e Variable declaration

type variable;

e Assignment

variable = expression,

e Method invocation

objectreference .methodname (parameters) ;
or

classname .methodname (parameters)

e Conditional
if (condition) block;
or

if (condition) blockl; else block2;

e Loop

while (condition) block;

D McGill



Loops

e The basic loop statement:

while (boolean_expression) {
list_of_statements;

}

e Semantics: the execution of a while loop proceeds as
follows:

1. The boolean expression is evaluated

(a) If it is false,
I. the loop stops
ii. and computation proceeds directly after the loop
(b) If it is true,
I. the list of statements is executed,
ii. and when finished, the whole process is repeated
from step 1

D McGill



A;

while (C) A
B;

}

D

e Control flow diagram:

false

Loops

A

true

D McGill



Loops

// This prints the first 100 odd numbers, and
// *not* the odd numbers less than 100.
1nt counter, number;
counter = 1;
number = 1;
while (counter <= 100) A
System.out.println(number) ;
number = number + 2;
counter++;

}

System.out.println(‘Done”’) ;

D McGill



Loops

int maximum = Keyboard.readInt();

int counter = 1;

int number 1;

while (counter <= maximum) A
System.out.println(number) ;
number = number + 2;
counter++;

D McGill



Loops

e while is not the same as if

int maximum = Keyboard.readInt();

int counter = 1;

int number = 1;

if (counter <= maximum) A
System.out.println(number) ;
number = number + 2;
counter++;

e [he while statement executes a statement or list of
statements repeteadely, until its condition becomes false

e The if statement executes a statement or list of state-
ments once, and only if its condition is true

D McGill 6



Loops

e A loop may not terminate

int maximum = Keyboard.readInt();

int counter = 1;

int number = 1;

while (counter <= maximum) A
System.out.println(number) ;
number = number + 2;

e A loop will not terminate if its condition is always true

e The condition of a loop will remain true if its variables
never change

D McGill



Loops

e The variables of the condition must change in a way
which eventually makes the condition false

e |f the variables change, but in a way that does not make
the condition false eventually, then the loop does not
terminate

int maximum = Keyboard.readInt();

int counter = 1;

int number = 1;

while (counter <= maximum) A
System.out.println(number) ;
number = number + 2;
counter--;

D McGill



Loops

e Will this terminate?

int 1;

1 =1;

while (i !'= 10) {
//. ..

1 =1+ 2;

D McGill



e Will this terminate?

int 1;

1 = 100;

while (i '= 0) {
//...
i=1/2;

+

Loops

D McGill

10



e Will this terminate?

int 1;

1 = 10;

while (i '= 3) {
//. ..
i=1/ 2;

+

Loops

D McGill

11



e Will this terminate?

float 1;

1 = 10;

while (i !'= 0) {
//. ..
i=1/2;

+

Loops

D McGill

12



Loops

e [ermination is important

D McGill

13



Counting occurrences

e Problem: count the number of times that the letter ‘e’
occurs in a given string.

D McGill

14



Counting occurrences

e Problem: count the number of times that the letter ‘e’
occurs In a given string.

e Analysis:

— |Input: a string s

— Qutput: a positive integer n, equal to the number of
times ‘e’ appears in s

— Assumptions: s is all lowercase

e Design:

— General idea: traverse s from left to right, and each
time an ‘e is found, increment a counter.
— Algorithm:
1. Set counter to 0
2. Set index to 0
3. While index < length of s, repeat:
(a) Let c be the character at position index of s
(b) If cis ‘e, increment the counter by 1
(c) Increment the index by 1

D McGill .



Counting occurrences

String s;

1int counter, index;

s = Keyboard.readString();

counter = 0;

index = 0;

while (index < s.length()) {
c = s.charAt(index);
if (c == ‘e’) counter++;
index++;

¥

D McGill

16



Abstraction

e The above algorithm does not change if instead of 'e’,
we count the occurrences of any letter x.

char x;

String s;

int counter, index;

s = Keyboard.readString();

x = Keyboard.readChar() ;

counter = 0;

index = 0;

while (index < s.length()) {
c = s.charAt(index);
if (c == x) counter++;
index++;

¥

e This works for any value of x and any value of s

D McGill

17



Sum

e Problem: compute the sum of the first n positive integers
for a given positive integer n

e Analysis:

— |nput: n
— Output: Y v i=14+243+...+(n—1)+n
— Assumptions: n € N

® Design:

1. Set total to 0
2. Setitol

3. While i <= n, repeat:

(a) Set total to total + i
(b) Seti to i+1

D McGill .



Sum

int n, 1, total;
n = Keyboard.readInt();
1 = 0;
total = 0;
while (i <= n) {
total = total + 1;
1 =1+ 1;
+
System.out.println(total);

D McGill

19



Product

int n, 1, total;
n = Keyboard.readInt();
1 = 0;
total = O;
while (i <= n) {
total = total + n;
1 =1+ 1;
b
System.out.println(total);

This computes

}:Z;ln,::n2

D McGill

20



Factorial

e Problem: compute the product of the first n positive
integers for a given positive integer n, i.e. the factorial
of n

e Analysis:

— Input: n
— Output: n! =[[_;i=1-2-3-...-(n—1)-n
— Assumptions: n € N

® Design:

1. Set total to 0
2. Setitol

3. While i <= n, repeat:

(a) Set total to total x i
(b) Setito i+l

D McGill

21



Factorial

int n, 1, total;
n = Keyboard.readInt();
1 = 0;
total = O;
while (i <= n) {
total = total * 1;
1 =1+ 1;
b
System.out.println(total);

D McGill



Guessing game
import csl.Keyboard;
public class GuessingGame {
public static void main(Stringl[] args)
{
int die, guess, points, game;
final int ROUNDS = 10;

points = O;

game = 1;

while (game <= ROUNDS) {
System.out.print(‘What is your guess? ’’);
guess = Keyboard.readInt();

die = (int) (Math.random() * 6 + 1);
if (guess == die) {

points++;
}

game++;

¥

System.out.println(‘““You guessed *’+points+‘ tim

}
¥

D McGill y



Reverse

e Problem: Given any string, print the string in reverse.

e Analysis:

— Information involved: a four letter word, w.
— |nput: w

— Output: a word v which is the reverse of w
— Definitions:

x The reverse of a word w is a word v which has the
the same characters as w, but in inverse order: the
first letter of v is the last of w, the second letter
of v is the second-to-last of w, etc.

— Note: no restrictions on the string!

D McGill 5



Design
The design for only strings of size 4:

1. Obtain the word w

2. Create a new word v, initially empty

3. Add the last character of w to the end of v

4. Add the third character of w to the end of v
5. Add the second character of w to the end of v
6. Add the first character of w to the end of v

/. Print v

D McGill

25



Design

Generalise the design:

1. Create a new word v, initially empty
2. Add the last character of w to the end of v

3. Add the second to last character of w to the end of v

5. Add the second character of w to the end of v
6. Add the first character of w to the end of v

/. Print v

D McGill

26



Design

Generalise the design:

1. Create a new word v, initially empty

2. Traverse the string w from last character to first, adding
the corresponding character at the end of v

3. Print v

D McGill .



Design

Generalise the design:

1. Create a new word v, initially empty
2. Set a variable index to be the last index of w

3. While the index is larger or equal to 0, repeat:

(a) Let c be the character at index, of the string w.

a
(b) Append ¢ to v
(c) decrement index by 1

4. Print v

D McGill

28



Implementation

// This solution traverses w from right to left
String w, v;

int 1ndex;
char c;
V — (U’;

index = w.length() - 1;
while (index >= 0) {
¢ = w.charAt(index) ;
V=V + C;
1ndex--;

¥

D McGill

29



Implementation

// This solution traverses w from left to right
String w, v;

int 1ndex;
char c;
V — (U’;
index = 0O;

while (index <= w.length() - 1) {
¢ = w.charAt(index);
V — €€ + C + V;
1ndex++;

¥

D McGill

30



Prime numbers

e Problem: determine whether a given positive integer is

prime or not

e Analysis:

— |Input: an integer n
— Output: a boolean: true if n is prime, false otherwise
— Definitions:
x A prime number is a number which is divisible only
by 1 and itself
x An integer a is divisible by b if there is an integer
k such that a = kb

— Assumptions: n is positive

D McGill y



Prime numbers

e Basic idea: try to find a factor of n (i.e. a number
that divides n), between 1 and n. If such number exists.
then n is not prime, otherwise it is prime.

1. Set is_prime to true

2. Set/to be?2

3. While / < n, repeat:

(a) if / divides n, then set is_prime to false
(b) increment i by 1

4. Return the value of is_prime

D McGill ,



Prime numbers

boolean 1s_prime = true;

int 1 = 2;

while (i < n) {
if (n % i == 0) is_prime = false;
14++;

D McGill

33



Prime numbers

boolean 1s_prime = true;
int 1 = 2;
while (i < n) {
if (m % 1i==20) {
is_prime = false;
1 = n;

1++;

D McGill

34



Prime numbers

boolean 1s_prime = true;
int 1 = 2;
while (i < n) {
if (m % 1i==20) {
is_prime = false;
break;

¥

1++;

D McGill

35



The end

D McGill

36



