
MODELLING VARIABLE-STRUCTURE SYSTEMS
PH.D. PROPOSAL

ERNESTO POSSE

Abstract. A variable-structure system is a system whose structure changes over time. This includes
systems whose topology evolves (such as mobile systems) and systems which change their mode of
operation as the result of some event (such as hybrid systems.) Such systems are generally more
di�cult to understand and analyze than systems with a static structure. Therefore we need a solid
basis for modelling, simulating and reasoning about them. In this thesis we focus on timed, reactive
systems and we propose an approach to modelling these systems based on the Statechart and DEVS
formalisms. We investigate the capabilities of these formalisms to model variable-structure systems,
and the relationships between them.

1. Introduction
Scienti�c and Engineering disciplines rely on understanding (and designing, in the case of Engineer-

ing) complex systems. This implies a need for modelling and analyzing, and in some cases simulating,
these systems. Complexity arises in many di�erent ways such as the size of the system, the apparent
or real lack of regularity of its behaviour, or the diversity of components. A basic aspect which also
contributes to the complexity is variable structure.

Variable structure systems are systems whose structure changes over time. Typical examples of
systems with a changing structure are mobile communications networks, mobile (code) agents, chemical
compounds, dynamic geographic information systems, and many systems which exhibit some form of
adaptability to environmental change.

Since modelling, simulation and analysis are concerned with system behaviour, the central question
is that of the semantics of the underlying formalisms used to describe the dynamics of systems.
Any proposed framework, whether theoretical or practical, must be founded on a precise, sound and
preferably complete semantics of the intended domain.

The objective of this thesis is to develop a well-founded framework for the modelling, simulation
and analysis of variable-structure systems.

In this framework, systems are described by models in the Statechart formalism [10, 11], the DEVS
formalism [36], and a new formalism which combines the features of these. We study if and how
variable structure systems can be modelled by these formalisms. We also study the relationships
between them, speci�cally from a formalism-transformation point of view in order to support a unifed
semantic view as well as simulation environments. In addition to these, we try to establish the meaning
of �variable structure� in the formalisms of interest and whether this notion is preserved by formalism-
transformations.

A central issue that we address is that of compositionality of these formalisms and their semantics,
in order to maintain a modular approach to systems modelling and design.

The rest of this document is organized as follows: section 2 discusses some general aspects concerning
Modelling, Analysis and Simulation. Section 3 brie�y presents existing languages and formalisms used
to model variable-structure systems. Section 4 focuses on the Statechart and DEVS formalisms, as
well as a language we have developed called Devslang. Section 5 presents a sketch of the new proposed
approach. Finally, section 6 summarizes the thesis objectives, the contributions made so far, and the
proposed contributions.

1

2. Modelling, Analysis and Simulation
A framework for modelling, simulation and analysis has the purpose of understanding an existing

system, or designing a new one. In both cases we start with the construction of a model of the existing
reality or the system to be engineered.

2.1. Modelling. The process of modelling is the process of creating a model, this is, a description of
some reality, system or object of interest, usually with the purpose of understanding it, and extracting
useful information from it. The model must contain enough information to capture those aspects of
the system in which we are interested. As a description, it needs to be given in some language or
formalism. This language must be expressive enough to represent the features of interest of the object
or system modelled, and to give enough relevant information about the system.

There are many di�erent formalisms with distinct features, and therefore one must make a careful
decision about which one is the appropriate for the system at hand. In spite of such diversity of
formalisms, there seems to be a certain class of formalism capable of capturing the behaviour of a wide
range of systems. These are the so-called discrete-event formalisms. We focus in this thesis on such
formalisms. A discrete-event system is one where the set of possible events is discrete, the behaviour
is time-dependent, and the state is piece-wise constant (i.e., between any two events, whether internal
or external, the state does not change.) Such formalisms can describe many common discrete-time
systems (events occur only at �clock ticks�.) Continuous-time systems are often dealt with using
discretization techniques from Numerical Analysis. A useful formalism for discrete-event systems is
DEVS (see [36].)

Any language or formalism has a syntax and a semantics. In some cases, these may not be fully
de�ned, but the more precisely de�ned these are, the more information we can get out of our models.
Hence we favour the use of well-de�ned formalisms in a modelling, analysis and simulation framework.

The syntax and semantics of the formalism may refer to both structural and behavioural aspects
of a system. In some cases, the semantics may be purely structural, as is the case, for example, with
UML class diagrams. In others, the semantics de�nes the behaviour of the system, as is the case with
FSA's or Petri Nets.

2.2. Analysis. The process of analysis has as purpose the understanding of a system of interest and
more concretely, establishing properties of the system. Reasoning about a system is often contingent
on the modelling formalisms used, as well as the reasoning formalisms used (i.e., the logic.) Hence the
selection of formalisms is also critical in this part of the process.

We distinguish between two kinds of properties: system-speci�c properties (e.g., this system will
deadlock,) and the more general formalism-wide properties (e.g., any model with certain features will
have a periodic behaviour.) The �rst kind of property would preferrably be determined by automatic
means such as a model checker. The second approach requires either manual proof or automatic
theorem provers capable of dealing with universal statements over models.

There is a diverse set of techniques to obtain such proofs. A major technique is well-founded
induction, and in particular induction on the structure of the system or the derivation of certain
statement. This technique relies however, on inductively de�ned sets for the structure of the system
and/or its state. If the models are described in a non-inductive fashion, as is the case with graphical
formalisms, the techniques can be di�cult to apply or not applicable at all. In such cases other
techniques are necessary.

When addressing system speci�c properties through model checking, the selection of a logic language
is crucial. There are many di�erent logics apt to reason about the behaviour of dynamic systems.
Temporal logics such as LTL, CTL, CTL* (see [14]) and the µ-calculus [15] are particularly useful.
These logics however, deal only with an abstraction of time in terms of computational steps. It is
desirable to have a logic that allows reasoning with respect to external time, this is, a notion of time
separate and independent of the system.

Analyzing a system depends on the semantics of the formalism used to model it (and the formalisms
used to reason about it.) There are di�erent approaches to semantics. The most important approaches
are denotational and operational semantics. In the �rst, the meaning of a model is given by associating

2

it with an element in some abstract domain. The properties of such domain can then be used to reason
about the systems modelled. This approach to semantics is sometimes too abstract, and di�cult to
use for instance, in the case of concurrent systems. Operational semantics describes the meaning of
a system in terms of concrete behaviour (e.g., how it would be simulated by some abstract machine,)
which usually makes it more intuitive and easy to use. It also serves as a basis for the construction of
interpreters and simulators.

Denotational semantics usually focuses on an abstract view of the system (e.g., what is the function
computes by the system,) while operational semantics is more concrete (e.g., how behaviours are
generated.) Since the ideal is to obtain a complete understanding of the system, analysis should be
done at di�erent levels of abstraction. Therefore both approaches to semantics are signi�cant and
useful. But their usefulness depends on the semantics being consistent with each other. We say that
the semantics of a formalism or language is fully-abstract if its denotational semantics and operational
semantics agree on the properties of interest.

2.3. Simulation. There are many systems whose features make them di�cult to analyze by symbolic
means (e.g., complex non-linear systems with chaotic behaviour, or systems with an extremely large
state space.) In such cases we have to resort to simulation in order to obtain an understanding of the
system's behaviour. The process of simulation has as its purpose to generate instances of a system's
behaviour.

Simulation algorithms are formalism-speci�c, as they depend on the operational semantics of the
formalism. Nonetheless, a wide range of simulation algorithms seems to be closely related to discrete-
event algorithms. Furthermore, the discrete-event approach can be related to common techniques for
operational semantics, as shown in section 4. By focusing on such algorithms we obtain not only great
deal of generality in a simulation framework, but also the possibility of applying techniques to reason
about the operational semantics of the simulated systems.

Discrete-event simulators often rely on event queues, and therefore can be related to Data�ow
Networks as well. There are di�erent approaches, from purely sequential simulation to parallel and
distributed algorithms. However, the concurrency of the model is independent of the concurrency of
the simulator. It is often convenient to think of the components of a model as a set of concurrent or
parallel processes, even if the simulator is sequential. In such cases, a time-sharing mechanism is used
by the simulator.

Modelling, analysis and simulation based on solid principles and techniques provide a rich framework
to understand and develop complex systems. In the rest of this section we discuss some general but
important topics that can serve as the basis for those principles and techniques.

2.4. Multi-paradigm modelling. Some systems are complex enough so that their description using
a unique formalism is too di�cult in practice. This is usually the case of the so-called heterogeneous
systems, that is, systems made up of multiple components where each component is of a substantially
di�erent nature than the others. To model such systems, a preferred approach is multi-formalism
modelling. In this approach, we use a di�erent formalism for each component, together with some sort
of �glueing� formalism to assemble the components.

In multi-formalism modelling, the di�erent formalisms may be used to represent not only structural
components, but also di�erent �aspects� or �views� of a system. The typical example is the UML,
which consists of several formalisms, such as class diagrams to represent system structure, Statecharts,
Petri Nets, and Interaction diagrams to represent system behaviour.

In all cases, the main issue is de�ning a uni�ed semantics for a system made up of components or
views in disparate formalisms. One approach to deal with this is formalism translation. We can give
the semantics of such systems, but translating each component to a common formalism, as long as
it preserves the features of interest. Here, proving that such translations preserve the properties of
interest is fundamental, and, as mentioned above, there are numerous techniques, including induction.
As before, induction may not be applicable if the translation is not in the form of a recursive function.
This can be the case if we use graph-grammars [8] to translate graphical models.

3

Another way of tackling complexity is to look at a system at di�erent levels of abstraction, in order
to extract only whatever information is relevant to us and that help us better understand the system
under scrutiny.

Apart from using multiple formalisms, and multiple levels of abstraction, we can also resort to
modelling the formalisms themselves. This is known as meta-modelling, and provides us with a mech-
anism to deal uniformly with multiple formalisms. These three techniques are collectively called
multi-paradigm modelling. [24]

2.5. Hierarchy of System Speci�cation. The speci�cation of a system by a model can be done
at di�erent levels of abstraction. In [36], Zeigler de�nes a hierarchy of system speci�cation for timed,
reactive systems, and includes both structural and behavioural aspects. This hierarchy makes a few
assumptions. Since it is for reactive systems, systems are assumed to have input and output ports
through which the system interacts with its environment. Furthermore, since the systems are dynam-
ical, the concept of time is also associated to the system's behaviour.

2.5.1. Time bases and signals. The notion of time is formalized as a time-base, that is, a tuple (T,<)
where T is a partially ordered set (and usually a total linear order) w.r.t. <. Furthermore, the time-
base is usually equipped with a commutative addition operation over T , and an element ∞ such that
for all t ∈ T t +∞ = ∞. Sometimes it may also have a minimum element t0. It is usually required
for addition to be monotonic w.r.t. <, that is, if t1 < t2 then t1 + t < t2 + t for all t ∈ T . Given
a time base T , we de�ne the open and closed time intervals T(t

def
= {t′ | t < t′}, Tt)

def
= {t′ | t′ < t},

T[t
def
= {t′ | t ≤ t′}, Tt]

def
= {t′ | t′ ≤ t}, T(t1,t2)

def
= {t′ | t1 < t′ < t2}, etc.

Given some set A, a time function, also known as trajectory or signal, over A is a partial function
from a time base T to A. The restriction of a time function to an interval is called a segment. We
denote Ω(T, A) the set of all segments over A with time base T . We assume that such set is equipped
with a concatentation operation • between contiguous segments, where two segments f1 and f2 are
contiguous if the least upper bound of the domain of f1 is the same as the greatest lower bound of the
domain of f2. It is often desirable for a set Ω(T,A) to be closed under concatenation.

2.5.2. Levels of abstraction. The hierarchy can be summarized as follows, ordered from the highest
level of abstraction to the lowest:

(1) I/O observation frame
(2) I/O relation
(3) I/O function
(4) State/Transition
(5) Network

The �rst level can be said to be purely de�nitional. The next three are concerned with behaviour, and
the last is purely structural.

At the observation frame, only the time-base T , the input set X and output set Y are speci�ed.
Hence a system is given by the triple (T, X, Y). To represent individual ports we can give the sets X
and Y more structure, and make them, for instance, labelled product sets. We call the pair (X, Y) the
interface of the system.

At the I/O relation level, a system is speci�ed by a triple (T, X, Y, Ωin, R) where (T,X, Y) is an
observation frame, Ωin ⊆ Ω(T,X) and R ⊆ Ωin × Ω(T, Y) such that if (f, g) ∈ R then dom(f) =
dom(g).

At the I/O function level, a system is speci�ed by a triple (T,X, Y, Ωin, F) where (T,X, Y, Ωin, F)
is an I/O relation frame such that F is a function. It is worth noticing that at this level, the system is
considered deterministic: given an initial state and an input segment, there is a unique output segment.

At the state/transition level, the system speci�es the internal states and how the state changes
with respect to input segments. In this case a system is given by a tuple (T, X, Y, Ωin, Q, ∆,Λ) where
(T,X, Y) is an observation frame, Ωin ⊆ Ω(T,X), Q is a set of states, ∆ : Q × Ω → Q is a global
state transition function, and Λ : Q×X → Y is an output function, such that Ωin is closed under left
segmentation (for every f ∈ Ωin, if t ∈ dom(f) then ft> ∈ Ωin where ft> is the restriction of f to the

4

subset of dom(f) less or equal to t,) and satis�es the �composition property� that for all contiguous
input segments f1 and f2 and all states q, ∆(q, f1 • f2) = ∆(∆(q, f1), f2). We note that this de�nition
does not consider non-deterministic systems. We could consider an alternative hierarchy, where ∆ is
a relation rather than a function.

The �nal level is that of network, where the system is given by a tuple (T, X, Y, G) where (T, X, Y)
is an observation frame and G = (M, C, s, t, Z) is a graph where M is a set of state transition systems
(the subcomponents,) C is a set of connections, s, t : C → M are the source and target functions
de�ning the graph's topology, and Z : C → {Zl|Zl : Ys(l) → Xt(l) for each l ∈ C} is a set of transfer
functions where Xi and Yi are the input and output sets of component i ∈ M .

The hierarchy outlined above is of course, only one of several possible. In particular, we could have
a system speci�ed at the level of state/transitions and still be non-deterministic.

2.5.3. Systems morphisms. A fundamental aspect of modelling and analysis is to establish relations
between di�erent system speci�cations. There are many such possible relations. One particularly
important kind of relation establishes whether a system captures the �essence� of another in the sense
that either one is embedded in the other, or one is represented by the other. This kind of relation
is particularly important from the point of view of modularity and veri�cation. Whenever we try to
determine if a given component can replace another, we need such a relation, or morphism between
the two systems.

Associated with each level of the hierarchy we have several possible notions of morphisms between
systems.

At the I/O observation frame level we can de�ne both structural and behavioural morphisms. A
structural morphism at this level which captures the ability of a system to replace another could be
de�ned in terms of having a compatible interface. There are several possible de�nitions of compatibility.
A basic one is simply to have the same input and output sets. More generaly we could require a map
between the corresponding sets (including the time-base.) If we consider these sets as types, this could
be generalized even further by a notion of subtyping. If X2 is a subtype of X1 and Y1 is a subtype of Y2

then any system with interface (X1, Y1) can replace a system with interface (X2,Y2).1 This de�nes a
preorder relation necessary for the ability of A to replace B. We could go further if we considered these
sets structured to represent ports. A behavioural morphism at this level between two speci�cations
(T,X, Y) and (T ′, X ′, Y ′) should relate the possible sets of input and output signals, for example, such
a morphism could be given by a pair of mappings g : Ω(T, X) → Ω(T ′, X ′) and k : Ω(T, Y) → Ω(T ′, Y ′)
where k is surjective. Other de�nitions are possible.

At the I/O relation and function levels, we require a mapping between the corresponding relations.
Perhaps the most basic is containment: there is a morphism from A to B if IOR(A) ⊆ IOR(B), where
IOR(X) denotes the I/O relation of X. This could be generalized to any mapping from IOR(A) to
IOR(B). Mappings at this level need not preserve all properties. For instance, a map could scale the
rate of output signal of one of the systems with respect to the other.

At the level of state/transitions, the notion of replaceability can be naturally captured by the notion
of similarity (and equivalence by bisimilarity, see [20, 21, 26].) A can replace B if A simulates B. The
morphisms at this level are usually simulations or bisimulations, but there are several other morphisms
of interest, such as graph-homomorphisms, monotonic and continuous mappings (with respect to some
preorder of states,) and contraction mappings (with respect to some metric between states.)

At the network level, a useful morphism is that of graph-homomorphism. Establishing that such
homomorphism exists between two networks means that the target network can be seen as an abstrac-
tion of the source in the sense that several components are lumped together in one component. At
this level, the notion of compatibility would require speci�c structural contraints (e.g. A can replace
B if A contains a subcomponent C that satis�es a particular constraint.)

Some particular morphisms for this hierarchy are discussed in more detail in [36].
The system speci�cations at a level together with the corresponding morphisms can be described

as categories [5]. To our knowledge, the categorical view of this particular hierarchy has not been
explored.

1This is analogous to the standard rule for subtyping of functions in the typed λ-calculus.
5

2.5.4. Abstraction and realization. Di�erent levels of system speci�cation can be related by abstraction
morphisms (going up) or re�nement or realization relations (going down.) When designing a system
the modeller is likely to start at the higher levels, and add information along the way, leading to
further re�nements. It is key then to ensure that a system speci�ed at a lower level indeed satis�es
the speci�cation at the higher level.

To ensure that a system at a lower level satis�es a speci�cation at a higher level it is not enough
to provide a mapping. The mapping should also preserve the morphisms of interest at the lower level,
otherwise, the abstraction does not really capture the concrete systems. For example, a mapping
from the state/transition level to the input/output relation level should be such that if A simulates
B (where A and B are state/transition speci�cations,) then IOR(B) ⊆ IOR(A). If we consider each
level of abstraction a category, an abstraction mapping should be a functor [5] (possibly contravariant)
between the corresponding categories.

We expect the same from a realization mapping: it should not simply map abstract speci�cations
to concrete implementations but it should preserve the morphisms present at the higher level.

What should be the relation between abstraction and realization? If abstraction and realization are
functors, we could be tempted to consider them the �inverse� of each other, but this is too restrictive.
If we map a system to an abstraction, this could have many di�erent realizations. We think that a
more appropriate relation between an abstraction and a realization should be that of an adjunction
[5].

2.5.5. System equivalence and compositionality. A particularly important kind of system morphism
is that of equivalence. System equivalence plays an essential role in modularity, abstraction and
veri�cation. By establishing the equivalence of two systems at some level of abstraction, we can
not only replace one by the other in any context, but also, obtain abstractions at the same level of
speci�cation, and reason about a large class of systems. Indeed, if we partition a family of systems in
equivalence classes, then all properties preserved by the equivalence will be satis�ed by all systems in a
given equivalence class, and therefore whatever property of interest we establish about a given system,
will hold for all its equivalent systems. Such equivalence classes can be considered an abstraction of
its elements. For this reason, any reasonable notion of equivalence has to be de�ned in such a way
that it preserves any properties of interest at the corresponding level of abstraction.

Preserving properties of interest is not a su�cient condition for an equivalence relation to be consid-
ered a truly appropriate notion of system equivalence. Systems are usually part of larger systems. Two
systems should be considered equivalent if they are indistinguishable from the point of view of their
environment. If two systems A and B are equivalent, then any context C[−], should not distinguish
between A and B, and therefore C[A] must be equivalent to C[B] (where C[X] represents putting the
system X in place of the placeholder − in the context C[−].) In other words, the equivalence relation
must be a congruence. We call such equivalence relations compositional.

As any morphism, the de�nition of system equivalence depends on the level of abstraction in the
hierarchy. There are a few obvious choices. At the input/output relation level, the natural notion
is that of equality, or bijection between the input/output relations. At the state/transition level,
bisimilarity is the usual choice. Nevertheless, the simplest choice is not always adequate. Consider for
example Kahn's process networks [19]. If we de�ne the equivalence of these networks, as the equivalence
between their input/output relations but abstracting the time of the events, and the systems are non-
deterministic, then the equivalence is not compositional as a result of the so-called Brock-Ackermann
anomaly (see [25].)

Compositionality also depends on what we consider to be contexts. If we are dealing with a structural
equivalence relation, the context of interest would be purely structural (determined by the syntax of
the model.) But if we are talking about behavioural equivalence such as bisimilarity, the context needs
to take into account the system's state. In some formalisms, the two can be identi�ed (see for instance
the π-calculus in section 3,) but in general this is not the case.

In general, any well-founded framework for modelling, analysis and simulation must have well de�ned
morphisms at the appropriate levels of abstraction, in particular it must have reasonable notions of

6

equivalence. Such relation should be compositional. Furthermore, there should be suitable abstraction
and realization mappings which preserve equivalence. These are the features we look for in this thesis.

3. Existing approaches to modelling variable-structure
Describing a system as a variable-structure system depends on what we mean by �structure�. One

de�nition of �structure� is �the aggregate of elements of an entity in their relationships to each other,�
or �an arrangement in a de�nite pattern of organization.� Under this de�nition, the notion of system
structure is fundamentally that of system composition: how a system is composed of subsystems and
how these are related to each other. This is essentially a topological view of structure. With this
view a system with variable structure is a system that changes in its pattern of composition and/or
its pattern of connections between components.

An alternative view is to call �structure� whatever describes a system's behaviour. In this case,
a variable-structure system is a system where such description changes, and therefore the system's
behaviour also changes.

In this section we look at these two forms of variable structure systems and some of the existing
approaches to model them.

3.1. Topological change. When we consider structure to be determined by the composition of a
system and the relationships or connections between components, we have a fundamentally graphical
view of the system. In such a view, there are di�erent ways in which the structure can change, such
as:

• Creation and Destruction:
� Creation of new components
� Creation of new links (relations or connections between components)
� Destruction of components
� Destruction of links

• Mobility:
� Change of links: Moving of a link from one component to another
� Change of nesting:

∗ Moving a component inside another component
∗ Moving a component outside its current �parent� component

Many of these operations can be de�ned in terms of others. For instance, change of nesting can be
de�ned in terms of change of links, by observing that nesting can be seen as a special kind of link.
Moving can be described in turn in terms of destructing and creating components and/or links.

All these operations have been dealt with to some extent in di�erent languages and formalisms. We
identify the following as the fundamental approaches which have been proposed to represent topological
change of structure:

• Object Oriented Programming
• The π-calculus
• The Ambient Calculus
• Graph-grammars
• Bigraphical Reactive Systems
• DS-DEVS/DS-System Networks

Common to all these is a graph-based notion of structure, where this notion could be plain graphs,
hypergraphs, higraphs, or any other variant of graphical structures.

3.1.1. Object Oriented Programming. The paradigm of Object Oriented Programming (OOP) [1] can
be seen as providing a high-level abstraction for representing variable structure, where the system being
modelled is represented by an object together with its aggregates, i.e. each component is modelled
itself by some object. The aggregation relation de�nes the structure of the system. In this view, OOP
describes change of structure by means of creation and destruction of objects.

The underlying graphical view of OOP is straightforward and supported by modern notations such
as object diagrams in the Uni�ed Modelling Language (UML [33, 9].) Objects are the nodes of the

7

graph, and aggregation (and similar relations) de�nes the edges. In languages supporting nested
classes, a more accurate descritpion could be given by some variant of Higraphs.

3.1.2. The π-calculus. A fundamental approach was proposed by Milner, Parrow and Walker (see [23])
in the form of a process algebra intended for mobile concurrent processes. Mobility in the π-calculus,
addresses the change in the connections between di�erent components, that is, the topology of the
network of communication channels. Here systems or processes are modelled by terms. Processes
are connected by channels which have a name. A process has two fundamental operations: sending a
message along a channel and receiving a message along a channel. Mobility arises by allowing messages
to be channel names, thus enabling processes to communicate their channels to other processes which
then gain access to them.

While processes are represented as terms, they can be described graphically, where each node
represents a process in a particular state, and each edge represents a channel. More precisely the
structure here is that of a hypergraph, since a channel can be shared by more than two processes.

The semantics of the π-calculus is given in the style of Structural Operational Semantics (SOS [27]),
where the meaning of a process is given by a state transition system. This gives rise to a rich theory
developed around the notion of behavioural equivalence, a crucial concept from the point of view of
compositionality, and veri�cation.

There are many variants of the π-calculus, considering di�erent forms of communication. Of interest
to us, is the so-called Higher-Order π-calculus [34], where processes themselves can be communicated
as messages. This model could be more closely represented by a form of Higraphs, and makes it closer
to the Ambient calculus, discussed next.

3.1.3. The Ambient calculus. Closely related to the π-calculus is Cardelli and Gordon's Ambient cal-
culus (see [7].) This is also a process algebra for mobile concurrent systems, but mobility in this case
addresses the change in nesting relations rather than channel connections. Systems are also modelled
by terms. Each process or ambient has a name identifying it, and an area or domain, where subpro-
cesses are located. The three primitive operations are: getting inside some process, getting outside,
and �openning� a domain (i.e. destroying a domain's boundaries.)

In the pure form of the calculus, the language does not have channels explicitly. Nonetheless, it
is provably equivalent in expressive power to the π-calculus, as channel-based communication can be
easily simulated by moving pure ambients.

The graphical description of Ambients can be given by Higraphs without edges, and labels for each
node.

Its semantics is also given in the form of SOS, associating a state transition system to each process.
There are also appropriate notions of behavioural equivalence.

3.1.4. Graph-grammars. When we view of the structure of a system as a graph (hypergraph, or hi-
graph), we realise that variable structure can be described by specifying changes in subgraphs of a
given graph. This is precisely captured by the notion of graph-grammar (see [8]) which extends the
traditional notion of term grammars from Formal Language Theory to elements with richer structure
than strings.

Informally, a graph-grammar is a collection of rules or productions, with a left-hand side (LHS)
and right-hand-side (RHS) which are both graphs (hypergraphs, higraphs, resp.) A graph-grammar
is applied to a host-graph, by executing one (or more) rules. A rule is applied if its left-hand-side
matches a subgraph of the host-graph. In that case the subgraph is replaced by the right-hand-side.
A computation is a sequence of rule applications.

The precise meaning of �matching� and �replacing� give rise to di�erent variants and approaches. The
two traditional algebraic approaches are called Double Pushout Approach (DPO) and Single Pushout
Approach (SPO,) both based on the category-theoretical notion of pushout.

Further variants have been proposed by giving graphs a richer structure. This is the case of attrib-
uted graphs, and typed-graphs, both closely related to the notion of meta-modelling.

8

Graph-grammars can be seen as a model of variable structure where the change in structure is
explicitely described by the rules. Graph-grammars can also be used for other purposes, in particular,
.they can be used as a mechanism to describe transformations between models and formalisms.

3.1.5. Bigraphical Reactive Systems. Milner has proposed an alternative form of graphs-grammars
called Bigraphical Reactive Systems (BRS) (see [22]), where systems are also represented by a Bigraph
(which can be seen as a variant of a Higraph), and system dynamics are described by rules in the
same style as graph-grammars. There are nonetheless some fundamental di�erences. Bigraphs allow
the speci�cation of �reactive� and �passive� contexts, which can control which rules are applicable
and where can they be applied. The other fundamental di�erence is that the theory of Bigraphs
has focused on the notion of behavioural equivalence, and in particular on how to obtain a labelled
transition system from a BRS such that bisimulation is a congruence, i.e. an appropriate notion of
behavioural equivalence. These ideas have not been fully developed by the standard graph-grammar
community. On the other hand, the theory of standard graph-grammars has focused on studying the
properties of graph-grammars and combinations of rules.

Several basic formalisms for transformational, interactive and reactive computation such as the
λ-calculus, Petri Nets, the π-calculus and the Ambient calculus have been faithfully modelled by BRS.

3.1.6. DS-DEVS/DS-System Networks/Dynamic I/O-Automata. A di�erent approach is characterized
by the DS-DEVS formalism (see [6]), or more general by what we call DS-System Networks, closely
related to Dynamic I/O-Automata (see [4]). A System Network is a collection of components connected
through channels, similar to the π-calculus or to Kahn's process networks. Each component in turn
can be made of subcomponents. The leaves in the nesting tree are called atomic components. The
behaviour of an atomic component can be described by some formalism, usually a variant of a state-
transition system. The meaning of a network is given by an equivalent atomic component.

To model variable structure, a system in the DS-System Networks formalism is speci�ed by two
levels: an executive component, and a set of System Networks. The executive is itself a system
network, possibly atomic. The set of networks represents the set of all possible structures which
the overall system can be in. Each state of the executive is associated with a speci�c network in the
set. In this way, we could say that the executive controls the structure of the entire system.

In these formalisms, the change of structure is explicitly modelled by the executive. A main dif-
ference between this approach, and that of graph-grammars, is that the behaviour of executive, being
itself a system, could depend on external stimuli, whereas a graph-grammar is a closed entity: the
behaviour of a system is the computation that the graph-grammar generates, but this computation
depends exclusively on the host-graph. Only if we encode stimuli as part of the host-graph or if we
consider variants of graph-grammars do we obtain a similar notion of external interaction, which is
fundamental to build systems compositionally.

3.2. Mode change. A di�erent view of structure is that of model-structure, this is, structure is the
form, shape, or syntax of the model which describes the behaviour of a system.

In this view, a system can be described by some state-transition system, where the structure of
interest is the structure of this transition system. A variable-structure system can be said to be in
di�erent modes of operation. When the system is in a particular mode, the behaviour of the system
is determined by a speci�c transition system. Change of mode is therefore change of structure. The
part of the system that describes the change of mode is analogous to the �executive� as described in
3.1.6 and it can depend on external stimuli.

Two classical examples of such variable structure systems are Hybrid automata and Statecharts.
We defer Statecharts to section 4.

3.2.1. Hybrid Automata. A hybrid system combines continuous-time behaviour with discrete-event or
discrete-time behaviour. At any moment in time, the behaviour of the system can be described by a
set of di�erential equations, but speci�c events may cause the system to change its mode of operation
to a new, di�erent, set of di�erential equations.

9

We can model such systems by means of a state-transition system where each state de�nes a mode
and thus has a set of di�erential equations associated. This formalism is commonly known as Hybrid
Automata (see [32].)

4. Statecharts, DEVS and Devslang
In this section we describe the formalisms which we use as a basis to our proposed formalism for

variable-structure systems. We pay particular attention to DEVS and study in detail its operational
semantics and its compositionality properties.

4.1. Statecharts. The Statechart formalism proposed by Harel [10, 11], can be viewed as an extension
of �nite state automata that supports nesting of states. Statecharts use Higraphs to represent nesting.
These states are sometimes called meta-states, or simply blobs. Hyperedges denote transitions, and
they may cross nesting boundaries. In addition, it supports orthogonal components, which provide
a form of concurrency. A state contains zero or more orthogonal components, each of which has a
Statechart. One can think of orthogonal components as concurrent processes within a state, which
communicate by broadcasting. The meaning of a Statechart is given by an equivalent ��at� state
atomaton, i.e. a state-transition system with no nesting, hyperedges or orthogonal components.

Statecharts naturally model a form of mode-based variable structure. A mode would simply be
a meta-state containing some sub-Statechart. Transitions between these meta-states would represent
change of mode. An important aspect is that since there are no restrictions on the source and target
of hyperedges, these transitions can occur from any level of nesting to any other level. This allows to
model mode-changes which depend not only on events but on substates as well.

There are many variants of this formalism, which di�er on the semantics. The main two variants are
STATEMATE Statecharts [13] and Rhapsody Statecharts [12]. It is worth noticing that the Rhapsody
Statecharts are considered the �executable core� of the UML, and therefore are closely related to
Object-Oriented Programming. More concretely, a Rhapsody system consists (at runtime) of a set
of objects whose behaviour is described by a Statechart, where methods are represented by state
transitions. Communication occurs by sending an event to an object. The event is placed in a queue
for the object, and when processed, the event is broadcast within the object's Statechart. Each object
can therefore be considered a concurrent process, in a manner similar to Actors (see [2, 3].)

The semantics of Statecharts have been given in the form of an algorithm. This is unfortunate
since it is di�cult to use some common techniques to reason about them. There have been some
formalizations of these semantics (see [28]) but unfortunately these turn out to be non-compositional.
Certain authors have obtained compositionality but at the cost of restricting some features of the full
formalism (see [17, 18, 35]).

4.2. DEVS. DEVS [36] is not a formalism intended to model variable structure system, but to model
timed, reactive, discrete event systems with a piecewise-constant state space. It is a formalism that
enjoys considerable popularity in the Modelling and Simulation community, due to many of its attrac-
tive features, mainly, its support for modular development, its potential for parallelization and the
existence of e�cient simulation algorithms. Here we describe the so-called Classic DEVS variant in
detail and present our compositionality result.

4.2.1. De�nition of DEVS. In the DEVS formalism, systems or models are described as a collection
of one or more components. There are two types of components: atomic (or behavioural) components
and coupled (or structural) components. An atomic component de�nes a simple system that has a
state, accepts input, produces output, and whose behaviour depends on external stimuli, the state,
and the time the system spends on a state. A coupled component is basically a network of components
(atomic or coupled,) which communicate through unidirectional asynchronous channels (possibly with
multicasting.) A component may have ports, which play the role of channel connectors. We �rst
introduce these notions without explicit reference to ports.
De�nition 4.1. An atomic DEVS component A is a tuple (X, Y, S, s0, δ

ext, δint, τ, λ) where X is a set
of input values, Y is a set of output values, S is a set of states, s0 ∈ S is the initial state, δint : S → S is
the internal transition function, τ : S → R+

0 is the time advance, λ : S → Y ∪{⊥} is the output function,
10

and δext : Q×X → S is the external transition function, where Q
def
= {(s, e) : s ∈ S ∧ 0 ≤ e ≤ τ(s)} is

the total state space.
Given such an atomic component A, de�ne inset(A)

def
= X, outset(A)

def
= Y , states(A)

def
= S and

initial(A)
def
= s0.

Informally, an atomic DEVS works as follows: at any moment in time, the system is in some state
s ∈ S. The system remains in this state for an interval of time τ(s), if no external input is received.
At this time, the system will produce output λ(s) (an output of ⊥ represents no output.) Then the
system will jump to the state δint(s), and continue in the same way. However if external input is
received at some time tinp between the time ts when the system entered state s and ts + τ(s) then the
system will jump to state δext((s, e), x) where e = tinp− ts is the time elapsed since the last transition,
and x ∈ X is the value of the input. In this case, no output is produced. Output is produced only
when an internal transition takes place. If there is a con�ict (i.e. tinp = ts + τ(s)) then the external
transition takes precedence over the internal transition.

Note that there are no terminal states, and that the system is reactive, in the sense that whenever
there is input the system will perform a transtion, even if it means ignoring its input. Also note that
there future state is fully determined by the current state, the time spent in the state, and the input
if any.
De�nition 4.2. A coupled DEVS component B is a tuple (X,Y, N, C, infl, Z, sel) where X is a set of
input values, Y is a set of output values, N is a set of subcomponent names including a special name
�self�, C is a set of subcomponents (atomic or coupled) indexed by N such that B /∈ C, infl : N → 2N

is the in�uencer function, sel : 2N → N is the select function, and Z is a set of transfer functions,
namely

Z ⊆ {Zi,j : Yi → Xj |i, j ∈ N and i ∈ infl(j)}
∪ {Zself,k : X → Xk|self ∈ infl(k)}
∪ {Zk,self : Yk → Y |k ∈ infl(self)}

where for each i ∈ N , Xi and Yi are respectively the input and output sets of subcomponent Ci ∈ C.
Given such a coupled component B, de�ne inset(B)

def
= X, outset(B)

def
= Y , names(B)

def
= N , and

parts(B)
def
= C.

In the previous de�nition, a coupled component is seen as a network of components C, connected
through �channels�, speci�ed by the in�uencer function infl and the family of transfer functions Z.
For a component named n, infl(n) is the set of components whose output is an input of n. In
this case, there is a function Zi,n : Yi → Xn for each in�uencer i ∈ infl(n) which speci�es how
the outputs of i are to be transformed into inputs of n. The overall coupled component may be an
in�uencer to some of its components. This is done by having the label self ∈ N , and the transfer
functions Zself,k. This represents the fact that input to the overall component is transmitted to some
subcomponents. Similarly, some subcomponents may be in�uencers of the overall component. The
corresponding transfer function is given by Zk,self . Notice that a given component may be in�uencer
of more than one component.

Informally a coupled component works as follows. We think of the component as the parallel
composition of the subcomponents. This is, the subcomponents run concurrently and independently.
When a subcomponent generates output, this is communicated asynchronously to all its in�uencees
(applying the appropriate transfer functions.) This includes the overall component: if it receives
external input, it is transmitted to the subcomponents k for which self ∈ infl(k). Similarly, if k ∈
infl(self) for some subcomponent k, and k generates output, then the overall coupled component
generates output. The subcomponents however are not trully concurrent in the sense that if at some
time t there are two or more subcomponents which are supposed to perform a transition, only one of
them executes it. The subcomponent which executes the transition is chosen by the selection function
sel. If imm ⊆ N is the subset of con�icting components, then the component chosen is sel(imm).
The set imm is called the imminent set.

11

There are a few other restrictions on DEVS components. First, we will consider only DEVS com-
ponents whose time-advance is not zero, and coupled components (X, Y,N,C, infl, Z, sel) such that
there is no m ∈ N for which m ∈ infl(m), this is, no self loops are allowed.

Every DEVS system corresponds to a system in the hierarchy outlined in section 2.5. See [36] for
details.

In what follows, let ADEV S denote the set of all atomic DEVS components, CDEV S the set
of all coupled components and DEV S

def
= ADEV S ∪ CDEV S. We use R+

0 = {x ∈ R|x ≥ 0} and
R+

0,∞ = R+
0 ∪ {∞}.

4.2.2. Operational Semantics. The formal meaning of DEVS components can be given in terms of the
hierarchy of system speci�cations described in section 2.5 (see [36] for details,) but such semantics are
far detached from an operational view of a system's behaviour. One of our main contributions at this
point is an operational semantics for DEVS in the form of a Labelled Transition System (or LTS for
short.) A labelled transition system over a set S of states and a set A of labels is given by a tuple
(S, A,→) where →⊆ S × A × S is a transition relation. We write s

a−→ s′ for (s, a, s′) ∈→ to mean
that there is a transition from state s to state s′ by a. By providing an inductively de�ned operational
semantics in the form of an LTS, we are able to apply well-known techniques to reason about DEVS,
and have a formal description which is more closely related to the way DEVS systems are supposed to
execute.

Our de�nition of the operational semantics consists of two parts: single transitions and executions.
In single transition semantics, the meaning of a DEVS component is given by an LTS where the labels
are individual events (internal or external), and transitions represent what could happen (as opposed
to representing what would happen.) The execution semantics de�nes how a DEVS component will
behave given an input segment, i.e. a sequence of input events. The execution semantics is de�ned in
terms of the single transitions.

The labels of the LTS representing a DEVS are of two forms: ext(t, x) for external events occurring
at time t ∈ R0 providing an input x ∈ X, and int(t, y) for internal events occurring at time t ∈ R0

generating an output y ∈ Y . We denote Evts(A) the set of possible events of component A.
The nodes of the LTS are con�gurations. A con�guration of a DEVS component is a pair of the form

(s, t) where s is the state of the component and t the time of the last transition. We denote Configs(D)
for the set of all possible con�gurations of D. For a coupled DEVS component D with C = {Cn : n ∈
N} its set of subcomponents with names N , the state is a mapping ρD : N → SubConfigs(D), where
SubConfigs(D)

def
= ∪K∈CConfigs(K), and ρC(n) ∈ Configs(Cn). The state of a coupled component

can be seen as a tree, with the same structure as that of the component.
De�nition 4.3. The operational meaning of an atomic component A = (X, Y, S, s0, δ

ext, δint, τ, λ)
is given by an LTS (Configs(A), Evts(A),→A) where →A⊆ Configs(A) × Evts(A) × Configs(A)
satis�es the following for all A-con�gurations (s, tl):

(i) Internal transitions (AIT):
(s, tl)

int(t,λ(s))−−−−−−→A (δint(s), t) if t = tl + τ(s)
(ii) External transitions (AET):

(s, tl)
ext(t,x)−−−−→A (δext((s, t− tl), x), t) if t ≤ tl + τ(s)

To de�ne the meaning of coupled components we need to take care of choosing the component that
has precedence.
De�nition 4.4. The imminent set of a coupled component B at a coupled state ρ is the set of
components whose next internal event is scheduled sooner than any other component:

immB(ρ)
def
= {n ∈ N : ∀ρ′ ∈ Configs(B).ρ(n)

int(t,y)−−−−→n ρ′(n) ⇒

(∀ρ′′ ∈ Configs(B).∀m ∈ N.ρ(m)
int(t′,y′)−−−−−→m ρ′′(m) ⇒ t ≤ t′)}

With this de�nition we can now de�ne the small transitions for a coupled component.
12

De�nition 4.5. Let B = (X, Y,N,C, infl, Z, sel) be a coupled component. The operational semantics
of B is given by an LTS (Configs(B), Evts(B),→B) where→B⊆ Configs(B)×Evts(B)×Configs(B)

satis�es the following for all B-con�gurations (ρ, tl), where ρ(n) = (sn, tn), ρ′ = (s′n, t′n) and i∗
def
=

sel(immB(ρ)):

(1) Internal transition (CIT): (ρ, tl)
int(t,y)−−−−→B (ρ′, t) if

(a) ρ(i∗)
int(t,y∗)−−−−−→i∗ ρ′(i∗),

(b) for each n ∈ N such that i∗ ∈ infl(n) and n 6= self, ρ(n)
ext(t,xn)−−−−−→n ρ′(n) where xn =

Zi∗,n(y∗),
(c) for all n ∈ N such that n 6= i∗ and i∗ 6∈ infl(n), ρ(n) = ρ′(n),
(d) and y = Zi∗,self(y∗) if i∗ ∈ infl(self) or y =⊥ if i∗ 6∈ infl(self)

(2) External transition (CET): (ρ, tl)
ext(t,x)−−−−→B (ρ′, t) if

(a) for each n ∈ N such that self ∈ infl(n) and xn 6=⊥, ρ(n)
ext(t,xn)−−−−−→n ρ′(n), where xn

def
=

Zself,n(x),
(b) and for all n ∈ N such that self /∈ infl(n) or xn =⊥, ρ(n) = ρ′(n), where xn

def
= Zself,n(x)

The execution semantics describes the behaviour of a component over time in terms of single tran-
sitions. In particular it describes the behaviour with respect to an input-segment, i.e. a sequence of
external events.
De�nition 4.6. A partial execution of a DEVS component M is a (possibly in�nite) sequence

−→γ = 〈γ1, γ2, . . . 〉
where for each i ≥ 1, γi = ((si, ti), αi, (s′i, t

′
i)) such that each αi ∈ Evts(M) and (si, ti), (s′i, t

′
i) ∈

Configs(M) satisfying:
(i) (si, ti)

αi−→M (s′i, t
′
i)

(ii) for all i ≥ 1, if γi = ((si, ti), αi, (s′i, t
′
i)) and γi+1 = ((si+1, ti+1), αi+1, (s′i+1, t

′
i+1)) then

(s′i, t
′
i) = (si+1, ti+1)

(iii) for all i, j ≥ 1, if i ≤ j then time(αi) ≤ time(αj),
(iv) and there is no k ≥ 1 such that time(αk) = time(αk+1) and type(αk) = int and type(αk+1) =

ext.
We often write a partial execution −→γ as

−→γ = (s1, t1)
α1−→D (s2, t2)

α2−→D . . .
αk−1−−−→D (sk, tk) αk−−→D . . .

Denote start(−→γ)
def
= (s1, t1) the starting con�guration, and

partials(M, (s, t))
def
= {−→γ |−→γ is a partial execution of M such that start(−→γ) = (s, t)}

We call a DEVS state s a sink if τ(s) = ∞ and δext((s, e), x) = s for all e ≤ τ(s) and x ∈ X.
A total execution is a partial execution −→γ which is either in�nite or �nite and whose last con�gu-

ration is (sn, tn) such that sn is a sink.

executions(M, (s, t))
def
= {−→γ |−→γ is a total execution of M

such that start(−→γ) = (s, t)}
The event trace −→α of an execution is it's sequence of events α1α2 . . . αk

trace(−→γ)
def
=

〈
αi|(si, ti)

αi−→M (s′i, t
′
i) ∈ −→γ

〉

and

traces(M, (s, t))
def
= {−→α |−→α is an event trace of some−→γ ∈ partials(M, (s, t))}

13

A timed-ordered event sequence −→α is sequence of events 〈α1, α2, . . . 〉 such that for all i, j ≥ 1, i ≤ j
implies that time(αi) ≤ time(αj).

An input sequence is a timed-ordered sequence of external events. An output sequence is a timed-
ordered sequence of internal events αi such that value(αi) 6=⊥.

The input sequence projection −→α |in of an event trace −→α is the sequence of those events of −→α that are
external events, preserving the same order in which they appear in −→α . Similarly, the output sequence
projection −→α |out of −→α is its projection onto internal events whose output value is not ⊥.

An execution with respect to an input sequence −→α or run is an execution with event trace −→β such
that −→β |in = −→α . De�ne the set of all runs of M with input −→α as

run(M,−→α , init)
def
= {−→γ |−→γ ∈ executions(M, init) and trace(−→γ)|in = −→α }

4.2.3. Compositionality. As mentioned in section 2, compositionality is a fundamental property of a
formalism to support a modular approach to modelling, analysis and simulation. Our main contribution
at this point is the establishment of compositionality for the semantics provided above with respect to
strong bisimilarity. Here we reproduce the de�nition of strong bisimilarity [?, 20, 21]:
De�nition 4.7. Given an LTS (S, A,→), a simulation is a binary relation R ⊆ S × S such that if
(s1, s2) ∈ R then whenever s1

α−→ s′1 for any s′1 ∈ S and any α ∈ A, there is an s′2 ∈ S such that s2
α−→ s′2

and (s′1, s
′
2) ∈ R. We say that s1 is simulated by s2, written s1 ¹ s2 if there is a simulation R such

that (s1, s2) ∈ R. The relation ¹ is called similarity. A bisimulation is a binary relation R ⊆ S × S
such that R and R−1 are both simulations. We say that s1 is bisimilar to s2, written s1 ∼ s2 if there
is a bisimulation R such that (s1, s2) ∈ R. The relation ∼ is called bisimilarity.

Compositionality requires an equivalence relation to be preserved by all contexts. Hence, in order
to establish compositionality we need to de�ne what we mean by a context. We distinguish two related
notions of context: structural context, and state context. Informally a structural context C[η] is an
underde�ned coupled DEVS with a �hole� or placeholder η, which when replaced by an actual DEVS
component A, will yield a fully-de�ned DEVS, denoted C[η → A] or simply C[A]. A state context,
or partial state ρC [η] of a structural context C[η] is a mapping associating each subcomponent with a
con�guration (without associating the placeholder to a con�guration.) We de�ne an analogous notion
of replacing the placeholder of a state context ρC [η] by an actual fully-de�ned con�guration (s, t),
denoting it ρC [η → (s, t)]. We distinguish between two kinds of contexts: elementary, where the
placeholder is at depth 1, and arbitrary, where the place holder is at depth greater or equal to 1.

If A and B are two DEVS components, we write A ↓ (s, t) ∼ B ↓ (s′, t′) to mean that (s, t) ∼ (s′, t′)
in the LTS which is the disjoint union of the LTSs for A and B2

We establish the following (for proofs, see [30]), which ensures that bisimilarity preserves the immi-
nent sets.
Lemma 4.8. Let D = (X, Y, N, C, infl, Z, sel) be a coupled DEVS. If ρ1 and ρ2 are two D-states
such that there is a m0 ∈ N for which ρ1(m0) ∼ ρ2(m0) and for all m ∈ N such that m 6= m0,
ρ1(m) = ρ2(m), then immD(ρ1) = immD(ρ2).

We say that two DEVS components are mutually compatible if they have the same input and output
sets.

The following are the main results stating compositionality.
Theorem 4.9. Let A and B be any mutually compatible DEVS components, and let (sA, t) ∈ Configs(A)
and (sB , t) ∈ Configs(B) be any con�gurations. Given any elementary DEVS context C[η] such that
both A and B are compatible with C[η], and given any partial state ρC [η] of C[η], if A ↓ (sA, t) ∼ B ↓
(sB , t) then C[A] ↓ (ρC [η → (sA, t)], t′) ∼ C[B] ↓ (ρC [η → (sB , t)], t′) for any t′.
Corollary 4.10. Let A and B be any mutually compatible DEVS components, and let (sA, t) ∈
Configs(A) and (sB , t) ∈ Configs(B) be any con�gurations. Given any arbitrary DEVS context
C[η] such that both A and B are compatible with C[η], and given any partial state ρC [η] of C[η], if
A ↓ (sA, t) ∼ B ↓ (sB , t) then C[A] ↓ (ρC [η → (sA, t)], t′) ∼ C[B] ↓ (ρC [η → (sB , t)], t′) for any t′.
Conjecture 4.11. A ↓ (sA, tA) ∼ B ↓ (sB , tB) if and only if executions(A, (sA, tA)) = executions(A, (sA, tA))

2For full details see [30]
14

4.3. Devslang. Devslang is a language we have developed to describe DEVS systems which introduces
a limited form of modality speci�cally tailored to aid modelling in�nite-state systems.

A Devslang �program� consists of several �classes� of components. We have two types of components
for atomic and coupled models respectively. Each component class speci�es its input and output ports,
and in addition it may be parametrized.

Atomic components are given by a set of �mode de�nitions.� Each mode de�nition corresponds
to a family of states which share the same internal structure and behaviour. It can be thought of
as a function whose parameters represent the internal structure of the state (the variables,) and the
behaviour is given by specifying external and internal transitions, time-advance and output. External
transitions are speci�ed using a form of pattern-matching.

A coupled component consists of a set of component instantiations which create individual com-
ponents from their corresponding �class� by passing appropriate parameters. The coupled component
also speci�es the connections between component instances, and the selection function.

5. Sketch of the proposed formalism
In this section we present a general overview of the proposed formalism.

5.1. Motivation. Why do we need a new formalism to deal with variable-structure systems? The
main reasons are summarized here:

• We want to be able to model complex and large variable-structure systems easily.
• We want to take advantage of the features of Statecharts and DEVS. These two formalisms

not only address many issues of complex dynamic systems, but also enjoy a large user base.
• We want to overcome the limitations, problems and complexities of existing approaches, in

particular we want to deal with time and (re)initialization of components.
• We want to be able to simulate as well as reason about such systems. Most existing approaches

rarely provide the means to do both.
This means we need a formalism expressive enough to address these issues, yet simple enough to use, to
analyze (manually or automatically, e.g. that supports model-checking techniques,) to run e�ciently,
and to support code generation.

5.2. Informal presentation. As mentioned before, �structure� can be described by some graphical
structure such as plain graphs, hypergraphs or higraphs. The particular graphical structure used
depends on the aspects of the systems which need to be represented. For instance, if the system
consists of several processes or entities connected by channels, and these channels are unidirectional
and can be shared between more than two processes, then the appropriate representation of this
structure would be a directed hypergraph. Systems which are composite, are better represented by
some variant of higraphs or bigraphs.

Behaviour of certain systems, in particular discrete-time and discrete-event systems, can also be
described in a graphical way. This has been evident since some of the earliest formal descriptions of
system behaviour: formalisms such as �nite-state automata, Petri Nets and Statecharts are inherently
graphical in nature. These however, provide only a very limited representation or none of the purely
structural aspects of a system in a graphical fashion.

The formalism that we propose presents both structure and behaviour of (discrete) systems in the
same graphical way.

At the core of the formalism we �nd a notion of hierarchical graph (higraph for short,) which must
capture two central aspects of structure: connectivity between components, and nesting of components.

Higraphs have been widely used in existing formalisms to represent structure and behaviour, but, to
our knowledge, existing formalisms allow the description of only one of these. For instance, Statecharts
describe only the behavioural aspects (and a few, limited structural aspects,) while a graphical notation
of the Ambient calculus describes on its own only the structure. In the latter case, the behaviour of the
system is given by a state transition system which de�nes the operational semantics of the language.

A common approach to describe the operational semantics of a language is to give a state transition
system. This however, is orthogonal to (separated from) the language itself. In most cases, such state

15

transition system could be seen as an �executive,� (in a way similar to DS-DEVS) which directs the
execution of a system. In the case of dynamic-structure systems, this �executive� chooses between the
possible structures at each step in time. But state transition systems can be viewed in a graphical way
on their own.

Another possible graphical description which combines both approaches is to give �rst the nesting
and connectivity of a system, and then the behavioural aspects. In this approach, nesting, as usual, is
given by a tree. And behaviour is given in the leaves of this tree only. A typical example of this would
be a variant of the DEVS formalism.

The formalism that we propose is based on the notion that behaviour might be given, graphically,
not only at the leaves of the nesting tree, but at any level, similar to Statecharts, and unlike State-
charts, connectivity of components is described explicitly. This means that we could visualize this as
a crossbreed between Statecharts and purely structural Higraphs. So nodes (blobs) and (hyper)edges
have di�erent meaning in di�erent nodes. In some, nodes represent states and edges represent tran-
sitions, while in others, nodes represent components and edges represent connections (channels of
communication.)

The following are the most signi�cant features besides the �mix� of structure and behaviour in the
higraph.

• Structural blobs have typed-interfaces: an interface is a set of ports, each of which has an
associated type. A component with an input port of type X can receive as input any signal
whose type is a subtype of X.

• Communication is performed through message-passing on unidirectional channels.
• There are two types of transitions: external and internal. External transitions have an input

and/or output associated. Internal, transitions have a timeout associated. External transitions
take place due to interaction with other concurrent components at the same level of nesting.
Internal transitions take place autonomously when the time has expired.

• A large family of states can be described by a �mode,� which can be seen as a parametrized
set. The mode is thus a class of states, which when the system is running, will be instantiated
to a particular state. The �behavioural nodes� of the graph represent such modes, rather than
speci�c states.

5.3. Di�erences with Statecharts and DEVS. The main di�erence with Statecharts is the treat-
ment of concurrency and communication. In Statecharts, all communication is by global broadcasting.
In our formalism, concurrent components communicate through speci�c channels.

Another signi�cant di�erence is the treatment of initialization. In Statecharts, each composite state
has a designated default state. In our formalism, the speci�cation of such states is given separately.

The main di�erence with DEVS is that the behavioural components are not exclusively the leaves
of the nesting tree.

5.4. Generalized compositionality and generalized contexts. Compositionality is linked to ab-
straction: if a semantics is compositional, all systems deemed to be equivalent are the same from the
point of view af any observer, and therefore any environment or context can ignore internal details of
individual systems.

Compositionality can be di�cult to achieve, and it depends on the equivalence and the semantic
properties considered. Furthermore, in some cases it might be too strong of a property. For example,
as mentioned in section 2.5.5, we know from Data�ow Theory that the equivalence of input/output
relation is not compositional for process networks with indeterminate primitives (see [25].) However, if
we restrict those systems to determinate networks, compositionality is achieved (see [19].) Similarly, in
the π-calculus it is known that the so-called ground bisimilarity is not a congruence, but if we restrict
the systems to be pure generators (that is, processes that do not perform input,) then compositionality
is recovered.

Thus far, we have cited the standard approach to compositionality, but is this the only link to
abstraction? In this thesis we propose looking at the role of compositionality at di�erent levels. To do
this, we propose a generalization of the concept of context.

16

The traditional notion of context is that of a network (a multicomponent system, i.e. a coupling
speci�cation,) where at least one of the components is a �placeholder.� The placeholder only speci�es
minimal structural requirements, namely, having a speci�c interface. Based on this, the notion of
substituting the placeholder by a system (or a state) is de�ned.

Our generalization of contexts allows the placeholder to impose additional requirements, even be-
havioural requirements on the systems that might be �plugged-in.�

We denote a speci�cation A at the observation frame as Aobs, at the I/O relation frame as Aior, at
the I/O function frame as Aiof , at the state transition level as Ast, and at the coupled level as Anet.
Notice that the levels form a partial order. In Ziegler's hierarchy, it actually is a total order where
obs < ior < iof < st < net, but we could consider alternative hierarchies, for instance one where st
and net are not comparable.

Then a context C[Ax], called an Ax-context, is an element of netctxt[x], the set of all networks
which include a subcomponent Ax for some x 6= net (and usually x < net), that has the role of a
�placeholder.� Then the notion of substitability is de�ned as long as we are substituting for something
at least as concrete as the placeholder: C[Ax → By] denotes replacing Ax by By in C, but this can be
de�ned only if x ≤ y and By can replace Ax. What is the meaning of �can replace?� It means that By

must satisfy at least the requirements of Ax. For example, Bst can replace Aior if the input/output
relation generated by Bst is a superset of that given by Aior. In general, if x 6= y, such notion of
replaceability requires an abstraction morphism. If x = y, a morphism at that level (x) su�ces.

This notion of context could be generalized further to deal with multiple placeholders.
Given such a general notion of context, we obtain a corresponding notion of compositionality. For

instance, we could say that an equivalence R is Ax-compositional, where x is an abstraction level, if
it is preserved by all Ax-contexts. Hence an Ax-compositional equivalence would relate only systems
that satisfy the speci�cation Ax.

It is in light of such notions that we propose to study the compositionality properties of the proposed
formalism.

6. Thesis objectives and Contributions
As mentioned in the introduction, the main goal of this thesis is the development of a framework

for modelling, simulating and analyzing systems with variable structure, and the study of existing
formalisms for this purpose. The formalisms studied suggest common patterns used to model this kind
of system. The proposed framework must satisfy the following criteria:

(1) It must be well-founded: there must be a formal semantics suitable to reason about systems.
(2) It must be expressive: it must capture the most common patterns of mobility and variable

structure with relative ease.
(3) It must be practical: there must be elements in the framework that allow it to deal with real

problems. In particular it must be �time-aware.� Furthermore, there must be tool support for
modelling and simulation, and possibly for veri�cation.

In order to satisfy these criteria, we must investigate both the theoretical aspects of variable-structure
modelling, and the implementation of modelling and simulation tools supporting the approach.

6.1. Theoretical aspects. The study of the theoretical aspects encompasses several key issues.
• Operational semantics: we look into both the traditional approach to operational semantics

(SOS) based on terms, as well as a graph-grammar-based approach, and the relation between
the two approaches, in particular for DEVS, Statecharts, and the new formalism.

• Behavioural equivalence: we study interesting forms of behavioural equivalence, a notion fun-
damental to the understanding of the dynamics of a system. In the context of DEVS, we have
proposed several variants of bisimulation, whose properties should be further explored.

• Compositionality: in order to support modular and incremental development, the syntax and
the semantics of a language should be compositional. We have recently established the compo-
sitionality of strong bisimulation for DEVS systems. Compositionality for Statecharts has been
established for certain subsets of the formalism. We seek a formalism where compositionality
is achieved without too many restrictions on the syntax.

17

• Generalized contexts: in order to support generalized compositionality we need to develop the
notion of generalized context as outlined in section 5.4. The properties of such contexts and
their role in the hierarchy of system speci�cation must be studied.

• Fully-abstract denotational semantics: to support reasoning at a more abstract level, a deno-
tational semantics is desirable, but such semantics is useful only if is matches the operational
semantics. Some preliminary investigation suggests that results from data�ow theory impose
certain restrictions on the possible domains for such semantics for DEVS. These would be
carried to any formalism based on DEVS.

• Behaviour-preserving formalism translations: to support a multi-formalism approach to mod-
elling and simulation, we need translation mechanism which preserve the semantics of the
formalisms. The techniques for establishing such results for inductively de�ned formalisms
(both in syntax and semantics) are well understood. Such techniques, however, have not been
fully explored in the context of meta-modelling and graph-grammars, where the sets of interest
are not inductively de�ned. We need to investigate further the required techniques.

• Component reinitialization: a well-known problem in hybrid systems is that of reinitialization:
after a structural (or mode) transition, what should be the state of the system? In the resulting
mode, the previous state might be illegal, and a new state must be chosen. The formalisms
discussed in section 3 brush this issue under the carpet, by �xing the target state (e.g. having a
�xed default initial state.) This approach is however very in�exible in practice. Modellers wish
to leave initialization of components separate from the speci�cation of the component. The
question then is to �nd the appropriate syntactic and semantic mechanisms to allow �exible
initialization of (sub)components.

6.2. Tool Support. The empirical component of the thesis consists of the development of modelling,
simulation and possibly analysis tools for the proposed formalism.

This implementation will be done by means of meta-modelling and graph-grammars. Metamodelling
provides us with a simple approach to describe syntax of graphical formalisms, and graph-grammars
gives us a way to both describe transformations between models and to specify operational semantics.
By specifying a grammar in such a way we obtain a prototype simulator by means of a graph-grammar
engine. We will use the tool AToM3 (see [16]) which allows us to specify both meta-models and
graph-grammars.

6.3. Contributions. Here we make explicit the contributions we have made so far, the proposed
general contributions, and some additional topics that can further investigated.

6.3.1. Contributions made so far. At this point we have investigated and developed the following:
(1) An operational semantics for DEVS which is compositional with respect to strong bisimula-

tion and independent of speci�c simulation algorithms. (See [30]. Soon to be submitted for
publication.)

(2) A textual form of DEVS, called Devslang, which introduces a limited form of modality specif-
ically tailored to aid modelling in�nite-state systems. This includes an explicit operational se-
mantics. We are currently working on its translation into DEVS, and on an interpreter/simulator.

(3) A graphical DEVS modelling environment, and a graph-grammar based code generator from
DEVS models to produce model-speci�c simulators (see [29].)

(4) A graph-grammar-based operational semantics for Causal Block Diagrams (see [31].)

6.3.2. General core contributions. There are several contributions proposed in this thesis:
• A full speci�cation of a new formalism to model reactive systems in a compositional manner

which attempts to unify two di�erent perspectives on variable structure, explicitly deal with
time and (re)initialization of components. This will encompass:
� A basic theory which addresses general properties of these systems, in particular compo-

sitionality and determinacy, and
� Support tools for modelling and simulation

• The establishment of the expressive power of DEVS with respect to Statecharts.
18

• Graph-grammar semantics for DEVS, Statecharts and the new formalism.

References
[1] Martin Abadi and Luca Cardelli. A Theory of Objects. Springer-Verlag, 1996.
[2] Gul A. Agha. Actors: A Model of Concurrent Computation in Distributed Systems. MIT Press, 1986.
[3] Gul A. Agha and Carl Hewitt. Concurrent programming using Actors. In Object-Oriented Concurrent Programming.

MIT Press, 1987.
[4] Paul C. Attie and Nancy A. Lynch. Dynamic Input/Output Automata: a formal model for dynamic systems.

Technical Report MIT-LCS-TR-902, MIT Laboratory for Computer Science, July 2003.
[5] Michael Barr and Charles Wells. Category Theory for Computing Science. Prentice-Hall, 1990.
[6] F. Barros, M. Mendes, and B. Zeigler. Variable DEVS � variable structure modeling formalism: An adaptive

computer architecture application. 1994.
[7] Luca Cardelli and Andrew D. Gordon. Mobile ambients. In Foundations of Software Science and Computation

Structures: First International Conference, FOSSACS '98. Springer-Verlag, 1998.
[8] A. Corradini, U. Montanari, F. Rossi, H. Ehrig, R. Heckel, and M. Löwe. Algebraic approaches to graph transfor-

mation I: Basic concepts and double pushout approach. In G. Rozenberg, editor, Handbook of Graph Grammars
and Computing by Graph transformation, Volume 1: Foundations. World Scienti�c, 1997.

[9] R. Frances, A. Evans, K. Lano, and B. Rumpe. The UML as a formal modeling notation. In Proceedings of the
OOPSLA'97 Workshop on Object-Oriented Behavioral Semantics, 1997.

[10] David Harel. Statecharts: A visual formalism for complex systems. Sci. Comput. Programming, 8, 1987.
[11] David Harel. On visual formalisms. Communications of the ACM, 31(5), 1988.
[12] David Harel and Hillel Kugler. The Rhapsody semantics of Statecharts (or, on the executable core of the UML). In

Integration of Software Speci�cation Techniques for Applications in Engineering, volume 3147 of LNCS. Springer-
Verlag, 2004.

[13] David Harel and Amnon Naamad. The STATEMATE semantics of Statecharts. ACM Transactions on Software
Engineering and Methodology, 5(4), 1996.

[14] Michael Huth and Mark Ryan. Logic in Computer Science: Modelling and reasoning about systems. Cambridge
University Press, 1999.

[15] Dexter Kozen. Results on the propositional µ-calculus. In ICALP '82, 1982.
[16] Juan De Lara and Hans Vangheluwe. AToM3: A tool for multi-formalism and meta-modelling. In European Joint

Conference on Theory And Practice of Software (ETAPS), Fundamental Approaches to Software Engineering
(FASE), volume 2306 of LNCS. Springer-Verlag, 2002.

[17] Gerald Lüttgen and Michael Mendler. The intuitionism behind Statecharts steps. ACM Transactions on Computa-
tional Logic, 3(1), 2002.

[18] Gerald Lüttgen, Michael von der Beeck, and Rance Cleaveland. A compositional approach to Statecharts semantics.
In Proceedings of the 8th ACM SIGSOFT international symposium on Foundations of software engineering. ACM
Press, 2000.

[19] Nancy A. Lynch and Eugene W. Stark. A proof of the kahn principle for input/output automata. Information and
Computation, 1989.

[20] Robin Milner. A Calculus of Communicating Systems. Springer-Verlag, 1980.
[21] Robin Milner. Communication and Concurrency. Prentice Hall, 1989.
[22] Robin Milner. Bigraphical Reactive Systems: basic theory. Technical Report UCAM-CL-TR-523, University of

Cambridge, Computer Laboratory, September 2001.
[23] Robin Milner, Joachim Parrow, and David Walker. A calculus of mobile processes, parts I and II. Reports ECS-

LFCS-89-85 and 86, Computer Science Dept., University of Edinburgh, March 1989.
[24] Pieter J. Mosterman and Hans Vangheluwe. Computer Automated Multi-Paradigm Modeling. ACM Transactions

on Modeling and Computer Simulation, 12(4), 2002.
[25] Prakash Panangaden. The expressive power of indeterminate primitives in asynchronous computation. In Proceedings

of FSTTCS, 1995.
[26] David Park. Concurrency and automata on in�nite sequences. Theoretical Computer Science, 1981.
[27] Gordon Plotkin. A structural approach to operational semantics. Lecture Notes DAIMI FN-19, Dept. of Computer

Science, Aarhus University, 1981.
[28] Amir Pnueli and Michal Shalev. What is in a step: On the semantics of Statecharts. In Theoretical Aspects of

Computer Software, volume 526 of LNCS. Springer-Verlag, 1991.
[29] Ernesto Posse. Generating DEVS modelling and simulation environments. In Summer Computer Simulation Con-

ference (SCSC'03), Student Workshop, 2003.
[30] Ernesto Posse. A compositional operational semantics for DEVS components. Technical report, School of Computer

Science, McGill University, 2004.
[31] Ernesto Posse, Juan De Lara, and Hand Vangheluwe. Processing causal block diagrams with graph-grammars in

AToM3. In European Joint Conference on Theory and Practice of Software (ETAPS), Workshop on Applied Graph
Transformation (AGT), 2002.

19

[32] Thomas A. Henzinger Pei-Hsin Ho Rajeev Alur, Costas Courcoubetis. Hybrid automata: An algorithmic approach
to the speci�cation and veri�cation of hybrid systems. volume 736 of LNCS. Springer-Verlang, 1993.

[33] James Rumbaugh, Ivar Jacobson, and Grady Booch. The Uni�ed Modeling Language Reference Manual. Addison-
Wesley, 1999.

[34] Davide Sangiorgi. Expressing Mobility in Process Algebras: First-Order and Higher-Order Paradigms. Ph.D. thesis,
Department of Computer Science, University of Edinburgh, 1992.

[35] Andrew C. Uselton and Scott A. Smolka. A compositional semantics for Statecharts using labeled transition systems.
In Proceedings of CONCUR '94 � Fifth International Conference on Concurrency Theory, LNCS. Springer-Verlag,
1994.

[36] Bernard P. Zeigler, Herbert Praehofer, and Tag Gon Kim. Theory of Modeling and Simulation. Academic Press,
second edition, 2000.

20

Appendix: Plan
Here we outline the proposed time-table. We plan to divide the development in several phases as

follows:
(1) Complete work in progress
(2) Fundamentals for the new framework
(3) Development of the formalism
(4) Modelling tools
(5) Analysis
(6) Simulation

In the �rst phase we plan to complete work in progress with respect to the study of properties of DEVS
models, the development of Devslang and the translation from Statecharts into Devslang, including
its proof of correctness.

In the second phase, we plan on focusing on some fundamental aspects required to develop the
semantics of the proposed formalism. In particular, we will focus on the relations between Graph-
Grammars and inductively-de�ned LTSs. Furthermore we will study in more depth the role of gener-
alized contexts in the hierarchy of system speci�cations, and their properties.

In the third phase we will focus on developing the formalism itself.
In the fourth we will focus on modelling tools for the formalism.
In the �fth we will focus on the analysis component, more speci�cally on the establishment of

compositionality and other basic properties of interest.
In the sixth we will focus on simulation.
Finally we will allocate some time for additional topics to pursue.
Below there is a table with the estimated times (in weeks) for these phases. The estimated times

are based on previously done work and work in progress.
• Pending issues:

Topic Subtopics Estimated time

DEVS properties
Closure under coupling
Determinacy
Agreement of bisimilarity
and execution equivalence.

4

Devslang
Semantics of pattern-matching
Mapping into DEVS
Interpreter

4 - 8

Statecharts-to-Devslang

Statechart semantics
Translation
Proof (simulation)
Proof (FA)
Implementation

4 - 8

Total 10 - 20 (2.5 - 5 months)
• General issues:

Topic Subtopics Estimated time
Graph-Grammars/LTS relation 2 - 4

Generalized contexts 4
Total 6 - 6 (1.5 - 2 months)

• New formalism:
� Basics:

Syntax Semantics Total
Notion of Structure 1 - 2 2 - 4 3 - 6
Notion of change 1 - 2 2 - 4 3 - 6
(Re)initialization 1 - 2 2 - 4 3 - 6

Time 1 - 2 2 - 4 3 - 6
Total 12 - 24 (3 - 6 months)

� Modelling:
Topic Estimated time

Textual syntax (see basics)
Graphical syntax (see basics)

Tool 4 - 8
Total 4 - 6 (1 - 2 months)

� Analysis (Properties):
Topic Subtopics Estimated time
Compositionality 4 - 8
Determinacy 4 - 8

Relations (1st prior)
to Statecharts
to DEVS
to HSS

2 - 4
2 - 4
2 - 4

Relations (2nd prior)

to DS-DEVS
to π, ambients
to GG
to BRS
to Data�ow

2 - 4
2 - 4
2 - 4
2 - 4
2 - 4

(opt)Modal logic 4
(opt)Other properties 4 - 8
Total (1st prior) 14 - 28 (3.5 - 7 months)
Total (2nd prior) 32 - 60 (8 - 15 months)

� Simulation (Algorithms):
Topic Estimated time

Abstract algorithm 4
Implementation 4

(opt)Model checking 4
Total 8 - 12 (2 - 3 months)

• Total estimated time: 54 - 92 weeks (13.5 - 23 months)

