
aperiot user-guide

Ernesto Posse

August 29, 2006

Contents

1 aperiot at glance 1

2 Lexing and parsing overview 5
2.1 Context Free Grammars . 5
2.2 Types of parsers . 7

3 Describing grammars: the aperiot (meta-)language 8
3.1 Sections of an aperiot �le . 8

3.1.1 Comments . 8
3.1.2 The import section . 9
3.1.3 The terminals section . 9
3.1.4 The rules section . 13

4 The grammar compiler command-line options 14

5 The Python API for parsers 16

1 aperiot at glance

aperiot is both a grammar description language and a parser generator for
Python. Its purpose is to provide the means to describe a language's gram-
mar and automatically generate a parser to recognize and process text written
in that language.1 It is intended to be used mainly for programming and mod-
elling languages.

The basic idea is this:

1. Write the grammar of a language you want to parse using the aperiot meta-
language described in section 3. Save this in a plain text �le with a .apr

extension.

1�aperio� is a Latin word meaning �to uncover,� �to unearth.� A parser is, after all, a tool
that uncovers the structure of text.

1

2. Use the aperiot grammar compiler script to produce one of two possible
grammar representations.

3. In your application, load one of the generated representations using a
simple API provided in aperiot, which results in a Python object, the
parser, that can parse strings or �les given as input.

To illustrate this process, we'll consider a simple language for arithmetic expres-
sions. The application is a simple calculator.

1. Write the grammar below in a plain text �le named aexpr.apr.

This is a simple language for arithmetic expressions

numbers

number

operators

plus �+�

times �*�

minus �-�

div �/�

brackets

lpar �(�

rpar �)�

start

EXPR

rules

EXPR -> TERM : �$1�

| TERM plus EXPR : �$1 + $3�

| TERM minus EXPR : �$1 - $3�

TERM -> FACTOR : �$1�

| FACTOR times TERM : �$1 * $3�

| FACTOR div TERM : �$1 / $3�

FACTOR -> number : �float($1)�

| minus FACTOR : �-$2�

| lpar EXPR rpar : �$2�

In this �le, the sections titled �numbers,� �operators,� and �brackets� de�ne
symbolic names for the input tokens. The last section provides the actual
rules. Each rule is annotated with a �Python expression template.� This is,

2

a Python expression that uses placeholders (numbers preceded by `$'.) The
placeholders refer to the corresponding symbol in the symbol sequence.
For example, in FACTOR times TERM : �$1 * $3�, $1 refers to FACTOR,
and $3 refers to TERM. When parsing, if this rule is applied, the result of
applying the actions that yield a FACTOR will replace the $1 entry and the
result of applying the actions that yield TERM will replace the entry $3,
and the result of evaluating the full Python expression will be the result
of applying this rule.

2. Use the aperiot grammar compiler script to produce one of two possible
grammar representations.

In the comand-line prompt, execute the grammar compiler by typing:

apr aexpr.apr

This will generate a Python package called aexpr_cfg in the same direc-
tory where aexpr.apr is located. This package contains a module called
aexpr.py.

3. In your application, load one of the generated representations using a
simple API provided in aperiot, which results in a Python object, the
parser, that can parse strings or �les given as input.

Assuming that the aperiot package and the directory where you generated
aexpr_cfg are in the Python path, in your application you can write
something like this:

from aperiot.parsergen import build_parser

myparser = build_parser(`aexpr')

text_to_parse = �56 +43* -21/(12-7)�

outcome = myparser.parse(text_to_parse)

print outcome

Alternatively, you can split the parsing process in two steps: 1) obtaining
the parse tree, and 2) applying the rule actions on the parse tree:

from aperiot.parsergen import build_parser

myparser = build_parser(`aexpr')

text_to_parse = �56 +43* -21/(12-7)�

tree = myparser.parse(text_to_parse, apply_actions=False)

outcome = myparser.apply_actions(tree)

print outcome

Furthermore, the input provided to the parser could be a �le:

from aperiot.parsergen import build_parser

myparser = build_parser(`aexpr')

text_to_parse = file(�myfile.txt�, `r')

3

outcome = myparser.parse(text_to_parse)

text_to_parse.close()

print outcome

The scheme described above generates a minimal Python representation of the
grammar in the aexpr.pymodule within the aexpr_cfg package, and the parser
object is built at run-time in the client application by the build_parser func-
tion. This approach, however, may be time-consuming if the language's gram-
mar is large. aperiot provides alternative approach, in which the parser object is
built during the grammar compilation and saved into a special �le (with a .pkl
extension,) which then can be quickly loaded by the application. To do this,
use the -f command-line option of the apr script:

apr -f aexpr.apr

This will generate other �les in the aexpr_cfg package, in particular a �le called
aexpr.pkl, containing the parser object itself.

Then, in the client Python application, use the load_parser function instead
of the build_parser function:

from aperiot.parsergen import load_parser

myparser = load_parser(`aexpr')

text_to_parse = file(�myfile.txt�, `r')

outcome = myparser.parse(text_to_parse)

text_to_parse.close()

print outcome

Usually you want to report parsing errors in a user-friendly way. To do that,
wrap around the parse method invocation with an exception handler as follows:

from aperiot.parsergen import load_parser

from aperiot.llparser import ParsingException

myparser = load_parser(`aexpr')

text_to_parse = file(�myfile.txt�, `r')

try:

outcome = myparser.parse(text_to_parse)

print outcome

except ParsingException, e:

print e

text_to_parse.close()

The printout of the parsing error can be made nicer by keeping a separate copy
of the source �le:

from aperiot.parsergen import load_parser

from aperiot.llparser import ParsingException

myparser = load_parser(`aexpr')

4

text = file(�myfile.txt�, `r')

lines = text.readlines()

text.close()

text_to_parse = file(�myfile.txt�, `r')

try:

outcome = myparser.parse(text_to_parse)

print outcome

except ParsingException, e:

e.pprint(lines[e.linenum-1])

text_to_parse.close()

2 Lexing and parsing overview

The process of parsing text is usually performed in two stages:

1. Lexical analysis, or lexing, and

2. Syntactic analysis or parsing

Lexical analysis is performed by a lexer which takes as input a stream of char-
acters (the source text,) and produces a string of tokens or lexemes, this is,
�words� or sequences of characters that are to be treated as units, such as num-
bers, identi�ers, keywords, etc.

Syntactic analysis is performed by a parser, which takes as input the sequence
of tokens produced by the lexer and produces a concrete syntax tree, also known
as parse tree, representing the syntactic structure of the text according to some
given grammar.

Usually the parse tree itself is processed further by applying actions to it
in order to produce some desired outcome. Usually the desired outcome is an
abstract syntax tree, which contains the structure of the text abstracting away
speci�c details about the text which are irrelevant for any further processing.

A grammar consists of a set of rules which describe the structure or compo-
sition of the text in terms of the text's components. Rules are annotated with
actions which are applied to the corresponding nodes in the parse tree in order
to obtain some desired outcome.

In aperiot, a parser object encapsulates all these operations: the parser object
performs lexical analysis, parse tree generation and actions application.

2.1 Context Free Grammars

A grammar consists of a set of rules describing the structure of text in a lan-
guage. The most common type of grammar is known as �context free grammar,�
or CFG for short.

A simple rule in a CFG has the form:

L → w

5

where L is called a non-terminal symbol or simply a non-terminal, and w
is a sequence of symbols or the special symbol ε which represents the empty
string. The symbols in the sequence w may be non-terminals and other symbols
called terminals.

Terminal symbols are those symbols or tokens which can appear literally in
the text. Non-terminal symbols represent syntactic categories and a rule L → w
states that the non-terminal L can be replaced by the sequence w. This is, if
there is a sequence

uLv

applying the rule L → w yields the sequence

uwv

In the context of parsing one may interpret a rule L → w as saying that if
the sequence of symbols w ocurrs in the input then it can be seen as a single
ocurrence of the symbol L.

A grammar may also have �composite� rules of the form:

L → w1

| w2

...
| wn

In such a rule, each wi represents an alternative. In other words the rule
states that L can be substituted by either w1, w2, ..., or wn. Such rule is simply
a short hand for the following set of rules:

L → w1

L → w2

...
L → wn

A grammar has a distinguished non-terminal symbol called the start symbol.
This symbol represents the topmost syntactic category.

A given text is succesfully parsed if it can be reproduced by the following
procedure:

1. begin with the start symbol S

2. �nd a rule S → w, and replace S by w

3. choose a non-terminal symbol N in w

4. �nd a rule N → w′ and replace the ocurrence of N in w by w′

5. repeat from step 3 until there are no non-terminals left.

6

2.2 Types of parsers

The procedure speci�ed above provides a possible way to determine whether
some text conforms to a grammar, but it is by no means the only way to do
so. There are di�erent types of parsers, which generally are classi�ed as either
�top-down� or �bottom-up� parsers.

Top-down parsers follow a mechanism similar to the one described above,
beginning with the start symbol and attempting to match the text by applying
the rules. Bottom-up parsers on the other hand, scan the input stream and try
to apply the rules �backwards� so that if the start symbol is reached, the text
is successfully parsed.

The most common type of top-down parsers are called LL parsers and the
most common type of bottom-up parsers are called LR parsers. The main
di�erence between the two is that LL parsers yield the left-most derivation of
the text if one exists while LR parsers yield the right-most derivation. The main
consequence for the user is that for a given grammar, the generated parse trees
may be di�erent.

LL parsers and LR parsers use a parsing table to direct their behaviour and
help them decide which rule to apply in any possible situation. This table is
generated from the grammar provided.

A grammar is ambiguous if there are rules such that when applied there
might be more than one possible alternative because the �rst symbol is the
same for several alternatives. For example, the following rule is ambiguous:

A → bm
| bn

This is an example of direct ambiguity, but rules may also be indirectly

ambiguous, as is the case in the following set of rules:

A → Bm
| Cn

B → x
C → x

There are several ways of dealing with ambiguous grammars.
A common approach is to use backtracking: whenever the parser �nds more

than one rule that could be applied, it remembers the current state and chooses
one of the rules. If at some point parsing fails, it returns or �backtracks� to the
more recently stored �choice point,� and attempts another rule.

A second approach is to �look ahead� in the input stream and use more
than one input token to decide which rule to apply. An LL parser (resp. LR
parser) that requires looking ahead k input tokens is called an LL(k) parser
(resp. LR(k) parser.) k is called the lookahead of the parser.

A third approach is to transform the grammar from an ambiguous gram-
mar to a non-ambiguous grammar. One possibility is to apply the following

7

transformation to the given grammar. Suppose there is a rule of the form:

A → Bm
| Bn
| p

Then we can rewrite the rule as

A → BB′

| p

where B′ is a new non-terminal symbol, and we add a rule:

B′ → m
| n

Now, this new rule may be itself ambiguous, so we must apply the transfor-
mation repeatedly until there are no more rules to transform.

aperiot's parsing algorithm is an LL(1) parser but it deals with ambiguous
grammars by transformation as explained above (as well as additional trans-
formations to optimize the grammar.) Unfortunately aperiot does not handle
indirect ambiguity in grammars.

3 Describing grammars: the aperiot (meta-)language

aperiot is the name of the language used to describe context-free grammars.
An aperiot �le usually has a .apr extension, and is divided in sections which
speci�y the set of terminal symbols, as well as the set of rules together with
some associated actions.

The aperiot language is sensitive to indentation and newlines. It is also case
sensitive.

Notation: In the following description we use typewriter font to write
the actual tokens of the aperiot language, and italic roman font enclosed in <
and > as meta-symbols to refer to syntactic categories of the aperiot language.
A <symbolic_name> must be any valid identi�er, i.e. an alphanumeric string
(possibly with underscore characters) which must begin with a letter.

3.1 Sections of an aperiot �le

The general form of an aperiot �le is as follows:

<import section>

<terminals section>

<rules section>

3.1.1 Comments

Comments can be added anywhere in the �le. A comment begins with the #
symbol and ends with a newline.

8

3.1.2 The import section

The import section lists Python packages that will be used by the actions asso-
ciated to the rules, if any are needed. It is of the form:

import

<python_package_name_1>

<python_package_name_2>

...

<python_package_name_n>

3.1.3 The terminals section

The terminals section provides symbolic names for speci�c tokens and classes
of tokens to be used in the rules. There are two types of declaration in this
section: symbolic names alone, and symbolic names with an associated string
literal.

A symbolic name with an associated literal is simply a name for the literal,
so if the symbolic name occurs in some rule, the corresponding literal must be
in the appropriate position in the input stream for the rule to be applicable.
This kind of token declaration is used for keywords, operators, separators and
brackets.

A symbolic name without an associated string literal is a name that represent
a class of tokens rather than a speci�c literal. This includes identi�ers, numbers
and strings. If the symbolic name occurs in some rule, then a token of the
corresponding class must occur in the input stream for the rule to be applicable.

The terminal section consists of the following parts, all of which are optional:

<indentation_and_newlines_part>

<keywords_part>

<operators_part>

<separators_part>

<brackets_part>

<identi�ers_part>

<numbers_part>

<strings_part>

Indentation and newlines The indentation and newlines section speci�es
whether the grammar will be sensitive to indentation and newline characters.

It consists of two keywords (both optional) each of which must be in its own
line, and unindented:

To state that the grammar is sensitive to indentation, use the following
directive:

useindents

By specifying this directive, the lexer will generate �indent� and �dedent�
tokens whenever change of indentation occurs. The corresponding symbolic
names to be used in the rules section are:

9

indent

and

dedent

To state that the grammar is sensitive to newline characters, use the follow-
ing directive:

usenewlines

By specifying this directive, the lexer will generate �newline� tokens at the
end of each line2, except for consecutive blank lines which are ignored. This
means that consecutive blank lines are treated as a single newline. The corre-
sponding symbolic name to be used in the rules section are:

newline

The useindents directive must appear before the usenewlines directive.

Keywords The keywords section describes alphanumeric (usually only alpha-
betic) strings used as keywords or reserved words in the target language. It has
the form

keywords

<keyword_declaration_1>

<keyword_declaration_2>

...

<keyword_declaration_n>

Each keyword declaration has the form

<symbolic_name> �<string>�

or

�<string>�

The string must start with a letter and contain only letters, digits or the
underscore character.

If the �rst form is used, the symbolic name is to be used in the rules section
to refer to that keyword. If the second form is used, the string itself (without
quotes) may be used as its own symbolic name.

Giving a symbolic name is the preferred form, and it is mandatory if the
keyword is the same as a Python keyword, in order to avoid con�ict.

2On Windows the combination of CR (carriage return) and LF (line feed) is treated as a
single newline token.

10

Operators The operators section describes symbolic strings used as operators
in the target language. It has the form

operators

<operator_declaration_1>

<operator_declaration_2>

...

<operator_declaration_n>

Each operator declaration has the form

<symbolic_name> �<string>�

The string can contain any sequence of symbols but must not start with a
letter or digit. It cannot contain any space characters.

The symbolic name is to be used in the rules section to refer to that operator.

Separators The separators section describes symbolic strings used as delim-
iters or symbols to separate signi�cant parts of the text in the target language.
It is actually the same as the operators section but one may want to describe
certain symbols as separators rather than operators for the sake of clarity, doc-
umentation or to di�erentiate them conceptually. It has the form

separators

<separator_declaration_1>

<separator_declaration_2>

...

<separator_declaration_n>

Each separator declaration has the form

<symbolic_name> �<string>�

The string can contain any sequence of symbols but must not start with a
letter or digit. It cannot contain any space characters.

The symbolic name is to be used in the rules section to refer to that separator.

Brackets The brackets section describes symbolic strings used as delimiters
or symbols to contain signi�cant parts of the text or describe nesting in the
target language. It is actually the same as the separators section but one may
want to describe certain symbols as brackets rather than separators for the sake
of clarity, documentation or to di�erentiate them conceptually. It has the form

brackets

<bracket_declaration_1>

<bracket_declaration_2>

...

<bracket_declaration_n>

Each bracket declaration has the form

<symbolic_name> �<string>�

11

The string can contain any sequence of symbols but must not start with a
letter or digit. It cannot contain any space characters.

The symbolic name is to be used in the rules section to refer to that bracket.

Identi�ers The identi�ers section lists symbolic names used for identi�ers, i.e.
alphanumeric strings which are not keywords. Since an identi�er is any such
string, an identi�er declaration only speci�es the symbolic name to be used in
the rules section. It has the form

identifiers

<identi�er_declaration_1>

<identi�er_declaration_2>

...

<identi�er_declaration_n>

Each identi�er declaration has the form

<symbolic_name>

The symbolic name is to be used in the rules section to refer to an identi�er.

Numbers The numbers section lists symbolic names used for number literals,
i.e. numeric strings3. Since a number is any such string, a number declaration
only speci�es the symbolic name to be used in the rules section. It has the form

numbers

<number_declaration_1>

<number_declaration_2>

...

<number_declaration_n>

Each number declaration has the form

<symbolic_name>

The symbolic name is to be used in the rules section to refer to a number
literal.

Strings The strings section lists symbolic names used for string literals, i.e.
arbitrary character strings enclosed in double-quotes. Since a string literal can
be any sequence, a string declaration only speci�es the symbolic name to be
used in the rules section. It has the form

strings

<string_declaration_1>

<string_declaration_2>

...

<string_declaration_n>

3Currently the lexer recognizes only positive integers and �oating point numbers in decimal
format but not in exponential format. Only base 10 numbers are recognized.

12

Each string declaration has the form

<symbolic_name>

The symbolic name is to be used in the rules section to refer to a string
literal.

3.1.4 The rules section

The rules section consists of two parts: the start symbol section and the rules
section proper.

The start symbol section speci�es the start symbol of the grammar and must
be a non-terminal which appears in the left-hand side of some rule in the rules
section. It has the form:

start

<symbolic_name>

The rules section contains the set of rules and their associated actions. It
has the form:

rules

<composite_rule_1>

<composite_rule_2>

...

<composite_rule_n>

Note that each composite rule is not indented.
Each composite rule is of the form:

<non-terminal> -> <word_1> : �<action template 1>�

| <word_2> : �<action template 2>�

...

| <word_n> : �<action template n>�

where <non-terminal> is a <symbolic-name>, <word> is either the key-
word

empty

or a space-separated sequence of symbols: either symbolic names or string
literals:

<symbol_1> <symbol_2> ... <symbol_m>

If the symbol is a string literal (enclosed in double quotes) it will be inter-
preted as a terminal symbol, i.e. as a token which must be matched exactly by
the input.

If the symbol is a <symbolic name>, then it can be either a symbolic name
declared in a terminal section or a non-terminal.

If the symbolic name is a terminal, it must be the symbolic name declared for
one of the following: a keyword, an operator, a separator, a bracket, an identi�er,
a number, a string, the newline symbolic name if the usenewlines directive was

13

declared, or the indent or dedent symbolic name if the useindents directive
was declared.

If the symbolic name is a non-terminal, it must appear as the left-hand side
of some rule.

Rule actions Each action template must be a valid Python expression that
may use numbered placeholders $1, $2, ..., $n, where there must be at most
n symbols in the corresponding rule4. Placeholders refer to the corresponding
symbol in the symbol sequence. When the parser generates the concrete syntax
tree, each node in the tree is annotated with the rule that was used to produce
the node. Hence, if the right hand side of the rule has n symbols, any tree
node that was created with this rule will have n children. Once the parser has
generated the full parse tree, the actions are applied by traversing the parse tree
in a depth-�rst fashion. For each node, all its children are visited recursively and
the corresponding actions applied. After visiting all the children and collecting
the respective results, the action corresponding to the rule of the node is applied
with the placeholders replaced by the corresponding values obtained by visiting
the children. Hence, a placeholder $k will be replaced by the result of applying
the actions that yield the k-th symbol of the sequence. Note that even if the
word is the empty string keyword empty, there must be an action. This would
usually be some constant.

4 The grammar compiler command-line options

The grammar compiler is called apr. The basic usage is as follows:

apr [options] <�le>

where <�le> is an aperiot �le (with .apr extension,) and [options] is a combi-
nation of the options described in table 1.

The aperiot compiler will parse the given aperiot �le and depending on the
options, it will generate one of two possible representations: a minimalistic
representation and an optimized representation.

The minimialistic representation is to be used with the build_parser func-
tion, as explained in section 5. The optimized representation is to be used with
the load_parser function as explained in section 5.

Whatever the representation, the generated parser for a �le named <�le-

name_base>.apr is saved in a Python package with same name as the base
name of the given �le with `_cfg' appended, i.e. a directory called <�le-

name_base>_cfg. This directory will be saved by default in the same directory
where the source �le <�lename_base>.apr is located. This can be modi�ed by
using the -d option.

The minimalistic representation for a �le named <some_name>.apr will
create

4Hence if the word is the empty string keyword empty, there must not be any placeholders.

14

-a [Default] Use ASCII format for the generated .pkl �le. This
option is only relevant in conjunction with the -f option. The
generated �le is larger, slower to load, but it is guarranteed to be
portable across platforms.

-b Use binary format for the generated .pkl �le. This option is only
relevant in conjunction with the -f option. The generated �le is
smaller �le, faster to load, but may not be portable.

-m [Default] Minimal save: saves only the basic Python
representation �le. It is enough when using build_parser.

-f Full save: saves the generated parser and actions. Necessary
when using load_parser instead of build_parser.

-d <dir> Save the generated package in the given target directory <dir>.

-t Use the hard coded meta-grammar instead of the bootstrapped
meta-grammar. This is used only for debugging and in certain
circumstances for setting up the package.

-v Verbose; shows various internal messages.

Table 1: aperiot compiler options.

15

- <some_name> _cfg: A directory containing a Python package with that
name and which contains the following �les:

__init__.py A �le to identify the <some_name>_cfg

directory as a Python package.

<some_name>.py The minimalistic Python representation for the grammar.

The optimized representation for a �le named <some_name>.apr will cre-
ate:

- <some_name> _cfg: A directory containing a Python package with that
name and which contains the following �les:

__init__.py A �le to identify the <some_name>_cfg

directory as a Python package.

<some_name>.py The minimalistic Python representation for the grammar.

<some_name> .pkl A Python pickled �le containing the parser
object itself (including the lexer and the
CFG object.)

<some_name> _cfg_ll1_cfg_wan.py A Python module containing the normalized
form of the Python representation of the
grammar.

<some_name> _cfg_ll1_actions.py A Python module containing the source
code for the actions associated with
grammar rules.

5 The Python API for parsers

Python programs can use a parser generated by aperiot by importing the aperiot.parsergen
module. This module provides the functions shown in table 2.

The ASCII and BINARY formats are de�ned also in the same module (aperiot.parsergen.)
The Parser object returned by build_parser and load_parser is an in-

stance of the Parser class from the aperiot.llparser module, and it has the
methods shown in table 3.

The ParseTreeNode has a method pprint for pretty-printing.

16

Function Parameters Returns Description

build_parser module_name,

verbose=False

Parser Builds the parser object of the
given module, where the module
is the minimialistic Python
representation produced by
aprcompiler.py.

load_parser module_name,

verbose=False

Parser Loads the parser object of the
given module, where the module
is the full Python representation
produced by aprcompiler.py.

save_parser parser, dir,

module_name,

pickle_format=ASCII,

verbose=False

- Saves a Parser object in a
package named
<module_name >_cfg under the
directory <dir > using the given
pickle format for serialization.
The format is either ASCII or
BINARY.

Table 2: aperiot.parsergen functions.

Method Parameters Returns Description

parse input_stream,

apply_actions=True

Any or
ParseTreeNode

Given an input stream, which
may be a string or a file

object, returns the result of
parsing and applying the
grammar's actions, if
apply_actions is True, or
returns the parse tree if
apply_actions is False.

apply_actions node Any Applies the grammar's actions
to a given a ParseTreeNode.

Table 3: Parser class methods.

17

