Classes as the basic component

e (Classes have a dual role:

— They are software modules
— They are data types

e Methods define the behaviour of objects of a class.

D McGill

Program Structure

public class MyProgram {
public static void main(Stringl[] args)

{
//. ..
¥
}

public class A {

//...
¥

public class B {

//...
}

D McGill

Method invocation: control flow

public class MyProgram {
public static void main(String[] args)
{
A x = new AQ);
x.m() ;
b

by
public class A {

void m()

{
B x = new B();
x.pO);

+

b
public class B {

void p()
{
System.out.println(‘“Do something’);

}

by
D McGill

Method invocation: control flow

MyProgram A B

. " 0
main — S b ,
: : v : :

M : .]
Xm() R R -=d Xp() [- :
ARk bk Ak b 4 :

v S Y S N

D McGill

Method invocation: control flow:
“this”

public class MyProgram {
public static void main(Stringl[] args)
{
A x = new AQ);
x.m() ;
by

b
public class A {

void m()
{

r(); // Equivalent to this.r();
}

void r()

1
System.out.println("Do something");
}
}

D McGill

Method invocation: control flow

MyProgram A
main m
1 :- ------- -> :
1 : ‘I(
M :
Xx.m() --}----- - r0 =------
A (<1 L
v] .y P
r '
1 <-- - :
Voo j

D McGill

Method invocation: parameter
passing

e A frame is a space in memory which stores a set of
variables. It can be viewed as a table containing the
memory locations for each variable in the set.

e Suppose that a method is declared as follows:

type method (typel paraml, type2 param2,
., typen paramn)
{

statements ;

e A method call of the form
variable.method (argl, arg2, ..., argn)

.where argl, arg2, ..., argn are expressions with type
matching the types as appear in the method declaration, is
executed by

D McGill

First: evaluating each of the arguments arg?, arg2, ...
argn from left to right,

Second: creating a frame, reserving space for all the
parameters of the method, and local variables declared
in the body of the method. The frame also contains a
pointer to the object refered to by the variable.

Third: in that frame, perform the assignments paraml =
argl; param2 = arg?2; ...; paramn = argn;

Fourth: “‘jumping’ to the body of the method and exe-
cuting the statements in order. The calling method is
suspended while the called method is executed.

Fifth: when the end of the method is reached, or a
return statement is reached, stop the method, the
frame is discarded, and return to the calling method.
The calling method is then resumed in the instruction
immediatly after the method call.

D McGill

Method invocation: Example
public class Stereo {

double volume;

void set_volume(double v)

{

volume = v;
+
double get_volume()
{

return volume;
+

¥
public class SoundSystem {

public static void main(Stringl[] args)

{
Stereo mystereo = new Stereo();
double x, factor = 2;
System.out.println(‘“Testing...”’);
x = 4.0;
mystereo.set_volume (x*factor) ;
System.out.println(mystereo.get_volume());

by

D McGill

Mehtod invocation: Memory structure

Before calling mystereo.set_volume(x*factor)

main frame Stereo
mystereo
volume
X 4.0
factor 2

First its arguments (x*factor) are evaluated:
Evaluating X*factor in the main frame results in 8.0

A frame for set_volume is created, and
the argument is assigned to the parameter: v = 8.0;

main frame Stereo
mystereo
volume
X 4.0
factor 2

set_volume frame

\Y; 8.0
this
D McGill

10

Mehtod invocation: Memory structure

The current method (main) is suspended, and
the body of the called method (set_volume) is executed
in the context of the current frame (the set_volume frame):

main frame Stereo
mystereo

volume | 8.0
X 4.0
factor 2

set_volume frame

\Y; 8.0

this

Finally the called method frame is discarded, and
computation of the calling method (main) is resumed
in the instruction immediately after the method call.

main frame Stereo
mystereo

volume | 8.0
X 4.0
factor 2

D McGill .

Scope

e Attributes of a class are shared between its methods:

public class F

{
int n;
void p()
{
n = 3;
//. ..
}
boolean q(String s)
{
if (n < 5 && s.equals(“hello’))
return true;
return false;
ks
+

D McGill

12

Scope (contd.)

e _.but are different for different objects of the same class:

public class H
{

void w()
{
F £f1, £2;
f1 = new F();
f2 = new F(Q);
f1.p0);
£2.p0);
boolean a,b;
a = f1.q(“hello’);
b = £2.q(“‘good bye’’);

e In this example, f1.n and 2.n are different variables of
the same class, because they belong to different objects
of class F.

D McGill

13

Objects are “first class citizens”

e Since classes are data types and objects are their values,
then we can do with objects the “same” things that we
can do with primitive values, namely:

— We can assign objects to variables,
— We can pass objects as arguments to methods, and
— Methods can return objects as their result.

B McGill y

Objects are "first class citizens"

(contd.)

e Variables, attributes can be declared as having a class
for its type:

Stereo mystereo, yourstereo;

e Variables whose type is a class can be assigned objects
of that class:

mystereo = new Stereo();
yourstereo = mystereo;

e Objects can be passed as parameters; if there is a
method void m(Stereo s) {...} in some class C,
then we can do:

C x = new C();
x.m(mystereo) ;
x.m(yourstereo) ;
x.m(new Stereo());

D McGill

15

Objects are "first class citizens"

(contd.)

e Objects can be returned as values; if there is a method

Stereo p()
{

return new Stereo();

in some class C, then we can do:

C x = new C(Q);
mystereo = x.p();

...provided that the variable which is being assigned is of
the same type.

D McGill

16

Example
public class A {

int k;
AQ) // Constructor
{
k =1;
by
b
public class B {
A x; // Objects can be attributes;
void m()
{
x = new AQ);
by
void p(A u) // Parameters may have a class
{ // for type
x = u; // The object u is created
by // elsewhere
ArQ)
{
return Xx;
by
by

D McGill

17

Example (contd.)

public class C {
public static void main(String[] args)

{
A f,g; // f and g are initialized to null

B h; // h is initialized to null

f = new AQ);

// Here f.k is 1

f.k = 5;

h = new B(Q);

h.m(Q); // assigns a new A to h.x, so ...

// Here h.x.k is 1

h.p(f); // object f is passed as argument
// Here h.x is f, and therefore h.x.k is 5
// Also, g is still null, so there is no g.k
g =h.r();

// Now g is the same as h.x, which is f,

// ...s0 g.k is b

D McGill

18

Example (contd.)

The variables are initialized to null
mai n frane

f | null
nul |
h | nul |

fis assigned a new A object

mai n frane A
f ()
K 1
nul |
h | null
\. J

The statement f.k = 5; is executed

mai n franme A
; s
k 5
g | null
nul |

D McGill

Example (contd.)

h is assigned a new B

mai n frane

A
f 4 N
k 5
g | null

L J
B
()

X | null
_ J

We call h. n() which creates a frame for m
with no arguments
mai n frame A
f 4 N
k 5
g | null

L J
m frane B
()

X | null
this /—>\ y

D McGill

20

Example (contd.)

The body of m is executed. It consists of the single statement
x = new A();
which creates a new A object and assigns it to this.x

main frame A
()
f

null

m frame B />
4)
X

this "

After returning from m, its frame gets discarded, and h. x. k is 1

mai n frane A
f (N
Kk 5
g | null
. J (
B
. \/>
X —] _
_ J

D McGill

Example (contd.)

Computation in main continues with h. p(f) ;
A frame for p is created, assigning f to its parameter u

mai n frane A
f (R
k 5
g | null
h
. J ("

p frame B
i \/>
u X

this
\»

\. J

In this frame, the body of p is executed.

The body of pis X = u; which isthe sameas this.x = u;

mai n frame A
£ ()

nul |

p franme \ B

this

D McGill

22

Example(contd.)

When p ends, its frame is discarded.

The other A object that has no references to it, is also discarded.
mai n frane A

f ()

g | null

Computation is resumed with the next instruction of the main: g = h.r();
So the right-hand side of the assignment, h.r() is evaluated. So a frame for

ris created.
main frame A
¢ s N
k 5
g | null
h
_ J

this

D McGill

23

Example (contd.)

The body of r is executed in this frame. Its body is return X;

which is the same as return this.x; But this.x

is the same as the pointer to f, so this pointer is returned,
discarding the frame for r, and performing the pending assignment

to g, which is now equivalentto: g=h.x; org=f;

main frame A
f)
k 5
g
h
J

D McGill

24

