Objects and classes

e Objects:

— An object is a composite piece of data which can
react to messages sent to it.
— The data type of an object is a class

e (Classes:

— A class is a data type
— A class is like the “blueprint” of a set of objects
— Classes have have attributes and methods (to de-
scribe the structure and behaviour if its objects.)
x Attributes: variables describing the characteristics
of objects in the class.
x Methods: operations on objects of the class; how
to react to messages from other objects.

D McGill 1



Objects are not classes

A class is a data type. An object is a particular value
whose type is some class.

An object is an instance of a class.

An object has its own separate identity and its own
separate state.

The state of an object is the values currently assigned
to its attributes.

Each object is stored in different memory locations.

Therefore the class definition does not describe doing
something to a specific object, but rather describes its
structure and how would object of the class react if they
are sent messages (i.e. if someone applies an operation
on the object.)

D McGill



Classes and methods

e A class by itself does not create any objects.

e Objects (or instances) are created in some other class
by using the new operator.

e A method by itself is not executed.

e Methods are invoked (or called) from some other class.

public class Circle

{

double x, y, radius;

double areal()

{
return Math.PI * radius * radius;
+
+

D McGill



Classes and methods

e A client of a class is whomever uses the class.

public class TestProgram
{
public static void main(Stringl[] args)
{
double a;
Circle ¢ = new Circle();
c.x = 2.0;
c.y = -3.0;
c.radius = 4.0;
a = c.area();

D McGill



Classes and methods

TestProgram

+mai n(): void

Circle

+Xx: doubl e
+y: doubl e
+r adi us: doubl e

+area(): double

D McGill



Classes and methods

e The client of a class does not need to be the class with
the main method.

public class AreaCalculator

{
double compute_area()
{
double a;
Circle ¢ = new Circle();
c.x = 2.0;
c.y = -3.0;
c.radius = 4.0;
a = c.area();
return a;
}
+

D McGill



Classes and methods

e The client of a class does not need to be the class with
the main method.

public class AnotherTestProgram

{

public static void main(String args)
{

double a;

AreaCalculator q;

q = new AreaCalculator();

a = q.compute_area();

D McGill



Classes and methods

e A class may have more than one client

e |t doesn't matter if they have methods or attributes with
the same names.

public class DifferentAreaCalculator

{

double compute_area()
{
double a;
Circle ¢ = new Circle();
= 0.0;
c.y = 0.0;
c.radius = 2.0;
a = c.area();
return a;

D McGill



Classes and methods

e A class may have more than one client

public class AnotherTestProgram

{
public static void main(String args)
{
double a, b;
AreaCalculator q;
DifferentAreaCalculator p;
q = new AreaCalculator();
= new DifferentAreaCalculator();
q.compute_area() ;
= p.compute_area();

o o '
I

D McGill



Classes and methods

AnotherTestProgram

+mai n(): void

AreaCalculator

DifferentAreaCalculator

+conput e_area(): double

+conput e_area(): double

Circle

+x: doubl e
+y: doubl e
+r adi us: doubl e

+area(): double

D McGill

10



Methods as functions

e Methods can be viewed as a “black box" with inputs and

outputs:

argl ———>
arg2 ——

argn ——>

method

> return value

e There are three kinds of methods:

— Mutators: Modify the state of objects,

— Accessors: Return information about the object,

— Constructors: Initialize a newly created object.

D McGill

11



Method types

e Mutators are usually void methods, which do not return
anything, but modify the state of the object:

argl ———>
arg2 ——i

argn ——>

method

e Accessor methods may only return values without ex-
pecting any arguments as input:

method

———> return value

D McGill

12



Constructors
e Special methods, whose syntax is given by

class_name (1ist_of_arguments)

{

statements ;

e For example:

public class Student {
String name;
long 1d;
String program;
String faculty;

Student (String n, long i)

{
name = n;
id = 1;

}

//...

¥

D McGill

13



Constructors (contd.)

e A constructor method gets executed when a new object
of the class gets created using the new keyword. There-
fore, the general syntax for the expression used to create
objects is:

new class_name (list_of_actual_arguments);
e For example

Student al;
al = new Student(‘“‘Alan Turing’’, 110011223331);

D McGill

14



Constructors

public class Circle {
double x, y, radius;

Circle(double x0, yO, r)
{

x = x0;

y = y0;

radius = r;

double area()

{

return Math.PI * radius * radius;

}
}

D McGill

15



Method types

public class Circle {
double x, y, radius;

Circle(double x0, yO, r)

{
x = x0;
y = y0;
radius = r;
}

double area()

{

return Math.PI * radius * radius;

}

// continues. ..

D McGill

16



Method types

double getX() // accessor
{

return x;

¥

double getY() // accessor
{

return y,;

}

double getRadius() //accessor
{

return radius;

}

//continues ...

D McGill

17



Method types

void setX(double x1) // mutator
{

X = x1;

¥

void setY(double y1) // mutator
{

void setRadius(double r) // mutator
{
radius = r;
}
}

D McGill

18



Method types

public class AreaCalculator

{

double compute_area()
{
double a;
Circle ¢ = new Circle(0.0,-4.0, 7.0);
c.setX(2.0);
c.setY(-3.0);
c.setRadius(4.0);
a = c.area();
return a;

D McGill

19



Monsters

e Develop a representation for "Monsters” in a video game,
where the monsters have:

— a position,
— a number of “hitpoints’ between 0 and 100, rep-
resenting its health. If the number reaches 0, the

monster is dead.

e And, a monster can:

— receive damage when attacked.

D McGill y



Monsters

class Monster {
double x, y;
int hp = 100;
boolean alive = true;

void get_damaged()
{
if (hp > 0) hp = hp - 10;
if (hp <= 0) alive = false;
b
b

D McGill

21



Monsters

class Monster {
double x, y;
int hp;
boolean alive;

Monster (double x0, double y0)

hp = 100;
alive = true;

}

void get_damaged() // mutator

{
if (hp > 0) hp = hp - 10;
if (hp <= 0) alive = false;
b

// continues

D McGill

22



Monsters

boolean isAlive() // accessor

{

return alive;

b
double getX() { return x; }
double getY() { return y; }

int hitPoints()
{
return hp;
¥
¥

D McGill

23



Monsters

class Monster {
double x, y;
int hp;
boolean alive;

Monster (double x0, double y0)

hp = 100;
alive = true;

}

void get_damaged() // mutator

{
if (hp > 0) hp = hp - 10;
if (hp <= 0) alive = false;
b

// continues

D McGill

24



Monsters

public class Game {
public static void main(Stringl[] args)
{
Monster ermnesto, yannick;
ernesto = new Monster (0.0, 0.0);
yannick = new Monster(50.0, -30.0);
yannick.get_damaged() ;
int 1 = 1;
while (i <= 10) {
ernesto.get_damaged() ;
i++;
b
System.out.println(yannick.isAlive()) ;
System.out.println(ernesto.isAlive());

D McGill



Monsters

void recover()
{
if (alive && hp < 100)
{
hp = hp + 5;
}
}

void attack(Monster other)
{
if (alive) {
other.get_damaged () ;
}
}
}

D McGill

26



Monsters

void recover()
{
if (alive && hp < 100)
{
hp = hp + 5;
}
}

void attack(Monster other)
{
if (this.alive) A
other.get_damaged () ;
}
}
}

D McGill

27



Monsters

public class Game {
public static void main(Stringl[] args)
{
Monster ermnesto, yannick;
ernesto = new Monster (0.0, 0.0);
yannick = new Monster(50.0, -30.0);
yannick.get_damaged() ;
int 1 = 1;
while (i <= 10) {
ernesto.get_damaged () ;
ernesto.attack(yannick) ;
i++;
by
System.out.println(yannick.isAlive());
System.out.println(ernesto.isAlive());

D McGill

28



The End

D McGill

29



