Static variables

e [he attributes of a class are normal variables.

e The values of these attributes are individual to each
object in a class.

public class A {

int x;
}
public class B {
void m()
{
A u = new AQ);
A v = new AQ);
u.x = b;
V.X = -7;
// Here, u.x == 5 and v.x == -7
}
}

D McGill

Static variables (contd.)

e Static variables are attributes of the class, not of the
objects

e Static variables are shared between all the objects in a
class

public class A {
static 1nt x;

}
public class B {
void m()
{
A u=new AQ);
A v = new AQ);
u.x = 5;
V.X = -7;
// Here, u.x == -7 and v.x == -
}
}

D McGill

Example

public class A

{
void p()
{
System.out.println(‘Hello”’) ;
¥
static void q()
{
System.out.println(‘‘Good bye’’);
¥
¥

(Note: Classes can have both static and non-static
methods)

D McGill

Calling static methods

e A call to a static method takes the form
class_name.method (argl,arg2,...,argn)

e When the method is called, the corresponding frame
does not have a reference to this, because there is no
object receiving the message.

e |t can also take the form

object_reference.method (argl,arg2,...,argn)

e But the object will be ignored

D McGill

Static methods access

e Since the frame of a static method does not have a
reference to an object, static methods cannot access
attributes of an object

public class A
{
int n;
void p()
{
System.out.println(n); //0K
b
static void q(Q)
{
System.out.println(n); //WRONG
I
by

D McGill

Accessing static methods from
non-static methods

public class A

{
void p()
{
System.out.println(‘“Hello”’);
qO);
¥
static void q(Q)
{
System.out.println(‘““Good bye’’);
¥
¥
. is OK

D McGill

Accessing non-static methods from
static methods

public class A

{
void p()
1
System.out.println(‘“Hello”’);
}
static void q()
1
System.out.println(‘“‘Good bye’’);
pO;
}
¥

. is not OK, because in method g, there is no reference
“this" to an object to which the message "p ()" would be
sent.

D McGill

When to use each kind of method

e Non-static methods are used to describe the behaviour
of objects.

e Static methods are used to describe functions, or services
that a class provides, independently of any object of that
class.

D McGill 8

Separation of concerns

e Separate the User Interface from the Logic of the
program in separate modules

— User Interface: Anything that specifies interaction
with the user (i.e. print, keyboard operations.)

— Logic:
+ Data representation (meaningful classes)
% Algorithms (methods that solve the problem(s))

e Saparating the user interface from the logic increases
the maintainability

D McGill

Separation of concerns

public class BankAccount {
private float balance;
public BankAccount() { balance = 0.0f; }
public void deposit(float amount)

{

balance += amount;
+
public void withdraw(float amount)
{

if (amount <= balance)

balance -= amount;

}
public float getBalance()
{

return balance;
}

D McGill

10

Separation of concerns

public class Banking {
static float enterAmount ()
{
float a = 0.0f;
do {
System.out.print (‘“Enter an amount: *’);
a = Keyboard.readFloat();
} while (a < 0.0f);
return a;

}

static void printBalance(BankAccount a)
{
System.out.print(‘‘Balance = *’);
System.out.println(a.getBalance());

¥

D McGill

11

public static void main(Stringl[] args)
{

BankAccount a = new BankAccount() ;

float x;

x = enterAmount() ;

a.deposit (x);

x = enterAmount() ;

a.withdraw(x) ;

printBalance(a);

D McGill

12

Separation of concerns

public class BankAccount {
private float balance;
public BankAccount() { balance = 0.0f; }
public void deposit()

{
float amount = Keyboard.readFloat();
balance += amount;
}
public void withdraw()
{
float amount = Keyboard.readFloat();
if (amount <= balance)
balance -= amount;
}
public void getBalance()
{
System.out.println(balance);
}

D McGill

13

Passing parameters

e Parameters are passed to a method in two different
ways:

— By value:
x A copy of the argument is assigned to the parameter
x Any changes to the parameter do not affect the
caller's argument
x Primitive values are passed by value
— By reference
x A reference to the argument is assigned to the
parameter
*x Changes to the parameter may affect the caller's
argument
x Objects are passed by reference

D McGill

14

Passing parameters by value

class A A
void f(int x)
{
X++
}
void g()
{
int x = 3;
f(x);
System.out.println(x);
}
}

D McGill

Passing parameters by reference

class B { int x; %}
class A A
void f(B u)
{
u.x++;
}
void g()
{
B u = new B();
u.x = 3;
f(u);
System.out.println(u.x);

D McGill

Ia %ss IS |n|§q|sed to null.

e A variable Whose%y el

e If a variable whose type is a class is not assigned an
object (constructed with new,) and we try to access its
attributes or methods, then a run-time error, called a
“null-pointer exception” will occur.

e In the following example, if method r is called, a null
pointer exception will occur:

class B { int x; }

class A {
void f(B u)
{

u.x = 7; // Null pointer exception
b
void g()
{
Bv; // v ==null
f(v);
b
b

D McGill

17

The null reference (contd.)

e \We can avoid these errors by using an explicit check for
a valid reference:

class B { int x; }
class A A
void f(B u)
{
if (u !'= null)
u.x = 7;
}
void g()
{
B v, // v ==null
p(v);
}
}

D McGill

18

Arrays

e An array is an indexed sequence of variables of the
same type. By indexed we mean that the variables are
consecutive in memory and each of them has an index,
with 0 being the first, 1 the second, and so on.

0O 1 2 3 4 5

e Each variable in the array is called a position, a cell or
a slot, and as any variable, it can contain a value.

e Arrays are declared as follows:
type [1 name;

e Where type is any data type (primitive or user-defined).

D McGill

19

Arrays (contd.)

e For example an array of integers called mylist which is
declared as

int[] mylist;

e In an array declaration typel[] is the type of the array,
and type is its base type. (An array of integers is not
the same as a single integer.)

e Arrays can have as base type a class.

e For example, if we have a class Mouse then an array of
mice is declared as:

Mouse[] mouse_list;

D McGill

20

Arrays (contd.)

e But declaring an array does not create the array itself,
only a reference.

e To create an array we use the new keyword.
mylist = new int[6];

e Where the variable mylist is actually a reference to the
aray itself

mylist

D McGill N

Array access

e To access individual elements of an array we use the
indexing operator [|: If variable is a reference to an
array, and number is a positive integer, or 0, then the
position number can be accessed by

variable [number]
e For example mylist [0] refers to the first position of
mylist, mylist[1] to the second, mylist[2] to the

third, and so on.

e To write a value in the array, we can use the assignment
operator:

variable [number] = expression;

e Where expression must be of the same type as the
base type of the array.

D McGill

22

Processing arrays

e Processing arrays is a generalization of processing
strings.

e a[i] isanalogousto s.charAt (i), but only for reading
the i-th, not for writing: charAt cannot be used for
modifying a string. This is: s.charAt(i) = expr; is
illegal syntax.

e Use loops to traverse an array.

e The length of an array a can be obtained by the
expression a.length

e This is independent of the number of slots that hold a
value

D McGill

23

Example 1

e Filling an array

static void fill(doublel[] a)
{
1nt index;
index = 0;
while (index < a.length) {
alindex] = Math.random();
1ndex++;
}
}

D McGill

24

Example 2

e Finding the minimum number in an array

static double find_min(double[] a)
{
int index;
double minimum;
index = 0O;
minimum = 999999999 .9;
while (index < a.length) {
if (alindex] < minimum) A
minimum = alindex];
}
index++;
}

return minimum;

by

D McGill

Example 3

e Returning the index where the minimum is located

static int find_min(doublel[] a)
{
int index, min_index;
double minimum;
index = 0O;
min_index = 0O;
minimum = al[0];
while (index < a.length) {
if (alindex] < minimum) A
minimum = alindex] ;
min_index = 1index;
}
1ndex++;
+

return min_index;

}

D McGill

Processing arrays: safety
e Since arrays are references, it is often useful to check
whether they are null or not before using them, to avoid
null-pointer exceptions.

e |f the array has as base type a class, it is also useful to
check that each slot which will be processed or accessed
is not null.

e For example:

class A { int x; }
class B {
static void m(A[] list)
{
if (list != null) {
for (int 1 = 0; i1 < list.length; i++) {
if (listl[i] != null) {
list[i] = 2 * i;
+
}
}
}

D McGill

27

Initializing arrays

e |f we have a class

class B {

int n;

B(int x) { n = x; }
}

e and somewhere else we declare and create an array
B[] list = new B[7];

e Then all the slots in the array will be initialized to null.
This is, the constructor for B will not be called. If we
want an object created in each slot, we have to do it
explicitely:

for (int i=0; i < list.length; i++)
list[i] = new B(3);

D McGill

28

Initializing arrays

e Arrays can be initialized with default values using the
syntax:

type [l var = { expril, expr2, ..., exprn };
Where each expri is of type type.

e For example:

int[] a=9{1, 1, 2, 3, 5 };
Z[]1 uw =4 new Z(), new Z() };

D McGill .

The end

D McGill

30

