2 L systems

Informally speaking, in its simplest form, an L system is a grammar system in
which rewriting is performed in parallel at each derivation step, that is, all the
production rules that can be applied to the word are applied.

Since their inception as models of growth in biological systems, L systems
have been regarded as descriptions of dynamic processes rather than static ones.
A derivation is seen as evolution or development of an organism. From the
mathematical standpoint, this conception has been emphasized by the absence
of distinction between terminal and non-terminal symbols in the grammar’s
alphabet. There are, however, some L systems in which this differentiation is
present. In Section 5 some results about the difference in expressiveness in such
systems are summarized.

Rozenberg and Salomaa provide a comprehensive body of work on the basic
models and variations of L systems (see [6]). Colonies and a basic model of Eco-
grammar systems have been presented in [4]. Conditional Tabled Eco-grammars
are introduced in [1].

How does an L system model growth? Why a derivation is seen as a devel-
opmental process? The idea is that a word represents the state of the organism,
and each symbol stands for a basic part of the system, for instance, a cell. A
rule states how a cell evolves. A derivation step of a word represents a time
step in which all the cells evolve. If a symbol is associated to a word with two
or more symbols, this represents (asexual) reproduction of the cell. If it is asso-
ciated to the empty word, it represents its dead. If it is associated with itself,
it represents the absence of change.

Following, the formal definition of the models is presented.

2.1 OL Systems

Definition 1 A 0L system is a triple G = (N, P,s) where N is an alphabet,
P C N x N* is a set of production rules, and s € N* is the azxiom.

As usual, we denote pairs in P with the notation a — w for a € N and
w € N*. We say that P is complete iff Va € N. Jw € N*. a — w € P, that is,
there is at least one rule for every symbol in N.

Given two words wy, w2 € N*, we say that wy yields we, written w; = ws
(or w1 =g ws if we need to specify the system we are referring to) iff w; =
a1as ...Ap, Wy = V103 ...V, where a; — v; € P for 1 < i < n. This embodies
the fact that we apply one rule to each of the symbols in the word w;, and we
apply to every symbol in one derivation step. As usual, =* denotes the reflexive
and transitive closure of =.

The language generated by G, denoted L(G) is {w € N* | s =* w}.

The simplest variations on OL systems are DOL and POL systems.

Definition 2 A DOL system is a 0L system G = (N, P,s) in which P € N —
N*.

DOL systems are deterministic OL systems. The definition states that the
set of rewriting rules P is a function instead of a relation, hence there is only
one rule per symbol.

Definition 3 A POL system is a OL system G = (N, P, s) in whichVa € N. a —
€ ¢ P where € is the empty word.

POL systems are propagating systems. any word always yields a longer word,
since there are no erasing rules in P.

A PDOL system is both DOL and POL. From now on, any variant named
XYOL is assumed to satisfy the conditions of XOL and YOL systems, for any X
and Y.

A 0L scheme is a tuple G = (N, P) that represents a 0L system without an
axiom. DOL, POL and PDOL schemes are defined analogously.

Extended OL systems (EOL for short) depart from the original notion from
OL systems of grammars without terminal symbols. An EQL system is a system
in which the alphabet has been divided into two separate categories: wvariables
or non-terminals, and terminals.

Definition 4 A EOL system is a tuple G = (N,T,P,s) where T C N and
G' = (N, P,s) is a OL system.

Given a EOL system G = (N, T, P, s), the OL system G' = (N, P, s) is called
the underlying system. The language of G is L(G) = L(G') N T*, that is, the
set of strings containing only terminal symbols.

Although at first this definition does not seem like significantly different, it
turns out that EQL systems have more generative power than 0L systems.

2.2 Tabled OL Systems

Tabled OL (or TOL) systems consist of several sets of production rules, instead
of just one. Each set is referred to as a table or component.

Definition 5 A TOL system is a tuple G = (N,I1,s) where
Hz{Pl; P27) Pn}

and each G; = (N, P;,s) is a OL system, called an underlying system, for 1 <
i <n withn > 1.
The generated language is L(G) = {s} U{w € N* | Jwy,wa,...,wn, €
N*, m2>1, s =g, w1 =g, " =G, Wn=w, for 1 <ip<n, 1<k<m}.
Informally speaking, a TOL language consists of the words for which there
is a sequence of steps according to the tables. The order in which the tables are
selected is arbitrary, as well as the number of tables used. Notice that although
at each derivation step, rewriting is done in parallel for all the symbols in the
alphabet, the overall derivation is sequential, in that at each step only one table
is used.

TOL systems can be regarded as a first attempt to model a system com-
prised by several agents, in an environment. A word represents the state of the
environment, and the agents are represented by the tables. In this view, agents
are purely reactive, and stateless, because they affect the environment’s state
based solely on its current state, and do not take into consideration any other
information such as internal state of an agent.

It is common to use the notation = p, instead of =g, when G; = (N;, P;, S;)
is an underlying OL system in a TOL system.

As EOL systems, TOL systems are also more powerful than simple OL systems.

We can define variations such as ETOL, PTOL, DTOL, EDPTOL systems and
schemes, etc. There are some variations over TOL systems that are worth taking
a look at. They are Programmed 0L Systems (denoted (P)TOL, to avoid confu-
sion with propagating TOL systems), Random Context 0L Systems ((RC)TOL),
and Conditional TOL Systems. The main theme in these variations is to add
some regulation mechanism to TOL systems.

Definition 6 A (P)TOL system is a tuple G = (N, 11, s) where
II= {(l17P17E1)7 (l27P27E2)7 DN (lnapnaEn)}

and G' = (N,{P1,P,,...,P,},s) is a TOL system, Lab = {ly,l»,...,l,} is a
set of labels, and each E; C L, 1 <i<mn.

4

Computation in (P)TOL systems proceeds as follows. We define the “yield-
ing” relation in terms of pairs of labels and words: for (l;,w1), (Ij,ws2) €
Lab x N*, we say (l,-,wl) = (lj,U)Q) iff w1 =g, w2 and lj € E;, where
G; = (N, P;,s) is an underlying OL system. This means that we use the ta-
ble P;, associated with the label /;, to produce the new word wsy, and select
non-deterministically a label [; from the associated set of labels E;. This pro-
vides a mechanism for controling which tables are to be applied, by contrast
with TOL systems, in which the tables are chosen arbitrarily.

The language of the (P)TOL system G is the set of words for which there is
a derivation:

L(G) ={s}u{w e N* | Ir > 0. 3;,,l;;,...,l;, € Lab. Jwy,wa,...,w, € N*.
(lig,8) = (i, w1) = -+ = (l;,,w,), and w, = w}

Definition 7 A (RC)TOL system is a tuple G = (N, 11, s) where
o= {(Ny,P), (N3, P2), ..., (Npn,Pn)}

and G' = (N,{P1,P,,...,P,},s) is a TOL system, and for 1 <i < n we have
N; C N.

Random context TOL systems or (RC)TOL, provide another mechanism for
controling the application of the tables. We state that w1 =¢ ws iff w1 =¢, w2
for some G; = (N, P;,s) and w; € N;. Therefore, a table table can be used if
and only if the word is composed only of symbols from its associated set IV;.

The last variation of tabled OL systems considered here is the Conditional
TOL system.

Definition 8 A Conditional TOL system with k-ary context conditions is a
tuple G = (N, II) where N is an alphabet,

H={(Cl,dl,Pl),(CQ,dQ,PQ),...,(Cn,dn,Pn)}
is a set of triples with c;,d; € (N*)*, and P; C N x N* for 1 <i <n.

As in the previous cases, each P; is a set of production rules or table. The
k-tuples ¢; and d; are called permitting condition parameters and forbidding
condition parameters respectively. These determine whether P; can be applied
or not, according to some predicate 7 : N*x N* — {true, false}. This predicate
takes as parameters one of the conditions (¢; or d;) and a word.

The derivation step is defined as follows: for wi,ws € N* we say that
w1, =>aq W2 iff

di € {1,...,n}. w1 = p, W2
VJ S {1,.. ,k} 7T(Cz'j,’ll)1) A —wr(d,-j,wl)

Therefore, table can be applied only if the predicate is true for all the com-
ponents of its permitting vector, and false for all of its forbidding vector.
In [1] the following predicates are defined formally:

o mp(x,y) = true iff z is a substring of y.
o ws(xz,y) = true iff x appears scattered in y.

o my(x,y) = true iff a permutation of z appears scattered in y.

2.3 IL Systems

So far, the systems reviewed are context independent in that each letter in a
string is rewritten regardless of its neighbors. The next logical step is to intro-
duce the concept of dependency from the surrounding context. This concept
is intended to provide a means of expressing local interaction between different
parts of a system. The local interaction is captured by considering the m sym-
bols to the left, and n symbols to the right of any given letter in the string.
Such a system is called a (m,n)L system, and is defined as follows:

Definition 9 A (m,n)L system, is a triple G = (N, P,s) where s € N*, and
PC(UgNix N x iy NY) x N*.

Rules in P are often written as (wi,a,w2) — w or wiaws — w. Such
a rule states that the symbol a can be replaced by w, but only if its sour-
rounding (sub)strings are w; (to its left) and we (to its right). Formally,
this is stated as follows: given © = ajaz...a, and y = wiws ... wy for some
k > 1, where a; € N and w; € N* for 1 < i < r, we have z = y iff
(@i, Qi - > Qi1 By Qig 1, - - -, Gign) — W;. It is assumed that neighbor
symbols “outside” the word are € (the empty word): if ¥ < 1 or k > r then
ap = €.

This last condition, and the caracterization of P as in the definition, take
care of the case in which a symbol is “too close” to the beginning or the end of
the word, i.e., when w = wyaws, and |wi| < m, or |wa| < n.

2.4 Multidimensional L Systems

It is usually necessary to consider the structure of a system as part of its state.
This structure might refer to some physical distribution of the parts of the sys-
tem, or to some logical organization. L systems considered in previous sections
deal with linear strings, and although this might be enough for many appli-
cations, it may be restrictive for others that require the treatment of a richer
structure. Multidimensional L systems address this issue.

Although these are not reviewed here, it is worth to mention them. Some
of them consist of graph grammars. These systems have rules that associate
nodes to graphs, but also need rules that connect the graphs that have replaced
the nodes. Other systems perform transformations on maps; they have rules on
how to divide “cells” or “regions”.

3 Colonies

An approach that resembles TOL systems, but differs in some aspects, is that of
colonies. In some respects, the concept of a colony is simpler; yet, it has some
subtleties not present in TOL grammars. A colony is not an L system, so in its
basic model, there is no parallel rewriting, but some of its variants introduce
concurrency at the level of components. In these variants more than one table
is applied at a single derivation step whereas in a TOL system only one table is
used.

Definition 10 A colony is a triple G = (N, T,T,S) where
I'= {G17G27"'7Gn}

is a set of finite regular grammars G; = (N;,T;, P;,S;) for 1 < i <n, N =
UL, (N;UT;), and T C N, and the aziom S € N.

Each underlying gramar G;, is compposed, as usual of an alphabet N;, a
set of terminals T;, a set of production rules P;, and a start symbol, or axiom
S; € N;.

At first it appears to be a subtle variation of ETOL systems, since we dis-
tinguish between terminals and non-terminals, but small differences give rise
to a considerably different model, introducing some issues not present in TOL
grammars.

N stands for the alphabet of the system, and 7" for the subset of terminals.
Note that a symbol that is terminal in one of the underlying grammars, might
occur as nonterminal in another, or viceversa. Another notorious aspect is that
the underlying grammars generate only finite regular languages, a restriction
not present in ETOL systems.

Computation in a colony is defined as follows: for two words u,v € N* we
write u = v iff for some i such that 1 < i < n we have u = wyS;ws, v = wiwws,

and S; =¢,, w. Thus, the language generated is L(G) = {w € N*|S :g* w}iNT™.

In this first notion of colony, only one ocurrence of a symbol is replaced. A
sensible variation is to allow the rewriting of multiple ocurrences of the symbol
in one step. We define this for u,v € N* as:

us v iff u= w1 S;usSiusz . . .Uk Sy,
UV = U W1 USWLUS - . - U WUkt 1,
urusus . .. g1 € (N = {S;})*,
for each j such that 1 < j <k,

there is some 4 such that 1 <4 <n, and S; =g, w;

Yet, a third model of sequential rewriting, intermediate between the two

previous (basic step 2L and terminal step :t>), is to allow a specific number
r > 1 of components (production rule sets, or tables) to be applied:

u = v iff u = uiS;usS;us . e UpSiUpg1,
UV = U WL UWUS - - - UpWplhp g1,
urususz . .. Upp1 € (N — {S; 1%,
for each j such that 1 < j <,
there is some ¢ such that 1 <4 <n, and S; =g, w;

Some alternatives include “< r” and “> r”: u g w iff I’ < r. wu :=7§I w, and
similarly u = w iff I >r.ou = w.

As mentioned before, having separate alphabets for each of the components
introduces some complex issues when dealing with shared symbols. Admitting
concurrency means that all the tables that can be applied are used. The prob-
lem arises when the same non-terminal symbol S; is in more than one grammar.
The solutions to this state that if S; is shared by & > 2 grammars and there are
k ocurrences of S; in the word, then each of the ocurrences is rewritten accord-
ing to each of the tables, i.e. all the tables are used. In case that there are less
ocurrences of S; in the word, then there must be some tie-breaking mechanism.
There have been defined two alternatives: stringly competitive parallel deriva-
tion (denoted by 2) and weakly competitive parallel derivation (denoted =%).
In the first alternative, only one of the conflicting grammars, chosen nondeter-
ministically, is applied, and rewrites at most one instance of its start symbol
(non-conflicting grammars are applied). In the second alternative, if there are
m < k ocurrences of S;, then m grammars, chosen nondeterministically, are
applied, and, as in the first alternative, each of them rewrites at most one oc-
curence of the symbol. A formal definition of 2 and 2 can be found in [4]. If
all the grammars in the colony have different start symbols, the two kinds of
steps are the same, and are denoted by =.

Other variants of the concept of colony depend on how the set of terminals
of the overall system is defined. The alternatives defined in [4] are:

o arbiff TC U, T;

e oneiff . 1<i<nandT =T;
o exiff T=_, T;

o alifft T=N",T;

o distiff T = (U, T3) — (Niy Ns)

Based on these parameters, and the different derivation steps, we define the
language of a colony as:

LI(G) = {w € N*|S =* w, w € T*, and f}

where z € {b,t,=r,<r,>r, sp,wp,p} and f € {arb,one, ex,all,dist}.

4 Eco-grammars

XTOL systems and colonies are conceived as models of multi-agent systems,
where each production-rule set represents an agent of the system, and derivation
is seen as evolution of the state of the overall system. Under this conception
only one string is used to describe the state of the system, but there is no notion
of internal state for each agent.

Eco-grammar systems (EG) have been introduced in order to provide a more
complete picture of complex interaction. Under this view, agents have their own
state, and their evolution depends on the environment which in turn depends
on the state of all agents.

4.1 A model for families of agents with state

In the first model of EGs discussed, we consider each table associated to a family
of agents instead of only one agent. The system is composed of an environment,
and a set of grammars, each representing a particular type of agent. Several
agents can share the same rule set even though each of them has a separate
state.

Definition 11 An eco(grammar) system is a pair G = (E,T") where E =
(NEg, Pg) is a OL scheme, and I' = {G1,Ga2,...,Gn} is a set of agent schemes

e N is an alphabet common to all agent types G;, possibly including a special
symbol O

e P,C(N—{O}) x N*

o $i: N — 2P
e R; C Nj x N
o P N* - 2Fi

In this setting, F represents the environment, which has its own dynamics,
and T represents the set of families of agents. Each agent family, is represented
by a scheme, consisting of some production rules P; that represent the rules
governing the internal state, a set of pure rewriting rules R;, that represent the
influence of the agent over the environment, a function ¢; that selects the rules
of P; to be used, thus representing the feedback from the environment to the
agent, and a function 1);, that regulates which rules in R; are applied to the
environment. The rules P; are referred to as “evolution” rules, and the rules R;
are called “action” rules.

A snapshot of the state of the system consists of a word for the state of
the environment, and a word for each of the agents. We call the overall state
a configuration. A configuration for G is a tuple (wg, W1, Ws, ..., W,,) where
wg € N}, is the state of the environment, and each W; = {'wi1, wso, ..., wik; }' is
a multiset of words (there might be multiple ocurrences of a word) representing
the states of the k; agents of the i-th family. (We denote a multiset by {'...}'.)
The signature of a configuration is Nj x (2V")™.

Note that Pg, and each P; are OL rule-sets, hence their application is in
parallel for all the symbols in the respective words, whereas the rules R; are not
0L, thus realize sequential rewritting.

The special symbol OO0 plays a role of separator. When it appears in the
right-hand side of an evolution rule, it represents the “birth” of a new agent.
This is described formally below. For this symbol, we assume that

Vw. wle = elw = w

Before defining formally the derivation step for configurations, it is useful to
define the following function, that performs the creation of new agents:

s(e)=10
s(w1Owe 0. .. Ow,) = {'wy,ws, ..., w.}'
A derivation is defined for two configurations ¢ = (wg, Wy, Wa, ..., W), =
(wig, W{,Wj,...,W]) where the families states are W; = {'wi1, ws2, ..., Wi, }

and W/} = {'wj,wly,...,wl, } for 1 < i < n. Let m = Y7 | k; the total
number of agents in the system. We say that ¢ =¢ ¢ iff:

® Wij ¢ (wp) Wi; for 1 <i<n,1<j <k

;o gk ' s . .
o W/ =U;L, s(w;;) Note: this union preserves multiple ocurrences.
—] —_ [PN N A | ! ! ! h f
® W = 2T122T3 - - ZmTmZmil, Wy = 21T 25Th ... 2}, @), 2} 1, where for
1 <r <m+1 we have 2, =p, 2z, and T, =y, (w,;) Tr- Note: for each
w;; one and only one rule in v;(w;;) is used to replace z, by ..

The first condition, says that the agent state w;; is rewritten according to
a subset of rules from its family. This subset is selected by the function ¢; and
depends on the current environment’s state. The application is in parallel since
these are OL rules.

The second condition determines the sets of each family, so in case the state
of some agent has a [0 symbol, a new word is added to the family for the new
agent, or eliminated, if one word becomes €.

The third condition determines how the environment is updated. For each
agent, one rule from the action rules of its family is applied to one symbol in
wg. The remaining symbols are rewritten, in parallel, according to the OL rules
in PE

Since a derivation is defined for configurations, ands not simply for strings,
the language of the system is a set of configurations, not words. The language of
the EG G with initial configuration ¢g is L(G, co) = {¢ € N}y x 2V)"|co = c}-

In order to compare this models to the rest, we define the language of its
environment as Lg(G,¢p) = {wg € Nj | (wg, W1, Wa,...,W,) € L(G,cp)}.

4.2 Conditional Tabled Eco-grammars

The last model reviewed in this paper is that of CT EGSs or conditional tabled
eco-grammar systems. In this model the regulatory scheme of conditional TOL
systems is brought in to a variation of the model in the last section.

The system described in [1] differs from that in [4] in not only introducing
the controlling mechanism of conditional tables, but also simplifies it in that we
no longer consider families of agents, but only individual agents associated to
each table.

Definition 12 A conditional tabled eco-grammar system is o pair G = (E,T")
whose components are:

o E = (Ng,lg), a conditional TOL scheme with n-ary context conditions:
I = {(Cl,dl,Pl),(Cz,dz,PQ),...,(Cm,dm,Pm)} in which c;,d; € N{ x
Ny x---x N}

o' = {A;1,As,..., A}, a set of n conditional TOL schemes with 1-ary
context conditions: A; = (N;,T';) with
L= {(6,’1, fi17Pi1)7 (€i2, fi2>Pi2)7) (e’iTi7f’iTi7PiTi)} where €ij; fi] € NE
for1<j<r;andfor1 <i<n

E represents the environment, and each A; represents an agent. The ap-
proach of CTEGSs is more sofisticated, in that now an agent is not represented
by a single table as in XTOLs and colonies, but by a system that is itself com-
posed of several tables: a conditional TOL scheme. From the definition, each
condition of the environment c;,d; has n elements, one for each agent. This
is intended to model the dependency of the environment in the state of the
agents. The agents themselves cave 1-ary conditions (e;; and f;;) which are
checked against the environment’s state.

10

As for EGSs, computation is defined in terms of configurations, but the con-
cept here is simpler. A configuration is an (n+1)-tuple k = (wg, w1, w2, ..., wy)
where wg € N}, is for the state of the environment, and each w; € N/ is the
state of the ith agent.

Derivation depends on the criteria used as predicate to test the conditions.
We consider the predicates 7, where a € {b, s, p} if defined as in section 2.2. We
state Kk =4 k' where k = (wg, w1, ws, ..., w,) and &' = (W, wi, ws, ..., wh) iff:

e In E there is a table i that satisfies wg =p, wg and all agents j in {1,
cee n} satisfy wa(cij,wi) A ﬁwa(dij,wi)

e And each agent A; has a table P;; that satisfies w; = p;; wj also satisfies
Ta(€ij, WE) A ~ma(fij, wE)

The language of the environment given a particular criteria and an initial
configuration kg is Lo (G, ko) = {wg € N}, | ko =% (wg, w1, wa, ..., wp)}.

5 Relation between families of languages

This section is intended to provide a summary of some of the results obtained
in relation to the generative power of each of the systems described. Proofs can
be found in [6], and [1].

Let us recapitulate by recalling some of the main characteristics of the sys-
tems described. OL systems perform parallel rewriting of all its rules. EOL
systems distinguish between terminals and non-terminals. A TOL system is
composed of various components. At each step of a derivation, one of the
components is selected non-deterministically, and only this component is used.
(P)TOL, (RC)TOL and conditional TOL systems introduce mechanisms that
control which components can be applied. IL systems consider the context
of the symbols to be replaced. In a b-colony one component is selected non-
deterministically too, but only one symbol is rewritten, although it can be
rewritten by any word in the language of the component, and not necessarily by
a direct derivative. In a t-colony, all the occurrences of the symbol are rewrit-
ten. = r, <r, and > r colonies represent intermediate definitions. The sp, wp,
and p variants of colonies introduce parallelism of components. Eco-grammars
have the concept of state for each component as well as the environment. Each
component is OL. The choice of which rules are applied to each agent depend on
the environment, and viceversa. In CT EGSs, each agent and the environment
are represented by conditional TOL schemes.

In this section we will use the following notation for the families of languages
generated by each of the models:

e L(0L) for the family of all OL languages.

e L(XOL) for the family of all XOL languages, where X is E; D, P, T, (P),
(RC), Conditional T, or any combination of these.

11

L(XTOL,) for the family of all XTOL languages with n components.

L(COLY) for the family of all colony languages, where z € {b,t,=r, < r,>
r, sp,wp,p} is the type of derivation step, and f € {arb,one,ex,all,dist}
is the terminal alphabet criteria.

L(COLZ (n)) for the family of all colony languages, with n components.
L(IL) for the family of all IL languages.

L((m,n)L) for the family of all IL languages with m left neighbors and n
right neighbors.

L(1L) for the family of (0,1)L and (1,0)L languages.
L(2L) for the family of all (1,1)L languages.

L(EQG) for the family of all EG languages languages.

L(EG,) for the family of all EG languages languages, with n components.

L(CTEG,(I,J;a)) for the family of all CTEG languages with n com-
ponents, a € {b,s,p} the predicate’s criteria, and with permitting and
forbidding contexts of maximum length I and J respectively.

The traditional families of languages are denoted:

5.1

L(FIN) for the family of finite languages.

L(RE) for the family of regular languages.

(

(
L(CF) for the family of context-free languages.
L(CS8) for the family of context-sensitive languages.
(

L(RE) for the family of recursively enumerable languages.

Generative power of L systems

Deterministic systems are a specific case of the general model:

L(DXO0L) C £(XO0L)

This deterministic machines are the least powerful. QL systems have also very
limited generative power. It is easy to find some very simple finite languages that
are not generated by any OL system. OL languages are not closed under union,
concatenation, the cross operator (L1), or intersection with regular languages.

Selecting some symbols as terminals actually increases the generative power:

L(XO0L) ¢ L(EXOL)

12

Having several tables also increase expressiveness. Tables act as if they where
controlling mechanisms, by limiting the rules available for particular derivations:

L(0L) C £(TOL)
L(EOL) C L(ETOL)

EOL systems are more powerful that context-free grammars:
L(CF) C L(EOL)

L(TOL) is not comparable with L(FIN), L(REG), L(CF), or L(EOL). L£(0L)
is not comparable with L(FIN), L(REG), or L(CF).

In many cases adding regulation mechanisms increases the power of the
grammar, but that is not always the case:

L(TOL) C £((P)TOL) C L(ETOL)

and
L(TOL) C L((RC)TOL)
but
L(E(P)TOL) = L(ETOL) C L(E(RC)TOL)
while £((P)TOL) and L((RC)TOL) are not comparable, as well as L(ETOL)
and L((RC)TOL) are not comparable.

ETOL languages are considerably powerful. They are closed under the op-
erations mentioned above: union, concatenation, the cross operator (U1), or
intersection with regular languages.

In the case of IL systems there are some interesting theorems:

VYmy, ma,ny, mo > 1. E((ml,nl)L) C E((mz,ng)L) iff mi+ny <mo+ng
L((my1,n1)L) = L((m2,n2)L) if f m1 +n1 =ma +na
Hence, expressiveness depends on the size of the context used by each rule in
the system, but it does not matter if we “shift” some of the neighbors from left
to right or right to left. This theorem establishes a hierarchy of IL systems with

(0,0)L at the bottom.
Another notorious result is that

L(E1L) = £(E2L)

The same is true for the D, P and PD variants. Using only one neigbor is enough
to generate as many languages as using two. However, an even more general
result is the following:

L(EIL) = L(E1L) = L(RE) and

L(EPIL) = L(EP1L) = L(CS)
This means that we can reduce any IL system to one that uses only one neighbor,

and we can simulate a Turing machine with it. For propagating systems, we
obtain the power of context sensitive grammars.

13

5.2 Generative power of Colonies

Colonies with terminals according to the “ex” criteria (the terminals of the
colony are the union of the terminals of all its components), generate less lan-
guages than the rest. The “ex” acceptance method represents the largest set of
terminals constructed from the terminals of the parts. Therefore, having more
restricted sets increments the generative power. This is akin of EXOL being more
powerful than X0L systems in that some restrictions are being added. The rest
of the acceptance criterions are equivalent. Colonies with a b-derivation step
are less powerfull than those with ¢-derivations.

x € {b,t}, and f, f' € {arb,one,all,dist}
L(COLS® C L(COLL)
L(COL!) = £(COLL)
L(COL{) c L(COL])

However, b-step colonies are as powerful as colonies with parallelism of compo-
nents, but only when their start symbols are different (p steps).

L(COLy) = L(COL,) C L(COLp)
For “=17”, “<r” and “> r” colonies we have:

L(COLy) = L(COL=;) = L(COL<;) = L(COL>1)
L(COL=,), L(COL=y), L(COL<;), L(COL<y)
are pairwise incomparable for any r,s,t,u > 1

The following relates colonies with other systems:

L(COL!) = L(CF)
L(COL{) = L(ETOL)
L(COLL,) C L(ETOL)

Of interest are the comparsion between colonies in relation to their number
of components. It turns out that colonies with more tables are more powerful:

L(COLL(n)) C L(COLL (n + 1))

5.3 Generative power of Eco-grammars

For CTEG’s the number of components also increases expressiveness, as well as
the size of the permitting and forbidding contexts:

L(CTEG,(I,J;a)) C L(CTEG(I',J';a)) whenn <n', I<I', and J < J'

14

Changing the predicate amongst the ones defined (b,s,p) does not have any
effect when the contexts have size 0 or 1:

L(CTEG,(I,J;a)) = L(CTEG,(I, J;a'))
for a,a’ € {b,s,p} and I, J € {0,1}

If we do not consider context at all, the number of agents is irrelevant, and the
system is reduced to a basic TOL system:

L(CTEG(0,0;a)) = L(CTEG,(0,0;a)) = L(TOL)

Systems with only one agent and arbitrarily large permitting contexts are as
powerful as systems with any number of agents, and even with limited contexts
can generate all finite languages:

L(CTEG,(00,0;a)) = LICTEG:(00,0;)) for o € {s,p}

L(FIN) C L(CTEG1(1,0;0)) and

L(FIN) C L(CTEG1(0,1;0)) for a € {b,s,p}

The relation with TOL systems and its variants is diverse.

L((RC)TOL) C L(CTEG»(1,0;))

L((P)TOL) C L(CTEG:(1,0;a))

L(ETOL) is incomparable with L(CTEG (I, J;a))
if I>1, J>0, and a € {b,s,p} or

if I >0, J>2, and a € {s,p}

A particular case of this last result is
L(ETOL) is incomparable with L(CTEG«(1,0;a))
however it is also known that

L(CTEG«(0,1;a)) C L(ETOL)

6 Conclusion

This review has obviously been superficial, and we left aside many relevant issues
such as computational complexity or growth functions (functions that represent
the length of a word in terms of the number of derivation steps). [6] deal at
some extent with these. We also left out many variants and important results.
But some of the most significant were overviewed.

It has been shown that formal language theory can be used describe very
complex systems. However, some of the constructions tend to become very
complex themselves. While some of the systems presented depart significantly
from the simplest models of computation, the benefit resides in that they be-
come closer to the description of complex distributed/concurrent/multi-agent
systems. This may result in a deeper understanding of such systems.

15

References

[1] E. Csuhaj-Varju, G. Piun, and A. Salomaa. Conditional tabled eco-grammar
systems versus (E)TOL systems. Journal of Universal Computer Science,
1(5), 1995.

[2] O. Deussen and B. Lintermann. Interactive modeling of plants. IEEE Com-
puter Graphics and Applications, January /February 1999.

[3] J.D. Foley, A. van Dam, S. K. Feiner, and J. F. Hughes. Computer Graphics:
Principles and Practice. Addison-Wesley, 1997.

[4] A. Kelemenova and J. Kelemen. From colonies to eco(grammar)systems. In
Results and Trends in Theoretical Computer Science, volume 812 of Lecture
Notes in Computer Science, pages 213-231, 1994.

[5] A. Lindenmayer. Mathematical models for cellular interactions in develop-
ment. Journal of Theoretical Biology, 18, 1968.

[6] G. Rozenberg and A. Salomaa. The Mathematical Theory of L systems.
Academic Press, Inc., 1980.

16

