Static methods (contd.)

e Static methods represent procedural abstractions

e Why don't we use only static methods and no non-static
methods? We could, but we want to use OOP, because
we want to model the problem domain realistically.
Objects and classes do that.

e Static methods: functional/procedural view of the prob-
lem and its solution.

e Non-static methods: object-oriented view of the problem
and its solution.

D McGill

Methods a reusable abstractions

e A method can be reused in different contexts

e Calling a method is "the same” as substituting its body
in place of its call (replacing the parameters by the
actual arguments,) but

e |f we define a method, we can simply call it from more
than one context without having to do copy and paste.

D McGill

Example

public class Newtons {
static double sqrt(double x, double tolerance)

{
double guess = 1.0;

while (!close_enough(guess*guess,x,tolerance))

{

guess = improve(guess, x);
¥
return guess,

¥

static boolean close_enough(double a, double b,
double tolerance)

{

return (Math.abs(a-b) < tolerance):

by
static double improve(double g, double x)

{
return (g + x/g)/2;
by

by
D McGill

Example (contd.)

public class Newtons {
static double sqrt(double x, double tolerance)

{
double guess = 1.0;

while (!(Math.abs(guess*guess-x) < tolerance))

{

guess = (guess + x/guess)/2;
¥
return guess,;

D McGill

Searching for solutions

e Generic algorithm to search for solutions:

1. Start with some guess

2. While the guess is not good enough, repeat:

(a) Improve the guess

3. The result is the final guess

D McGill

Example: reusing methods

public class B {
void q(int v)
{
int k = (v+1)*2+1;
// ... do something with k
b
b
public class C {
void r(int w)
{
int u = (w-3)*2+1;
// ... do something with u
b
b

D McGill

Example (contd.)

public class A {
static int p(int n)
{
return n*x2+1;
b

b
public class B {

void q(int w)
{

int k = A.p(w+l);

// ... do something with k
b

by
public class C {

void r(int v)
{

int u = A.p(v-3);

// ... do something with u
b

by
D McGill

Method overloading

e There can be several (static or not) methods with the
same name...

e . but the type or number of parameters must be different

D McGill

Example

public class A {
void f(int x)
{

System.out.println(‘‘one:

}

void f(boolean x)

{

System.out.println(‘“‘two:

}

I
public class B {

void g()
{
A u = new AQ);
u.f(5);
u.f(false);
}
}

93+X)

93+X)

D McGill

Same for static methods

public class A {
static void f(int x)

{

System.out.println("one: "+x)

}

static void f(boolean x)

{
System.out.println("two: "+x)
b

b
public class B {

void g()
{
A.£(5);
A f(false);
}
}

D McGill

10

Recursion

A recursive method is a method that calls itself (directly
or indirectly.)

A recursive definition is a definition of something in
terms of itself

Some recursive definitions don't make sense, (e.g. from
Webster's: growl: to utter a growl), but others do

For example:

— A list of numbers is either:
* A single number, or
x A number followed by a list of numbers.
— For example:
* 5 is a list of numbers
% 7,5 is a list of numbers (because 5 is a list)
x 0, 7, 5 is a list of numbers (because 7, 5 is a list)
x 8,6, 7,5 is a list of numbers (because 6, 7, 5 is a
list)

D McGill

11

Recursive functions

e Factorial: the factorial of a natural number n, written
n! is the multiplication of the first n positive integers,
l.e.

nl=1-2-3-...-(n—=2)-(n—1)-n (1)

But note that
1-2:3-...-(n—=2)-(n—1)=(n-1)! (2)
So by (1) and (2) we get

nl=mn-1)!n (3)

But we have to assume a "base case’, by defining

0! =1 (4)

D McGill

12

Recursive functions (contd.)

Hence, (3) and (4) together gives us an alternative, and
recursive definition of (1):

ol { 1 ifn=20

(n—1)!'-n otherwise

This can be implemented as a static recursive method:

static int factorial(int n)

{
if (n == 0) {
return 1;
t
return factorial(n-1)*n;
}

D McGill

13

Execution of recursive methods

Consider the following client for this factorial function:

int r;
r = factorial(4);

lts execution proceeds as follows:

This is executed in some frame:
Some frame

r

When we call factorial(4); a new frame for the method is created:
Some frame

r

factorial frame

n 4

We execute the body of factorial; n is not 0 so we execute
return factorial(n-1)*n;

which in this frame is the same as
return factorial(4-1)*4;

D McGill

14

Some frame

r

factorial frame

n

4

factorial frame

n

3

pending computation:
return factorial(3)*4;

Again, we execute the body of factorial,
again, nis not 0 so we execute

return factorial(n-1)*n;

which in this frame is the same as
return factorial(3-1)*3;

D McGill

15

Some frame

r

factorial frame

n

4

factorial frame

n

3

factorial frame

pending computation:
return factorial(3)*4;

pending computation:
return factorial(2)*3;

n

2

Again, we execute the body of factorial;
again, nis not 0 so we execute

return factorial(n-1)*n;

which in this frame is the same as
return factorial(2-1)*2;

D McGill

16

Some frame

r

factorial frame

n

4

factorial frame

n

3

factorial frame

pending computation:
return factorial(3)*4;

pending computation:
return factorial(2)*3;

n

2

pending computation:
return factorial(1)*2;

factorial frame

1

Again, we execute the body of factorial;
again, nis not 0 so we execute

return factorial(n-1)*n;

which in this frame is the same as
return factorial(1-1)*1;

D McGill

17

Some frame

r

factorial frame

pending computation:
return factorial(3)*4;

n 4

factorial frame

pending computation:
return factorial(2)*3;

n 3

factorial frame

pending computation:
return factorial(1)*2;

n 2

factorial frame

pending computation:
return factorial(0)*1;

n 1

factorial frame

n 0

Now, we have reached the base case, and n is 0, so we execute:

return 1;
We get rid of the frame, and pass the returned value to the caller

D McGill

18

Some frame

r

factorial frame

n 4 pending computation:
return factorial(3)*4;

factorial frame

pending computation:
return factorial(2)*3;

n 3

factorial frame

pending computation:
return factorial(1)*2;

n 2

factorial frame

n 1

The pending computation here was:
return factorial(0)*1;

and the method called factorial(0)
returned 1, so this pending computation is now:
return 1*1;

We get rid of the frame, and pass the returned value to the caller

D McGill

19

Some frame

r

factorial frame

n 4 pending computation:
return factorial(3)*4;

factorial frame

pending computation:
return factorial(2)*3;

n 3

factorial frame

n 2

The pending computation here was:
return factorial(1)*2;

and the method called factorial(1)
returned 1, so this pending computation is now:
return 1*2;

We get rid of the frame, and pass the returned value to the caller

D McGill

20

Some frame

r

factorial frame

n 4 pending computation:
return factorial(3)*4;

factorial frame

n 3

The pending computation here was:
return factorial(2)*3;

and the method called factorial(2)
returned 2, so this pending computation is now:
return 2*3;

We get rid of the frame, and pass the returned value to the caller

D McGill

21

Some frame

r

factorial frame

n 4

The pending computation here was:
return factorial(3)*4;

and the method called factorial(3)
returned 6, so this pending computation is now:
return 6*4,

We get rid of the frame, and pass the returned value to the caller

D McGill

Sone frane

The pending computation here was:
r = factorial (4);

which returned 24, so this pending computation is now:
r = 24;

D McGill

23

Recursion on other types

e Problem: given a string s, return the reverse of the

string

e Analysis:

— Notation:
% rev(s) is the reverse of s
*x 8; Is the ¢-th character of s
* len(s) is the length of s
* rest(s) is the string s without its first character sg
(i.e. rest(s) = s152...8, where n =len(s) — 1)
— Formal definition of reverse:

) () B ¢ lf S = ¢
SV = rev(rest(s)) + so otherwise

B McGill 5

e For example:

Reverse (contd.)

rev(“abed”) = rev(“bed”) +' a

= (rev(“cd”) +'0") +'
= ((rev(“d”)+') +' V")
= (((rev(*”) +'d") +' v') +' a’
=(((“+"d)Y+')+
= ((“d” +') +'b') +
= (“dc” +'0) +'
= “dcb” +' df
= “dcba”

 McGill

25

Reverse (contd.)

public class MoreStringOperations {
static String reverse(String s)

{
if (s.equals(‘®?)) {

€,

return ;

}

return reverse(rest(s))+s.charAt(0);

¥
static String rest(String s)

{
String result =°’;
int 1 = 1;
while (i < s.length()) {
result = result + s.charAt(i);
1++;
}

return result;

D McGill

26

Double recursion

e Problem: Compute the n-th Fibonacci number

e Analysis: The Fibonacci sequence 1, 1, 2, 3, 5, 8, 13,
21, 34, ...is defined by:

. 1 ifn <2
fib(n) = { fib(n — 1) + fib(n — 2) otherwise

e |Implementation:

static int fib(int n)

{
if (n <= 2) {
return 1;
}
return fib(n-1)+fib(n-2);
+

D McGill

27

lteration vs recursion

e [terative solution to the Fibonacci problem:

static int fib(int n)

{
int a, b, ¢, 1;
a =1;
b =1;
c = 1;
1 = 3;
while (i <= n) {
c = a + b;
a = b;
b = c¢;
1++;
+
return c;
+

D McGill

28

Execution trees

fib(6)

29

D McGill

