Objects as first class values
e Objects can be attibutes of other objects

public class Rabbit {
void jump() { ... }
b
public class Cage {
Rabbit my_rabbit;
void put(Rabbit a)
{
my_rabbit = a;
¥
Rabbit get ()
{
return my_rabbit;
by
by

...elsewhere. ..

Rabbit bugs = new Rabbit();
Cage ¢ = new Cage();

c.put (bugs) ;

Rabbit wester = c.get();

D McGill



Encapsulation and visibility

Abstraction and visibility
Hiding the state of an object

Hiding (part of) the structure of an object (attributes
and /or methods.)

Hiding from clients

Security: maintaining the integrity of data. Enforcing
limited visibility so that clients cannot “corrupt” the
state of an object, so that only the class of the object
can change the object’s state.

Visibility modifiers (for attributes and methods):
public, private and protected.

Visibility modifiers are orthogonal (independent) of
whether the attribute or method is static or not. So
they can be combined in any way.

D McGill



Visibility modifiers for attributes

e A normal attribute has the syntax:
type variable;

e With a modifier:
modifier type variable;

e So there are three forms:

public type variable;
private type variable;
protected type variable;

e The default is protected.

e In general:

[modifier] type variable [= expression];

D McGill



Visibility modifiers for methods

e A normal method has the syntax:

type method (typel paraml, type2 param2,
., typen paramn)
{

statements;

¥

e In general:

[modifier] type method (typel parami,
type2 param2,

. |

typen paramn)

statements;

D McGill



Encapsulation

e A public variable or method can be accessed by any
method in any class anywhere at any time

e A private variable or method can be accessed only by
objects of the same class, this is, only by methods of
the same class.

e .. .but a private variable or method can be accessed by
all objects of the same class

e A protected variable or method can be accessed by
any method in any class in the same package only, or
by subclasses

D McGill



Hiding implementation

e Points have alternative characterizations:

— Rectangular coordinates
— Polar coordinates

e If a point is represented using rectangular coordinates,
you would like to be able to know what are its polar
coordinates and viceversa.

e \We should implement a class in a way which makes its
clients independent of the internals of the class. This
is, we can implement a class in any way as long as its
clients do not need to be changed. (Abstraction implies
Modularity and Integration.)

D McGill



Point representation

(X,y)

X

P X

D McGill



Point representation

D McGill



Point representation

Y
A
X =m cos(a)
y =m sin(a)
(m,a)
T T T T Ry
A
7 | _
/ |
/7
/ I a = atan(y/x)
|
a
A X, > X

D McGill



Point operations

e Accessor methods:

— get_X

— get_y
— get_angle
— get_magnitude

e Mutator methods

— set_xy
— set_angle_and_magnitude

D McGill

10



Underlying rectangular representation

public class Point

{

private double x, y;

public void set_xy(double x, double y)
{

this.x = X;
this.y = y;
¥
public double get_x()

{

return Xx;

¥
public double get_y()

{

return y,;

}

// Continues below ...

D McGill

11



public double get_angle()

{
return Math.atan2(y, x);
¥
public double get_magnitude()
{
return Math.sqrt(x*x + y*y);
¥
public void set_angle_and_magnitude(double a,
double r)
{

x = r *x Math.cos(a);
y = r * Math.sin(a);

D McGill

12



Underlying polar representation

public class Point

{
private double angle, magnitude;
public double get_angle()

1
return angle;
}
public double get_magnitude()
{
return magnitude;
¥
public void set_angle_and_magnitude(double a,
double r)
{
angle = a;
magnitude = r;
¥

// Continues below ...

D McGill

13



public void set_xy(double x, double y)
{
magnitude = Math.sqrt(x*x + y*y);
angle = Math.atan2(y, x);

by
public double get_x()
{
return magnitude * Math.cos(angle)
¥
public double get_y()
{
return magnitude * Math.sin(angle)
by

)

)

D McGill

14



Aliases and shared references

e Variables and values

o |f we execute:

X = 5;
e then the value of x is 5.
e Strictly speaking x is not 5; x is a memory location.

e So while we would informally read x==5 as "x is 5", the
actual meanning is the value of x is 5.

e Hence, after executing

X = 5;
y = 95;

and both x and y have the same value, but they are not
the same variable.

D McGill

15



Variables and values

e For primitive data types (int, boolean, float, String,
etc.)

X =Y;

means copy the value of y in the memory location of x;

e So
int x, V;
X = 4;
y = X,

means that both x and y have value 4, but they have
a separate identity because each of them is a different
memory location...

D McGill

16



Variables and values

e So the value of y is the same as the value of x, but y
is not the same as x.

e . which implies that their values are independent:

int x, V;

x = 4;

y = X,

X++;

// x == 5 and y ==

e Variables can be changed over time by assignment.

e If x and y are two variables of a primitive data type, we
say that they are equal if their values are the same.

e \We can test for whether the values of two variables are
the same using the == operator.

D McGill

17



Being the “same” as something else

e Suppose we have

Ax, v,
x = new AQ);
y = new AQ);

e Both variables x and y are A's

e .. but the objects they refer to are different, individual,
and independent A's.

D McGill

18



Example:

class Employee

{
String name;
float salary;
Employee (String name, float salary)
{
this.name = name;
this.salary = salary;
by
String name() { return name; }
float salary() { return salary; }
void raise_salary(float percentage)
{
salary = salary * (1 + percentage/100.0f);
b
b

D McGill

19



Example (contd.)

public class Test
{
public static void main(Stringl[] args)
{
Employee el = new Employee(‘‘Adam Smith’’, 80000
Employee e2 = new Employee(‘‘John Locke’’, 50000
el.raise_salary(10f);
System.out.println(e2.salary());

D McGill

20



Example (contd.)

main frame

el

e2 —_

Employee
name | Adam Smith
salary 80000.0f
Employee
name | John Locke
salary | 50000.0f

D McGill

21



Example (contd.)

main frame

el

e2 —_

Employee
name | Adam Smith
salary 88000.0f
Employee
name | John Locke
salary |50000.0f

D McGill

22



Alias

e A variable is an alias of another variable if they both
point to the same object.

Ax, v;
x = new AQ);
y = X

e In this case x and y are the "same’.

e More precisely, the values of x and y are the same
reference (pointer,) and therefore they refer to the same
object.

D McGill

23



Example (contd.)

public class Test
{
public static void main(Stringl[] args)
{
Employee el = new Employee(‘‘Adam Smith’’, 80000
Employee e2 = el;
el.raise_salary(10f);
System.out.println(e2.salary());

D McGill

24



Example (contd.)

main frame

el

e2

Employee
name | Adam Smith
salary | 88000.0f

D McGill

25



e Compare Test with

int x1, x2;

x1l = 6;
x2 = x1;
x1l = x1 * 3;

Aliases

e |f two variables are aliases, whatever one does to either
of them, affects the other, because they refer to the

same object.

D McGill

26



Shared references

public class BankAccount
{
private float balance;
public BankAccount(float b) { balance = b; }
public void deposit(float amount)
{

balance = balance + amount;

¥

public void withdraw(float amount)
{
if (balance >= amount)
balance = balance - amount;

}

public float balance() { return balance; }

D McGill

27



Shared references

public class Person
{
private String name;
private BankAccount account;
public Person(String name) { this.name = name; }
public void set_account(BankAccount a)

{

account = a;
b
public String name() { return name; }
public BankAccount account() { return account; }

D McGill

28



Shared references

public class BankingTest
{

public static void main(String[] args)

{
Person pl = new Person(‘‘Tom”);
Person p2 = new Person(‘‘Amanda’’) ;
BankAccount b = new BankAccount (10000.0f) ;
pl.set_account(b);
p2.set_account (b) ;

b.withdraw(500.0f) ;

BankAccount ¢ = p2.account();
float balance = c.balance();
System.out.println(balance) ;

D McGill

29



Shared references

main frame Person
ol name Tom
02 account null
b
C
balance
Person

name| Amanda
account null

D McGill

30



main frame

Shared references

pl
p2
b
C

balance

Person
name Tom
account null
Person
name| Amanda
account null
BankAccount
balance 10000.0

D McGill

31



Shared references

main frame Person
ol name Tom
02 account ~_
b —_—
C
balance
Person
name| Amanda
account \
BankAccount

balance 10000.0

D McGill 32



main frame

Shared references

pl

p2

b

il

C

/ |

balance

9500.0

Person

name Tom
account ~_

Person

name| Amanda

account \
BankAccount
balance | 9500.0

D McGill

33



The end

D McGill

34



