Growing arrays

e An array has a finite and fixed amount of memory.

e [n some applications we don't know a priori how much
memory we need.

o C/C++ allow to grow arrays at will: big data-safety
problem.

e Java does not allow to grow arrays directly, but we can
simulate it indirectly:

e Growing arrays:

— Whenever the array of interest fills up, a new, bigger
array is created,

— ...and the values of the old array are copied (shallowly)
into the new array.

e Or, use class ArrayList or Vector from the standard
library.

D McGill

The Vector and ArrayList classes

e Two classes which encapsulate growing arrays

e The two provide essentially the same functionality, but
have a slightly different underlying implementation.

e \ector has methods

void setElementAt(Object o, int index)
Object elementAt(int index)

int size()

boolean contains(Object o)

int index_of (Object o)

// ... etc

e Arraylist has methods

Object get(int index)

void set(int index, Object o)
void add(Object o)

int size()

// ... etc

D McGill

The Vector and ArrayList classes

public class Library {
private ArrayList book_list;

public Library()

{
book_list = new ArrayList();
ks
public void add_book(Book m)
{
book_list.add(m) ;
+
/] ...

D McGill

Growing arrays

e Change algorithm for adding a book m:

1. Find first available cell

2. If an available cell is found:

(a) Store m in that cell

3. Otherwise:

(a) Grow the array (copying contents of the old to the
new)

(b) Find the first available cell in the new array
(guarranteed to exist.)

(c) Store m in that cell

D McGill

Growing arrays

// In class Library
private void grow_array(int n)

{

int new_capacity = book_list.length + n;
Book[] new_list = new Book[new_capacity];
int 1 = 0;
while (i < Book_list.length) {
new_list[i] = book_list[i]; // shallow copy
i++:
b

book_list = new_list; // Update list reference

The method is private to ensure encapsulation so that only
BookDatabase objects can grow the book lists.

D McGill 5

Growing arrays

main frame

db

\

\ Library

AT

book_list —
next_available 4
number_of books 4

call grow_array(2)

Book
title Fictions
2 author Borges
3
Book
title Hamlet
director Shakespear
Book
title L'Avare
director Moliere
Book
title Don Quijot
director Cervantes

D McGill

Growing arrays

main frame
db | Book
\ — title Fictions
author Borges
o
_ —J3
Library
Book
book_list — _
next available 4 title Hamlet
number of books 7 author Shakespear
Book
grow_array_frame title L'Avare
null |0 author Moliere
n 2 null |1
: e
t_hls — null |2 Book
new_capacity 6 » null 13
new_list — null |4 title Don Quijot
i | O null |5 author Cervantes

D McGill

main frame

db [

\

Growing arrays

\ Library

book _list —
next_available 4
number_of books 4
grow_array_frame
ny| 2
this —
new_capacity 6
new_list —
il 1

D McGill

Book
— title Fictions
author Borges
o
—J3
Book
title Hamlet
author Shakespear
Book
title L'Avare
- author Moliere
null |1
null |2 Book
null |3
null |4 title Don Quijot
null |5 author Cervantes
8

Growing arrays

main frame
db | Book
\ — title Fictions
author Borges
—J2
_ —~3
Library
Book
book_list — _
next_available 4 title Hamlet
number_of books 7 author Shakespear
Book
grow_array_frame title L'Avare
— author Moliere
n 2 —1T1
: |
t_hls —] null |2 Book
new_capacity 6 » null 13
new_list — null |4 title Don Quijot
T null |5 author Cervantes
T McGill

Growing arrays

main frame
db | Book
\ — title Fictions
author Borges
—J2
_ —~3
Library
Book
book_list — _
next_available 4 title Hamlet
number_of books 7 author Shakespear
Book
grow_array_frame title L'Avare
— author Moliere
n 2 —1T1
this — — Book
new_capacity 6 » null 13
new_list — null |4 title Don Quijot
i | 3 null |5 author Cervantes
) McGill

10

main frame

db [

\

Growing arrays

\ Library

book _list —
next_available 4
number_of books 4
grow_array_frame
ny| 2
this —
new_capacity 6
new_list —
i | 4

Book
— title Fictions
author Borges
o
—J3
Book
title Hamlet
author Shakespear
Book
title L'Avare
- author Moliere
—11
] Book
null |4 title Don Quijot
null |5 author Cervantes

D McGill

11

main frame

db [

\

Growing arrays

\ Library

book _list —
next_available 4
number_of books 4
grow_array_frame
ny| 2
this —
new_capacity 6
new_list —
i | 4

Book
— title Fictions
author Borges
o
—J3
Book
title Hamlet
author Shakespear
Book
title L'Avare
- author Moliere
—11
] Book
null |4 title Don Quijot
null |5 author Cervantes

D McGill

12

main frame

db [

\

Growing arrays

\ Library

book _list —
next_available 4
number_of books 4
grow_array_frame
ny| 2
this —
new_capacity 6
new_list —
i | 4

Book
title Fictions
author Borges

Book
title Hamlet
author Shakespear

Book
title L'Avare

- author Moliere

—11

] Book
null |4 title Don Quijot
null |5 author Cervantes

D McGill

13

main frame

db [

\

\ Library

Growing arrays

book_list

next_available
number_of books

N

IN

Book
title Fictions
author Borges

Book
title Hamlet
author Shakespear

Book
title L'Avare

- author Moliere

—1

] Book
null |4 title Don Quijot
null |5 author Cervantes

D McGill

14

Growing arrays

// Version 1: explicit search for available slot
public void add_book(Book m)
{
// Find available slot
int index = 0;
while (index < book_list.length
&& book_list[index] != null) {
index++;
¥
// If available slot found, store it
if (index < book_list.length) {
book_list[index] = m;
by
// Otherwise
else {
int 1 = book_list.length;
grow_array ((int) (1 * 0.10));
book_list[l] = m;
¥

number_of _books++;

¥

D McGill

15

Growing arrays

// Version 2: Optimized (with non-fragmented array
public void add_book(Book m)
{
// If available slot found, store it
if (next_available < book_list.length) {
book_list[next_available] = m;
by
// Otherwise
else {
int 1 = book_list.length;
grow_array((int) (1 * 0.10));
book_list[l] = m;
+

next_availlable++;

D McGill

16

Array operations

e Adding elements
e Removing/deleting elements
e Finding elements

e Increasing the size of an array

D McGill

17

Sorting

e (Classical problem in Computer Science

e Problem: Given an array of objects, sort the array by
some key.

e For example: Sort an array of students by name, or sort
an array of products by price.

e Solution for small arrays using only conditionals is not
scalable.

D McGill

18

Sorting

e Analysis:

— Objects:
* An array of objects
— Relationships:
* Each object has a key (and maybe other attributes.)
x For example, if the objects are of class Student,
the key can be the name, to sort by name, or the
id, to sort by id.
x Each pair of keys can be compared: there is a
(total) order relation between the keys.
— Input: the array
— Output: the array, or a copy, where the objects are
placed in order (ascending) with respect the the key
of interest.

e Small variation of the problem: sort an array of numbers:
the order relation between keys is simply <=.

D McGill

19

Sorting algorithms

e [nsertion sort
e Selection sort
e Bubble sort
e Heap sort

e Merge sort

e Quick sort

e Bucket sort
e Counting sort
e Radix sort

e Sorting networks

D McGill

20

Insertion sort

e Notation (not Javal): ali..j] is the part of the array

from the i-th index to the j-th index.

e |dea: sorting a set of cards can be done by inserting a
card in the subset of the cards which are already sorted.

0

12

j

Kk

)

- J

~

al ready sorted

D McGill

21

Insertion sort

e Notation (not Javal): ali..j] is the part of the array

from the i-th index to the j-th index.

e |dea: sorting a set of cards can be done by inserting a
card in the subset of the cards which are already sorted.

0

12

j

Kk

)

- J

~

al ready sorted

key | k

a<=k<b

D McGill

22

Insertion sort

e Notation (not Javal): ali..j] is the part of the array
from the i-th index to the j-th index.

e |dea: sorting a set of cards can be done by inserting a
card in the subset of the cards which are already sorted.

0 12 J
alk |b
)
~_/
_) key| k
V

al ready sorted a<=k<b

D McGill y

Insertion sort

e Notation (not Javal): ali..j] is the part of the array
from the i-th index to the j-th index.

e |dea: sorting a set of cards can be done by inserting a
card in the subset of the cards which are already sorted.

012 Jj+1
akb P

\§),
Y

al ready sorted

D McGill 5

e Example:

Insertion sort

D McGill

25

e Example:

Insertion sort

D McGill

26

e Example:

Insertion sort

D McGill

27

e Example:

Insertion sort

D McGill

28

e Example:

Insertion sort

D McGill

29

e Example:

Insertion sort

D McGill

30

e Example:

Insertion sort

D McGill

31

e Example:

Insertion sort

D McGill

32

e Example:

Insertion sort

D McGill

33

e Example:

Insertion sort

D McGill

34

e Example:

Insertion sort

D McGill

35

e Example:

Insertion sort

D McGill

36

Insertion sort

e Algorithm:

— Input: an array of numbers a

1. If al1]<al[0] swap them.
2. Insert a[2] into a[0..1]
3. Insert al[3] into a[0..2]

4. Insert a[4] into a[0..3]

6. Insert a[length of a-1] into a[0. .length of a-2]

D McGill

37

Insertion sort

e Algorithm refined:

1. For each j from 1 to the length of a-1

(a) Insert alj] into the sorted subarray a[0..j-1]
e Algorithm refined: (Full algorithm)

1. For each j from 1 to the length of a-1

(a) Set key to alj]
(b) Setitoj - 1
(c) While i >= 0 and ali] > key do
i. Set ali+1] to ali]
ii. Decrement i by 1
(d) Set a[i+1] to key

D McGill

38

Insertion sort

e Implementation

void insertion_sort(int[] a)

{
int 1, j, key;
for (j = 1; j < a.length; j++) {
key = aljl;
i=3-1;
while (i >= 0 && al[i] > key) {
ali+1] = alil;
1--;
}
ali+l] = key;
+
+

B McGill .

Selection sort

0 12 | [
k m
/]\ mis the mn of
t he unsorted part
al ready sorted unsorted
T McGill

40

Selection sort

012 | [
m k
N A J
A\ Y
al ready sorted unsort ed

D McGill

41

Selection sort

012 Jj+1
m| h
Y Y
al ready sorted unsorted

D McGill

42

e Example:

Selection sort

D McGill

43

e Example:

Selection sort

D McGill

44

e Example:

Selection sort

D McGill

45

e Example:

Selection sort

D McGill

46

e Example:

Selection sort

D McGill

47

e Example:

Selection sort

D McGill

48

e Example:

Selection sort

D McGill

49

e Example:

Selection sort

D McGill

50

e Example:

Selection sort

D McGill

51

e Example:

Selection sort

D McGill

52

e Example:

Selection sort

D McGill

53

e Example:

Selection sort

D McGill

54

e Example:

Selection sort

D McGill

55

e Example:

Selection sort

D McGill

56

e Example:

Selection sort

D McGill

57

e Example:

Selection sort

D McGill

58

e Example:

Selection sort

D McGill

59

Selection sort

e |dea:

. Look for the minimum mO in a[l.length a-1].

- Swap the minimum and a[0].

Look for the minimum m1 in a[2..length a-1]

- Swap m1 with a[l]

Look for the minimum m2 in a[3..length a-1]

- Swap m2 with a[2]

Look for the minimum m3 in a[4..length a-1]

. Swap m3 with a[3]

9. ...

D McGill

60

Selection sort

e Algorithm

1. For each j from 0 to length a - 2 do

(a) Let min_index to be the index of the minimum in
alj+1. length a-1]
(b) Swap a[min_index]| and a[j]

e Algorithm refined

1. For each j from 0 to length a - 2 do

(a) Let minimum be alj]
(b) Set min_index to]
(c) Foreach i from j+1 to the length a - 1 do
i If a[i] < minimum then
A. Set minimum to ali
B. Set min_index to i
(d) Swap a[min_index| and alj]

D McGill

61

Selection sort

e Implementation

void selection_sort(int[] a)
{
int minimum, min_index, temp;
for (int j = 0; j <= a.length - 2; j++) {
minimum = alj];
min_index = j;
for (int 1 = j + 1; i <= a.length - 1; i++) {
if (ali] < minimum) A
minimum = al[i];
min_index = 1;
}
}
temp = aljl;
aljl = almin_index];
a[min_index] = temp;

D McGill

62

Sorting arrays of Objects

Choose a key, which can be compared.

class Book {
private String title, author;

//. ..
public String get_title() { return title; }

public String get_author() { return author; }
/...

D McGill)

Sorting arrays of Objects

e Comparing strings: Lexicographical order
e The compareTo method from the String class

e sl1.compareTo(s2) returns a negative integer if s1 is
lexicographically before 2, 0 if they are equal, and a
positive integer if s1 is lexicographically after s2.

Sstring sl = ‘“‘aacb’, s2 = ““aafa’’;

int n = sl.compareTo(s2); // n = -3;
String s3 = ‘‘aacbgg’’;

int m = s3.compareTo(s2); // n = -3
int k = s3.compareTo(sl); // n = 2

D McGill

64

Sorting arrays of Objects

void insertion_sort(Book[] a)
{
int 1, j;
String key;
Book focus;
for (j = 1; j < a.length; j++) {
focus = aljl;
key = focus.get_title();
1=73-1,;
while (i >= 0
&& key.compareTo(ali] .get_title()) < 0) {
ali+1] = alil; // copy the reference
1--;
by

ali+1] = focus;

D McGill .

Sorting arrays of Objects

void selection_sort(Book[] a)
{
1nt min_index;
String minimum;
Book temp;
for (int j = 0; j <= a.length - 2; j++) {
minimum = alj].get_title();
min_index = jJ;
for (int 1 = j + 1; i <= a.length - 1; i++) {
String current_key = al[i].get_title();
if (current_key.compareTo(minimum) < 0) {
minimum = current_key;
min_index = 1,
I
by
temp = alj]l;
aljl = almin_index];
a[min_index] = temp;

D McGill

66

The end

D McGill

67

