Conditionals

A;

if (C)
B;

}

D;

e Control flow diagram

true

false

D McGill

Conditionals

A;

if (C)
B;

}

else {
D;

}

E;

e Control flow diagram

false true

D McGill

Some syntactic aspects

int n, k = 2;
boolean b = false;
n = Keyboard.readInt();

if (n < 5) {
b = true;

+
k = 9;
is not the same as

int n, k = 2;
boolean b = false;
n = Keyboard.readInt();

if (n < 5) {
b = true;
+
else {
k = 9;

by
D McGill

Some syntactic aspects

int n, k = 2;
boolean b = false;
n = Keyboard.readInt();

if (n < 5)
b = true;
k = 9;

is the same as

int n, k = 2;
boolean b = false;
n = Keyboard.readInt();

if (n < 5) {
b = true;

}
k = 9;

D McGill

Some syntactic aspects

int n, k = 2;
boolean b = false;
n = Keyboard.readInt();

if (n < 5)
b = true;
k = 9;

is not the same as

int n, k = 2;
boolean b = false;
n = Keyboard.readInt();

if (n < 5) {
b = true;
k = 9;

}

D McGill

Some syntactic aspects

int n, k = 2;
boolean b = false;
String s;
n = Keyboard.readInt();
s = Keyboard.readString();
if (n < 5) {

b = true;
b
else {

if (s.equals(‘‘one”)) {

k =9;
+

else {

D McGill

Some syntactic aspects

int n, k = 2;

boolean b;

String s;

n = Keyboard.readInt();

s = Keyboard.readString();

if (n < 5) {
b = true;

}

else {

if (s.equals(‘‘one”)) {
k =9;

}

else {

k =7;

}

}

D McGill

Some syntactic aspects

int n, k = 2;

boolean b;

String s;

n = Keyboard.readInt();

s = Keyboard.readString();

if (n < 5) b = true;

else if (s.equals(‘‘one’’))
k =9;

else k = 7,

D McGill

Some syntactic aspects

int n, k = 2;

boolean b;

String s;

n = Keyboard.readInt();

s = Keyboard.readString();
if (n < 5) b = true;

else k = 9;

else k = 7; // WRONG!

D McGill

Some syntactic aspects

int n, k = 2;

boolean b;

String s;

n = Keyboard.readInt();

s = Keyboard.readString();

if (n < 5)
if (s.equals(‘““two’’)) b = true;
else k = 9;

else k = 7;

D McGill

10

Some syntactic aspects

int n, k = 2;

boolean b;

String s;

n = Keyboard.readInt();

s = Keyboard.readString();

if (n < 5)
if (s.equals(‘““two’’)) b = true;
else k = 9;

D McGill

11

Some syntactic aspects

int n, k = 2;

boolean b;

String s;

n = Keyboard.readInt();

s = Keyboard.readString();

if (n < 5) {
if (s.equals(‘““two’’)) b = true;
else k = 9;

b

D McGill

12

Some syntactic aspects

int n, k = 2;
boolean b;
String s;
n = Keyboard.readInt();
s = Keyboard.readString();
if (n < 5) {
if (s.equals(‘““two’’)) b = true;
¥
else k = 9;

D McGill

13

Properties of conditionals

e |n the following, C, D are any boolean expressions, P, Q,
and R are any list of statements.

P;

if (C && D) {
Q;

}

R;

s equivalent to

P;
if (C) {
if (D) {
Q;
}

t
R;

D McGill

14

Properties of conditionals

e In the following, C, D are any boolean expressions, P, Q,
and R are any list of statements.

P;

if (C || D) A
Q;

}

R;

s equivalent to

P;

if (C) A
Q;

}

else {
if (D) A

Q;

}

t
R;

D McGill

15

Properties of conditionals

e Consider the following:

int x = 4, vy;

String z = ‘“‘one’’;

y = Keyboard.readInt();
if (x >3 & y <6) {

y=y+8;

z = ‘“two’’;
Iy
Z = z + ‘““three’’;
iIs equivalent to

int x = 4, y;
String z = ‘“‘one’’;
y = Keyboard.readInt();
if (x > 3) {
if (y < 6) {
y=y*3;
Z = ‘“two’’;
¥
¥
z

= z + ‘“three’’;

D McGill

Properties of conditionals

but it is not equivalent to

int x = 4, vy;
String z = ‘‘one’’;
y = Keyboard.readInt();
if (x > 3) {

y =y +38;

if (y < 6) {

z = ‘“‘two’’;

¥
¥
zZ

= z + ‘“three’’;

D McGill

17

Properties of conditionals

e Consider the following:

boolean high = false;
double altitude;
altitude = Keyboard.readDouble();
System.out.println(‘“‘Begin”’);
if (altitude > 2000.0) {
high = true;
System.out.println(‘“It is high’’);
¥
else {
high = true;
System.out.println(“It is low”’);
¥

D McGill

18

Properties of conditionals

e |t is equivalent to:

boolean high = false;

double altitude;

altitude = Keyboard.readDouble();

System.out.println(‘“‘Begin’’);

high = true;

if (altitude > 2000.0) {
System.out.println(‘“It is high’’);

b

else {

System.out.println(““It is low”’);
¥

D McGill

19

Properties of conditionals

Consider the following:

double altitude;
altitude = Keyboard.readDouble();
System.out.println(‘“Begin’’);
if (altitude > 2000.0) {
altitude = altitude - 500.0;
System.out.println(““It is high”’);
¥
else {
altitude = altitude - 500.0;
System.out.println(““It is low”’);

¥

D McGill

20

Properties of conditionals

e |t is not equivalent to:

double altitude;
altitude = Keyboard.readDouble();
System.out.println(‘“‘Begin’’);
altitude = altitude - 500.0;
if (altitude > 2000.0) {
System.out.println(‘“It is high’’);
¥
else {
System.out.println(“It is low”’);

¥

D McGill

Properties of conditionals

e In the following, C is any boolean expression, P, Q, R |,
S, and T are any list of statements.

P;
if (C) {
Q;

D McGill

22

Properties of conditionals

iIs equivalent to

P;

Q;

if (C) {
R;

if and only if the statements in Q do not modify the
variables in C

D McGill

23

Properties of conditionals

e In the following, C, D are any boolean expressions, P, Q,
R, and S are any list of statements.

P;

if (C && D) {
Q;

}

else {
R;

}

S;

D McGill

24

Properties of conditionals

iIs equivalent to

P;
if (C) {
if (D) {
Q;
}

else {

D McGill

Properties of conditionals

D McGill

26

Properties of conditionals

e In the following, C, D are any boolean expressions, P, Q,
R, and S are any list of statements.

P;

if (C || D) A
Q;

}

else {
R;

}

S;

D McGill

27

Properties of conditionals

iIs equivalent to

P;
if (C) A
Q;
}
else {
if (D) {
Q;

D McGill

Properties of conditionals

D McGill

29

Sorting

e Problem: Given three numbers, print them out in as-
cending order

e Analysis:

— Input: Three numbers a, b, and ¢

— Output: A list of three numbers nq, ng, and n3 taken
from a, b, and ¢, such that it is sorted in ascending
order

— Definitions:

* A list of three numbers min, mid, and mazx is
sorted in ascending order if the list has the form
min, mid, and maz, and these numbers satisfy
the condition that min < mid and min < max.

— Requirements: the numbers must be assigned
uniquely, that is, the list min, mid, and max must

be a permutation of the set {a, b, c}.

— Assumption: Numbers are comparable

D McGill

30

Sorting

e Design: First alternative: Consider all possibilities

1. fa<band b<

max be C

2. 1fa<cand ¢ <
max beb

3.Iftb<aand a<

max be ¢

4. fb<cand c<

max be a

5. fe<aand a <

max be b

6. fe<band b <
max be a

< ¢ then let min be a, mid be b and

b then let min be a, mid be ¢ and

c then let min be b, mid be a and

a then let min be b, mid be ¢ and

b then let min be ¢, mid be a and

a then let min be ¢, mid be b and

D McGill

31

e This solution is correct. It covers all possibilities, but it
requires 12 comparisons in the worst case. It is not a
very smart solution, and it does not scale well.

D McGill

32

Sorting

e Second alternative: decision trees

D McGill

33

a<=b

Sorting

b<a

D McGill

34

Sorting

D McGill

35

Sorting

D McGill

36

b<=c

c<b

a<=b

Sorting

c<a

b<a

a<=c

c<a

D McGill

37

b<=c

a<=c

c<b

a<=b

Sorting

b<a

<=
a<=C c<a

< <=
c<a b<=c c<b

D McGill

38

Sorting

true 3 false

\“‘b/

true

min=a;
mid=b;
max=c;

false

min=a; min=c; min=b; min=c;
mid=c; mid=a; mid=c; mid=b;
max=b; max=Db; max=a; max=a;

D McGill

39

Sorting

import csl.Keyboard;
public class Sorter {
public static void main(Stringl[] args)

{

double a, b, ¢, min, mid, max;

System.out.print (‘“Enter the first number:’’);
a = Keyboard.readDouble();
System.out.print (‘“Enter the second number:’’);
b = Keyboard.readDouble() ;
System.out.print (‘“Enter the third number:”’);
c = Keyboard.readDouble() ;

// Continues below ...

D McGill

40

Sorting

if (a <= b) {
if (b <=c¢) {

min = a;
mid = b;
max = C;

+
else {
if (a <=c¢) {
min = a;
mid = c;
max = b;
X
else {
min = c;
mid = a;
max = b;
+
+
+

// Continues below ...

D McGill

41

Sorting

else { // b < a
if (a <= ¢) {
min = b;

mid = a;
max = C;
b
else {
if (b <= ¢) Ao
min = b;
mid = c;
max = a;
+
else {
min = C;
mid = b;
max = a;
+
+
¥

System.out.println(‘“’+min+‘,”*+mid+‘,”’+max) ;
} // End of main method
} // End of Sorter class

D McGill

42

Sorting
We can make some small changes:

if (a <= b) {

if (b <= c¢) {
min = a;
mid = b;
max = C;
+
else { // a<=Db &k c <D
if (a <=c¢) {
min = a;
mid = c;
max = b;
}
else {
min = c;
mid = a;
max = b;
+
+
+

// Continues below ...

D McGill

43

Sorting

_..by "factoring out” the common statement

if (a <= b) {
if (b <= c¢) {
min = a;
mid = b;
max = C;
+
else { // a<=Db &k c <D
if (a <= c¢) Ao
min = a;
mid = c;
+
else {
min = c;
mid = a;

// Continues below ...

D McGill

44

Sorting

else { // b < a
if (a <= ¢) {
min = b;

mid = a;
max = C;
b
else {
if (b <= ¢) Ao
min = b;
mid = c;
max = a;
+
else {
min = C;
mid = b;
max = a;
+
+
b

System.out.println(‘“’+min+‘,”’+mid+‘,”’+max) ;
} // End of main method
} // End of Sorter class

D McGill

45

Sorting

else { // b < a
if (a <= c¢) {
min = b;
mid = a;
max = C;

else A // b < aé&& c<a
if (b <= ¢) {
min = b;
mid = c;

else {
min =
mid =

o O

max = a;
}
}
System.out.println(‘“’+min+‘,”+mid+‘,”’+max) ;
} // End of main method
} // End of Sorter class

D McGill

46

Some syntactic shortcuts

e For any variable v of a numeric type:
v+

is the same as

is the same as

v=v-1;

D McGill

Some syntactic shortcuts

e The ++ and -- operators can be used within expressions
(but they shouldn't)

e In this case they can occur in prefex form (++v) or
postfix form (v++)

X = 2 k% vtt;
is the same as

X = 2 % v;
v=v+1;

and
X = 2 % ++v;
is the same as

v=v-+1;
X_

I
N
<

D McGill

48

Some syntactic shortcuts

e The ++ and -- operators can be used within expressions
(but they shouldn't)

v = 3;
if (v++ >= 4) System.out.println(“‘A”’);

is not the same as

v = 3;
if (++v >= 4) System.out.println(‘‘A”);

D McGill

49

Some syntactic shortcuts

e The ++ and -- operators affect evaluation of conditions

v = 4;
if (v++ >= 4 && v < 5) System.out.println(‘‘A”’);

is not the same as

v = 4;
if (v < b && v++ >= 4) System.out.println(“‘A’’);

D McGill

50

Problem solving

e Clear statement of the problem
e Analysis (of the problem)

e Design

e Implementation

e Testing / Verification

e Maintenance

D McGill

51

Analysis

e Goal: to obtain a precise understanding the problem

e Things to do in analysis:

— Determine inputs and outputs

— Determine general and specific requirements

— Make or obtain precise definitions of concepts in-
volved

— Determine the relevant information to the problem

— Determine the relationship between ditferent elements
or pieces of information of the problem

— Make explicit any relevant assumptions

D McGill

52

Design

e Goal: to obtain an algorithm or set of algorithms which
solves the problem correctly, satisfying all of the prob-
lem’s requirements

e An algorithm is an (abstract) procedure which describes
the solution to a problem

e Develop an algorithm using different techniques:

— Decision diagrams

— Incremental design

— Divide and conquer

— Dynamic programming
— etc.

e Develop data-structures required by the algorithm(s)

e Design a general structure or organization of the set of
algorithms

D McGill

53

Implementation

e Goal: to realize an algorithm or set of algorithms into a
computer program, using a programming language

e |Implementation depends on the particular programming
language being used.

e Concretise the general organization by dividing the sys-
tem into modules

e In Object-Oriented programming:

— Describe information and data structures as classes
— Translate algorithms into methods

D McGill

54

Testing

e Goal: to gain confidence in that the program solves the
problem adequately and without errors

e Testing involves:

— Identify key features to be tested
— Defining test cases which cover all significan aspects
— Performing the tests (possibly in an automatic way)

e A program which has been tested satisfactorily is not
guarranteed to be correct (because it is impossible to
always cover all possible cases.)

e To be certain of absolute correctness, the design and
the implementation must be mathematically proven to
be correct. This is called verification. This is different
than testing.

D McGill

55

Maintenance

e Goal: to make appropriate modifications to a program
if required

e Maintenance might be required when

— the program generates errors (compile-time or run-
time)

— the specification of the problem changes

— the program should be improved (e.g. speed, better
user-interface, etc.)

e Maintenance might require changes at:

— the implementation level (debugging)
— the design level
— the analysis level

D McGill

56

Conditionals

e Problem: compute the taxes to be paid by a person
depending on the person’s single/married status, if the
person is filing jointly with his/her spouse, and the tax-
able income of that person, according to the following:

— A single person earning no more than $21,450, or
a married person filing jointly and earning less than
$35,800, pays 15% of all income.

— A single person earning between $21,450 and $51,900,
pays a base amount of $3,217.50 plus 28% of the
income amount over $21,450.

— A married person filing jointly, earning between
$35,800 and 9$86,500, pays a base amount of
$5,370.00 plus 28% of the income amount over
$35,800.

— A single person earning more than $51,900 pays a
base amount of $11,743.50 plus 31% of the income
amount over $51,900.

— A married person filing jointly, earning more than
$86,500 pays a base amount of $19,566.00 plus 31%

of the income amount over $86,500.

D McGill

57

Analysis

e Inputs:

— Whereas married and filing jointly or filing as single
— Taxable income

e Output: tax

e Other relevant information:

— Tax brackets

— Base amount payable for each tax bracket
— Cutoff for each tax bracket

— Rates for each tax bracket

e Assumptions: tax brackets, base amounts, cutoffs and
rates are fixed

e Assumptions: taxable income is greater or equal to $0

D McGill

58

e Relationships:

— If filing as single:

Analysis

If the taxable income is over but not over the tax is of the amount over
$0 $21,450 15% $0
$21.450 $51,900 $3,217.504+28% $21.450
$51,900 $11,743.504+31% $51,900
— If filing jointly:
If the taxable income is over but not over the tax is of the amount over
$0 $35,800 15% $0
$35,800 $86,500 $5,370.00+28% $35,800
$86,500 $19.566.004+31% $86,500

D McGill

59

Analysis

e The tax is computed (by definition) according to the
following equality

tax = base + rate x (income — cutof f)

e For example:

— If a single person earns $30,000, then the base is
$3.217.50, the rate is 28% and the cutoff is $21,450,
so the tax will be

tax = 3217.50 4+ 0.28 x (30000.0 — 21450.0)

D McGill

60

Design

true

income<=21450

income<=51900

true

true

single?

15% . _ 15%
bracket income<=35800 bracket
28% i - 28%
bracket income<=86500 bracket
31%
bracket
31%
bracket

D McGill

61

Implementation

import csl.Keyboard;
public class TaxCalculator {
public static void main(String[] args) {
double 1ncome;

boolean single_status;

double tax;

String single;

System.out.print (‘“Enter your taxable income: *’
income = Keyboard.readDouble;
System.out.print(‘‘Are you filing as single? (y
single = Keyboard.readString() ;
single = single.toLowerCase() ;
if (single.equals(‘“‘yes”’))

single_status = true,
else single_status = false;

if (single_status) {
if (income <= 21450.00) {
tax = 1ncome * 0.15;

¥

D McGill

62

else if (income <= 51900.00) {
tax = 3217.50 + 0.28 * (income - 21450.00)
}
else {
tax = 11743.50 + 0.31 * (income - 51900.00
}
}
else { // filing as married
if (income <= 35800.00) A
tax = 1ncome * 0.15;
}
else if (income <= 86500.00) {
tax = 5370.00 + 0.28 * (income - 35800.00)
}
else {
tax = 19566.00 + 0.31 * (income - 86500.00
+
}

System.out.println(‘“The tax payable is ’+tax);

} // End of main method
} // End of TaxCalculator class

D McGill

63

Implementation

import csl.Keyboard;
public class TaxCalculator {
public static void main(String[] args) {
double 1ncome;

boolean single_status;

double tax, base, rate, cutoff;

String single;

System.out.print (‘“‘Enter your taxable income: *’
income = Keyboard.readDouble;
System.out.print(‘‘Are you filing as single? (y
single = Keyboard.readString() ;
single = single.toLowerCase() ;
if (single.equals(‘“‘yes”’))

single_status = true,
else single_status = false;

if (single_status) {
if (income <= 21450.00) {
base = 0.00;
rate = 0.15;

D McGill

64

cutoff = 0.00;

¥
else if (income <= 51900.00) {

base = 3217.50;

rate = 0.28;
cutoff = 21450.00;
+
else {
base = 11743.50;
rate = 0.31;
cutoff = 51900.00;
+

¥

else { // filing as married
if (income <= 35800.00) {

base = 0.00;
rate = 0.15;
cutoff = 0.00;
+
else if (income <= 86500.00) {
base = 5370.00;
rate 0.28;

cutoff = 35800.00;

D McGill

else {
base = 19566.00;
rate = 0.31;
cutoff = 86500.00;
b
¥

tax = base + rate * (income - cutoff);
System.out.println(‘“The tax payable is ’’+tax);

} // End of main method
} // End of TaxCalculator class

D McGill

66

Constants

e To enforce that a variable cannot change we declare it
as a constant:

final type variable = expression;

e The variable must be initialised
final double PI = 3.1415;
PI = 2 x PI; // Error

e A variable declared as final is a constant and cannot
ocurr on the left-hand side of an assignment statement

e It is common practice (but not mandatory) to name
constants in all capitalized letters.

D McGill

67

Implementation

import csl.Keyboard;
public class TaxCalculator {
public static void main(Stringl[] args) {
double 1ncome;
boolean single_status;

double tax, base, rate, cutoff;
String single;

final double SINGLE_CUTOFF_1 = 21450.00;
final double SINGLE_CUTOFF_2 = 51900.00;
final double MARRIED_CUTOFF_1 = 35800.00;
final double MARRIED_CUTOFF_2 = 86500.00;
final double SINGLE_BASE_1 = 3217.50;
final double SINGLE_BASE_2 = 11743.50;
final double MARRIED_BASE_1 = 5370.00;
final double MARRIED_BASE_2 = 19566.00;
final double RATE_1 = 0.15;

final double RATE_2 = 0.28;

final double RATE_3 = 0.31;

D McGill

68

System.out.print (‘“Enter your taxable income: *’
income = Keyboard.readDouble;
System.out.print(‘“‘Are you filing as single? (y
single = Keyboard.readString() ;
single = single.toLowerCase();
if (single.equals(‘“‘yes”’))

single_status = true;
else single_status = false;

if (single_status) {

if (income <= SINGLE_CUTOFF_1) {
base = 0.00;
rate = RATE_1;
cutoff = 0.00;

}

else if (income <= SINGLE_CUTOFF_2) {
base = SINGLE_BASE_1;
rate = RATE_2;
cutoff = SINGLE_CUTOFF_1;

+

else {
base = SINGLE_BASE_2;

D McGill

69

rate = RATE_3;
cutoff = SINGLE_CUTOFF_2;
+
+
else { // filing as married
if (income <= MARRIED_CUTOFF_1) {
base = 0.00;
rate = RATE_1;
cutoff = 0.00;
+
else if (income <= MARRIED_CUTQFF_2) A
base = MARRIED_BASE_1;
rate = RATE_2;
cutoff = MARRIED_CUTOFF_1;

+
else {
base = MARRIED_BASE_2;
rate = RATE_3;
cutoff = MARRIED_CUTOFF_2;
+
+

tax = base + rate * (income - cutoff);

D McGill

70

System.out.println(‘The tax payable is ’’+tax);

} // End of main method
} // End of TaxCalculator class

D McGill

71

Abstraction

e Abstraction:

“disassociated from any specific instance” - Webster's
dictionary

e To abstract is to make something independent of par-
ticular cases

e Variables give us a basic mechanism for abstraction:

— A concrete definition:

tar = 3217.50 + 0.28 x (income — 21450.0)

— An abstract definition:
tax = base + rate x (income — cutof f)

e |n software, abstraction facilitates reusability and makes
It easier to maintain.

D McGill ;

The end

D McGill

73

