Statements

e Variable declaration

type identifier,

e Assignment

variable = expression;

e User Interface: output

System.out.println(string_expression) ;

e User Interface: input

variable = Keyboard.readType () ;

D McGill

Assignment is not equality
X = a + b;
Is an assignment statement which means:

1. evaluate a+b

2. and store the result in x (overwriting whatever x had

before)

by contrast
X =a+b

Is a boolean expression which has a truth value depending
on the values of x, a and b.

int x, y;
x = 4;
y =17,
X =y + 2;

D McGill

Primitive Data Types

General category | Type Description Examples
Int Integers 01.-3
long Long integers 655371
Numeric short Short integers 2,-6
byte Bytes 255
float Rationals 1.33f
double Rationals 1.618
char Single characters x,
Text . WL
String Sequences of characters abc
Logic boolean Truth values true, false

D McGill

Data conversion

e Sometimes it is useful to look at data as if they were
from a different type

e For example:

— Adding an integer and a double
— Obtaining the ASCII code of a character

e Forms of data conversion:

— Implicit:
x Assignment conversion
x Promotion

— Explicit: Casting

D McGill

Data conversion

e Assignment conversion: A value of one type is assigned
to a variable of a different type, as long as the types are
compatible

int n = 7;

double d = n;

long k = n;

int m = d; // Wrong: compile-time error

e Promotion: an expression ‘promotes’ the types of its
operands to its “largest” type

int m = 8;
float x = 3.0f, vy;
y = x + m;

D McGill

Data conversion

e Casting expressions (not a statement)
(type) expression
e Examples:

int n = 3;
double p;
p = (double)n + 4.0;

int a = 3, b = 8;

float c, d;

c = b/a;

d = (float)b/a;
System.out.println(c); // 2.0

System.out.println(d); // 2.666666. ..

D McGill

Data conversion

double r = 2.41;
int a;
a =r1; // Error

D McGill

Data conversion

double r = 2.41;
int a;
a = (int)r; //0K: Narrowing casting

D McGill

Data conversion

e There are two types of casting:

— Narrowing conversions: from a type which requires
more memory to a type that requires less

— Widening conversions: from a type which requires
less memory to a type which requires more

e |f expression has type t, and t requires more memory
than type s, then (s)expression is a narrowing con-
version (e.g. int to byte, double to float, float to
int, ...)

e |f expression has type t, and t requires less mem-
ory than type s, then (s)expression is a widening
conversion (e.g. byte to double, long to int, ...)

D McGill

Data conversion

e Widening conversions are safe: no loss of information

e Narrowing conversions are not safe: possible loss of
information

float x = 2.71%;
int i = (int)x;

/) i ==

int k = 130;

byte b = (byte)k;
// b= -126

D McGill

10

Data conversion

v/é
byte values

129 108 127
128 = -128 byte b b+k28=b
129 = -127 int | i+k232=
256 = 0 k is any integer

257 =1

D McGill

Precedence

Precedence | Operator | Operation Associativity
+ Unary plus
1 - Unary minus right to left
! Logical negation (NOT)
2 (type) Type cast right to left
* Multiplication
3 / Division left to right
% Remainder (modulo)
+ Addition
4 - Substraction left to right
String concatenation
< Less than
<= Less than or equal to
5 left to right
> Greater than
>= Greater than or equal to
6 o Equals to left to right
= Different to
7 && Logical conjunction (AND) left to right
8 I Logical disjunction (OR) left to right
) McGill

12

X+t

means

means

X += 3;

means

X = X + 3;

Some shortcuts

D McGill

13

Some shortcuts

e ++and -- can be used inside arithmetic expressions (but
it is not recommendable)

X = y-- x 2;
means:

X =y % 2;

y=y -4
and

X = --y *x 2;
means

y =y -1

X =Yy *x 2;

D McGill

14

Objects and Classes

e Information in a Java program is represented by either

— Primitive data (e.g. numbers, booleans)
— Objects (composite data)

e An object is a composite piece of data which can be
applied certain actions or operations:

— An object is “made up” of other (simpler) pieces of
data (primitive or objects)

— An object is a group of data “glued’ toghether that
can be treated a s a unit, a single piece of data

— An object can “react’ to operations we appy to it

D McGill

15

Objects and Classes

e A bank account has:

— owner
— balance

e Given a bank account we can:

— deposit
— withdraw

D McGill

16

Objects and Classes

accountl | account2 I
4 (
owner Jean owner Amy
balance |[$800.00 balance | $850.0
. \.
 McGill

17

Objects and Classes

e Primitive data is defined by primitive data types (int,
char, boolean)

e Objects are defined by Classes: the type of an object is
a class

e (lasses are given by a list of methods

e Methods: operations that can be performed on objects
of the class where the method is defined

e To be able to use objects we need:

— Define some class or classes
— A mechanism to create objects of a defined class
— A mechanism to apply operations to these objects

D McGill

18

Objects and Classes

e Defining a class:

public class BankAccount
{

String owner;

double balance;

void withdraw(double amount)
{

/...
}

void deposit(double amount)

{
/] ...
¥

e Note: only one class in a program has a main method

D McGill

19

Classes and Objects

e A variable contains either

— a primitive value (e.g. 2, 3.14, true, ...)
— or a reference to an object

e Declaring a variable of a non-primitive type does not
create an object of that type:

BankAccount accountli;

e This declaration only results in allocating (reserving) a
memory cell which may hold a reference to a BankAc-
count object

D McGill

20

Classes and Objects

e To create objects we use the new operator
accountl = new BankAccount (‘‘Jean’’) ;

e To apply operations to objects we use the dot operator:
accountl.deposit (200.00);

e You cannot apply methods without first creating objects

D McGill

21

Objects and Classes

accountl . withdraw (150.00);
object method parameters

e Applying a method to an object affects only the object
it is being applied to.

accountl | account2 I
() ()
owner Jean owner Amy
balance |$650.00 balance | $850.0
\. J . J

System.out .println (“text”);

/0

Vo

ob}rect method parameters

D McGill

22

Strings, Classes and Objects

Strings are objects

The String type is a class, predifined in the Standard
Java Library

A class library is a collection of predefined classes

To create String objects we can use the new operator
title = new String(““Trainspotting”’);

but this can be abbreviated as

title = ““Trainspotting’’;

_..only for Strings

D McGill

23

Strings, Classes and Objects

e The String class has many methods

String title;
title = new String("Trainspotting");
title.toLowerCase();

e The statement

title.toLowerCase() ;

is a method call or method invocation

D McGill

24

Strings, Classes and Objects

e Some methods of the String class

— charAt: returns the character of the string at a given
position

— length: returns the length of the string

— toLowerCase: returns a copy of the string in lower
case

— toUpperCase: returns a copy of the string in uper
case

— equals: returns whether the string is equal to an-
other given string

— substring: returns a part of the string given by the
parameters

— etc.

D McGill

25

Strings, Classes and Objects

public class String {
//...
char charAt(int index) { //... }
int length() { // ...}
String toLowerCase() { //... }
String toUpperCase() { //... }

boolean equals(String str) { // ... }

String substring(int offset, int endIndex) { //.

//. ..

D McGill

26

Strings, Classes and Objects

O T
— O
N S
(@N) :
-~ O
o1
Y

® |n strings,

— the first character has index 0
— the second character has index 1
— the third character has index 2

— the last character has index I-1, where | is the length
of the string

D McGill .

Strings

e Examples of int length()

String question;
int 1;
question = ‘‘Is this course easy?’;

1 = question.length();
System.out.println(l); // 21

String answer;
answer = ‘It depends...’’;

1 = answer.length();

System.out.println(l); // 13

€,

String very_short_message = ;
System.out.println(very_short_message.length());

D McGill

28

Strings

e Examples of char charAt(int index)

String phrase;

char initiall, initial2, initial3,
initial4, initialb;

String acronym;

phrase = ‘“‘Emacs makes a computer swell’’;

initiall = phrase.charAt(0);
initial2 = phrase.charAt(6);
initial3 = phrase.charAt(12);
initial4 = phrase.charAt(14);
initial5 = phrase.charAt(23);

acronym = ‘“’ + initiall + initial2
+ 1nitial3 + 1nitiald4d + 1initialb;

D McGill

29

Strings

e The argument or parameter of charAt can be any
Integer expression

String phrase;

char c;

int start = 3,

phrase = ‘“‘Strings do not have to make sense.’’;
¢ = phrase.charAt(start + 2);

// c == ‘g’

c = phrase.charAt(phrase.length() - 1);

// ¢ == .’

c = phrase.charAt(phrase.length());
// Runtime error

D McGill

30

Strings

e Since the charAt method returns a character, it can be
used in any character expression, and in particular it can
be used within string expressions

String wordl = ‘“‘rat’, word2 = ‘‘case’’;
String word3;
word3 = wordl + word2.charAt(2);

// word3 contains ‘‘rats’’

D McGill

31

Strings

e charAt cannot be used to modify a string

String word = ‘‘clap’’;
word.charAt(0) = ‘f’; // WRONG!

e Strings in Java are immutable: they cannot change

e But String references can change:

String word = ‘“‘clap’’;
String new_word;
new_word = ““f’ + word.charAt(1)
+ word.charAt(2) + word.charAt(3);
word = new_word;

// word contains ‘‘flap’’;

D McGill

32

Strings

e Examples of
String substring(int offset, int endIndex)

String word = ‘“‘clap’’;
String end, new_word;

end = word.substring(1l, 4);
// end contains ‘‘lap’’;

new_word = “f’ + end;

// new_word contains ‘‘flap”’

D McGill

33

Strings

e s.substring(i, j) returns the part of string s be-
ginning at index i and ending at index j-1

String phrase, subject, verb, article, noun;

phrase = ‘““This 1s a string’;

subject = phrase.substring(0, 4);

verb = phrase.substring(5, 7);

article = phrase.substring(8, 9);

noun = phrase.substring(10, phrase.length());

System.out.println(subject+article+noun+verb) ;

// Prints
// Thisastringis

D McGill

34

Strings

e Since the substring method returns a String, it can
be used within any string expression

String old_phrase = ‘“This is a string’’;
int size = old_phrase.length();
String new_phrase;

new_phrase = old_phrase.substring(0, 8)
+ C‘not 2
+ old_phrase.substring(8, size);

b

// new_phrase contains ‘“This is not a string’

D McGill

35

Strings

e Examples of boolean equals(String s)

String petl = “‘cat’, pet2 = “‘rat’’;
String endl, end2;
boolean same_pet, same_end;

same_pet = petl.equals(pet2);

endl = petl.substring(l, petl.length());
end2 = pet2.substring(l, pet2.length());

same_end = endl.equals(end2);

e For every pair of strings a and b, a.equals(b) returns
the same as b.equals(a)

D McGill

36

Strings

e Since the equals method returns a boolean, it can be used in any boolean
expression

String season = ‘‘Winter’’;
float temp = -5.0%f;
boolean warm;

warm = !season.equals(‘“Winter’’) || temp >= -10.0f;
season.equals(‘“Winter’’) | temp>=-10.0f Iseason.equals("Winter") warm
true true false true
true false false false
false true true true
false false true true

D McGill

37

Strings

Examples of String concat(String s)

String sentence;
sentence = ‘““This sentence 1s ’’;

sentence =

e |If a and D
a.concat(b)

)

sentence.concat (‘‘ false’);

are strings, a + b is shorthand

for

D McGill

38

Strings

e Examples of String replace(char a, char b)

String message, encoded;
message = ‘“This message 1s 1irrelevant’’;
encoded = message.replace(‘e’, ‘x’);

// encoded contains ‘‘This mxssagx is irrxlxvant”’

encoded = encoded.replace(‘a’, ‘y’);
encoded = encoded.replace(‘i’, ‘z’);
encoded = encoded.replace(‘r’, ‘w’);
encoded = encoded.replace(‘s’, ‘u’);
encoded = encoded.replace(‘ 7, ‘-?);
encoded = encoded.replace(‘t’, ‘v’);

// encoded contains ‘‘Thzu-mxuuygx-zu--zwwxlxvynv’’

D McGill

39

Strings, Classes and Objects

e Some method calls can appear as expressions and others
as statements

String s = ‘“‘abc’’;
int n = s.length();

e Here, the call to method length is an expression because
it occurs in the right-hand side of an assignment

s.toLowerCase (‘‘abc’) ;

e Here, the call to the method tolLowerCase is a statement
because it is not being assigned to anything

D McGill

40

Strings, Classes and Objects

String name, first_name, last_name;
char initiall, 1nitial2;
int len;

name = new String(‘‘Charles Darwin’’);
initiall = name.charAt(0);

initial2 = name.charAt(8);

len = name.length();

first_name = name.substring(0, 7);
last_name = name.substring(8, len);

System.out.println(first_name) ;
System.out.println(last_name) ;
System.out.println(‘““’+initiall+initial2);

D McGill

Strings, Classes and Objects

Charles
Darwin
CD

D McGill

42

An example

e Problem: Given a four letter word, print the word in

reverse.

e Analysis:

— Information involved: a four letter word, w.
— Input: w

— Qutput: a word v which is the reverse of w
— Definitions:

*x 1 he reverse of a word w is a word v which has the
the same characters as w, but in inverse order: the
first letter of v is the last of w, the second letter
of v is the second-to-last of w, etc.

— Restrictions: w is assumed to have only four letters

D McGill)

An example

® Design

1. Obtain the word w

2. Create a new word v, initially empty

3. Add the last character of w to the end of v

4. Add the third character of w to the end of v
5. Add the second character of w to the end of v
6. Add the first character of w to the end of v

/. Print v

D McGill

44

An example

e |Implementation

import csl.Keyboard;
public class Reverse {
public static void main(String[] args)

{

String w, v;

System.out.print (“Enter a four letter word: ’’)
w = Keyboard.readString();

—_ €6,

v =)

v = v + w.charAt(3);
v = v + w.charAt(2);
v =v + w.charAt(1);
v = v + w.charAt(0);

System.out.println(v);

D McGill

45

An example

e |Implementation

import csl.Keyboard;
public class Reverse {
public static void main(Stringl[] args)

{

String w, v;

System.out.print (“Enter a four letter word: ’’)
w = Keyboard.readString();

v =+ yw.charAt(3) + w.charAt(2)
+ w.charAt(1) + w.charAt(0);

System.out.println(v) ;

D McGill

46

An example

e Design (alternative)

1. Obtain the word w

2. Create a new word v, initially empty

3. Add the first character of w to the front of v

4. Add the second character of w to the front of v
5. Add the third character of w to the front of v
6. Add the last character of w to the front of v

7. Print v

D McGill

47

An example

e |Implementation

import csl.Keyboard;
public class Reverse {
public static void main(String[] args)

{

String w, v;

System.out.print (“Enter a four letter word: ’’)
w = Keyboard.readString();

—_ €6,

v =)

v =+ w.charAt(0) + v;
v =+ w.charAt(1) + v;
v = ‘“? + w.charAt(2) + v;
v =’ + w.charAt(3) + v;

System.out.println(v);

D McGill

48

An example

e |Implementation

import csl.Keyboard;
public class Reverse {
public static void main(Stringl[] args)

{

String w, v;

System.out.print (“Enter a four letter word: ’’)
w = Keyboard.readString();

v =+ yw.charAt(3) + w.charAt(2)
+ w.charAt(1) + w.charAt(0);

System.out.println(v) ;

D McGill

49

Another example

e Problem: Given a four letter word, determine whether
the word is a palindrome

e Analysis:

— Information involved: a four letter word, w.

— Input: w

— Qutput: true if the word is a palindrome, false other-
wise

— Definitions:
x A word is a palindrome if it is the same as its own

reverse, e.g. (noon, radar, wow, pop, 2002,)
— Restrictions: w is assumed to have only four letters

D McGill)

Another example

® Design:

1. Obtain word w
2. Compute the reverse of w: let v be the reverse of w

3. Compare v and w. Let result be true if w and v are
equal, and false otherwise.

4. Print result

D McGill

51

Another example

import csl.Keyboard;
public class Palindromes {
public static void main(Stringl[] args)
{
String w, v;
boolean result;

System.out.print (“Enter a four letter word: ’’)
w = Keyboard.readString();

.charAt (3);
.charAt (2) ;
.charAt (1) ;
.charAt (0) ;

+ + + o+ -

< < < < <
I
s = = =

result = v.equals(w);

System.out.println(result);
b

by
D McGill

52

Another example

e Design (alternative):

1. Obtain word w

2. Compare the first character of w with its last character
and the second character with the thirs character. Let
result be true if both comparisons yield true, and false
otherwise.

3. Print result

D McGill

53

Characters

e Values of the char data type can be compared using
the traditional relational operators:

char a = ’P’, b = ’Q’;
boolean ¢, d, e, f, g, h;

c = a == b; // ¢ == false
d =a !=b; // d == true
e = a < b; // e == true
f =a>b; // £ == false
g = a <= b; // g == true
h = a > b; // h == false

char a = ’Q’, b = ’Q’;
boolean ¢, d, e, f, g, h;

c = a == b; // c == true
d =a !=b; // d == false
e = a < b; // e == false
f =a>hb; // £ == false
g = a <= b; // g == true
h =a > b; // h == true

D McGill

54

Another example

import csl.Keyboard;
public class Palindromes {
public static void main(Stringl[] args)
{
String w;
boolean result;

System.out.print (“Enter a four letter word: *’)
w = Keyboard.readString();

result = w.charAt(0) == w.charAt(3)
&& w.charAt(1) == w.charAt(2);

System.out.println(result);

D McGill

55

