Review

e Inheritance:

— Represents the “is-a” relationship between classes

— Represents specialization of classes (subsets)

— Represents a way of describing alternatives
(alternative subclasses)

— Is a mechanism for reusability

e Syntax:
class B{ ... }
class A extends B { ... }

e A is a subclass of B, or equivalently, A is derived from
B, Ais a child of B, or B is a superclass of A, or B
Is a parent of A.

e Means that the set of A objects is a subset of the set
of B objects.

class Labrador extends Dog { ... }

D McGill

Inheritance

e (lasses as sets of objects:

— "is-a’ between an object and a class is the same as €
— “is-a" between two classes is the same as C

o Llet A B, C be sets

— fAC Bandxz € Athenx € B

—fACBand BC(Cthen ACC

— If BC A and C C A, and there is no other set D
such that D C Athen A=BUC

D McGill ,

Inheritance

e Inheritance (is-a) and aggregation (has-a):

— If A is a subclass of B then A has all the attributes
and method of B, and it may have more.
— If every A is a B and every B has a C then every A

has a C

— If every labrador is a dog and every dog has a tail
then every labrador has a tail.

D McGill

Inheritance

class C{ ... }
class D { ... }
class E{ ... }
class B {

C vl, v2;

D u;

void m() { ... %}
}
class A extends B {

E x;

Cy;

void p() { ... }
void s() { ... %}

¥

D McGill

Inheritance

// In some client
A obj = new AQ);

obj.pQO);
obj.m();
// We can refer to ... obj.x ... obj.y ...
// ... obj.u ... obj.vl ... obj.v2 ...
some frame
A
Obj — ()
vl
v2 B
u
. .X)
y

D McGill

Accessing a method or attribute

Method (and attribute) lookup:

If a method (or attribute) m is applied to an object
of type A the method m of class A is executed (or
accessed) if it is declared in A.

It m is not defined in A and A is a subclass of B
then the method m of class B is executed if it is

declared in B.
If m is not defined in B and B is a subclass of C
then the method m of class C is executed if it is

declared in C.

If no “ancestor of A has a definition of method m
then an error occurs.

D McGill

Inheritance

e A method in a subclass can access the attributes and
methods of a superclass.

class A A
void m()
{
System.out.println("1 ");
}
}
class B extends A {
void p()
{
System.out.println("2 ");
m() ;
}
+

D McGill

Inheritance

public class InhO

{
public static void main(Stringl[] args)
{
A objl = new AQ);
B obj2 = new B();
objl.m();
obj2.m();
0bj2.p0);
¥
¥

D McGill

Inheritance

e A method in a subclass can access the attributes and
methods of a superclass.

class A {
int x = 3;
void m()

{
System.out.println(x);

}
class B extends A {
void p()
{
System.out.println(x);

D McGill

Inheritance

e Shadowing a variable: if class A has an attribute n and
a subclass B of A also declares an attribute n, then n

of B shadows n of A.

class A {
int x = 3;

}

class B extends A {
int x = b5;

e If an instance of B is created it will contain both
variables. Shadowed variables are also inherited, but
can be accessed only by using the special reference
super.

D McGill

10

Inheritance

e A method in a subclass can access the attributes and
methods of a superclass.

class A {
int x = 3;
void m()

{
System.out.println(x);

¥

class B extends A {
int X = 5;
void p()
{
System.out.println(x);

D McGill

11

Inheritance

e A method in a subclass can access the attributes and
methods of a superclass.

class A {
int x = 3;
void m()

{
System.out.println(x);

¥

class B extends A {
int X = 5;
void p()
{

System.out.println(super.x);

D McGill

12

Inheritance

e Overriding a method: if class A has a method m and a
subclass B of A also declares a method called m, then

m of B overrides m of A.

class A {
void m()
{
System.out.println(““l »’);
}
}
class B extends A {
void m()
{
System.out.println(*2 >’);
}
}

D McGill

13

Inheritance

e A method in a subclass can access the attributes and
methods of a superclass.

class A {
void m()

{
System.out.println("1 ");

¥

class B extends A {
void m()

{
System.out.println("3 ");

Iy
void p(Q)
{
System.out.println("2 ");

m() ;

D McGill

14

Inheritance

e A method in a subclass can access the attributes and
methods of a superclass.

class A {
void m()
{
System.out.println("1 ");
¥
b
class B extends A {
void m()
{
System.out.println("3 ");
¥
void p(Q)
{
System.out.println("2 ");
super.m() ;
b
I

D McGill

15

Inheritance

e A method in a superclass can access indirectly the
attributes and methods of a subclass (but only those
which have been overriden.)

class A {
void m()

{
System.out.println("1 ");

by
void p()
{
System.out.print("2 ");

m() ;

}

class B extends A {
void m()

{
System.out.println("3 ");

}

D McGill

16

Inheritance

e A method in a superclass can access indirectly the
attributes and methods of a subclass.

public class Inhl

{

public static void main(Stringl[] args)

{

A objl = new AQ);
B obj2 = new B();
objl.mQ);
0bj2.m();
obj1.pQ);
obj2.p();

D McGill

17

Polymorphism

e Polymorphism means "many forms.”

e Polymorphism is the characteristic of being able to assign
a different meaning or usage to something in different
contexts

e If a class A has a method m we could give different
meaning to m by defining subclasses that override m,
and therefore the result of executing m depends on
the context, since the context decides which subclass is
instantiated.

D McGill

18

Polymorphism

class Creature A1
boolean alive;
void move()
{
System.out.println("The way I
}
}

class Human extends Creature {
void move()
{
System.out.println("Walking. ..
}
}

class Martian extends Creature A{
void move ()
{
System.out.println("Crawling. .
+
+

move 18 by..

I);

.u);

D McGill

19

n) .
.)

Polymorphism

public class ZooTest {
public static void main(Stringl[] args)
{
Human yannick = new Human() ;
Martian ernesto = new Martian();
ernesto.move() ;
yannick.move () ;

D McGill

20

Polymorphism

e A polymorphic method is a method which can accept
more than one type of argument

e Kinds of polymorphism:

— Overloading (Ad-hoc polymorphism): redefining a
method in the same class, but with different signature
(multiple methods with the same name.) Different
code is required to handle each type of input
parameter.

— Parametric polymorphism: a method is defined once,
but when invoked, it can receive as arguments objects
from any subclass of its parameters. The same code
can handle different types of input parameters.

D McGill

21

Polymorphism

class Creature {
boolean alive;
void move ()
{
System.out.println("The way I
}
}

class Human extends Creature {
void move()
{
System.out.println("Walking. ..
+
+

class Martian extends Creature {
void move()
{
System.out.println("Crawling. .
+
+

move 1s by..

l),

.u);

D McGill

22

n) .
.)

Ad-hoc Polymorphism (Overloading)

class Zoo {
void animate (Human h)

{

h.move();

}

void animate(Martian m)

{
m.move() ;
}
}

public class ZooTest {

public static void main(String[] args)

{
Zoo my_zoo = new Zoo();
Human yannick = new Human() ;
Martian ernesto = new Martian();
my_zoo.animate (ernesto); // Polymorphic call
my_zoo.animate(yannick); // Polymorphic call

¥
¥

D McGill

23

Ad-hoc Polymorphism (Overloading)

class Penguin extends Creature {
void stumble ()
{
System.out.println(‘“‘Ouch’);
¥
¥

class Zoo {
void animate (Human h)

{
h.move() ;
}
void animate(Martian m)
{
m.move () ;
}
void animate(Penguin p)
{
p.move() ;
}

by
D McGill

24

Parametric Polymorphism

class Zoo {
void animate(Creature c)
{
c.move() ;
}
}

public class ZooTest {

public static void main(Stringl[] args)

{
Zoo my_zoo = new Zoo();
Human yannick = new Human() ;
Martian ernesto = new Martian();
my_zoo.animate(ernesto); // Polymorphic call
my_zoo.animate(yannick); // Polymorphic call

D McGill y

Parametric Polymorphism

class Zoo {
void animate(Creature c)
{
c.move(); // Dynamic-dispatch
// move *must* be defined in class Creature
}
}

public class ZooTest {
public static void main(Stringl[] args)
{
Zoo my_zoo = new Zoo();
Human yannick = new Human() ;
Martian ernesto = new Martian();
Penguin paco = new Penguin();

my_zo00.animate (ernesto) ;
my_zoo .animate (yannick) ;
my_zo0 .animate (paco) ;

}

by
D McGill

26

Accessing super

class Human extends Creature A
void move()
{
super .move () ;
System.out.println(‘“Walking. ..

}
¥

class Martian extends Creature {
void move()
{
super .move ()
System.out.println(““‘Crawling. .

¥
¥

n) .
.)

D McGill

27

Polymorphism

e Polymorphism is a tool that permits abstraction and
reusability

e A polymorphic method is a method which can receive
as input any object whose class is a subclass of the
methods's parameter.

e Ad-hoc polymorphism is overloading (providing separate
methods for each expected parameter type)

e Parametric polymorphism relies on dynamic-dispatching.
Dynamic-dispatching is the process by which the runtime
system directs the message of an object to the
appropriate subclass.

e A dynamic-dispatch can be decided only at run-time,
not at compile-time, because the compiler cannot know
which is the actual object passed as argument to a
polymorphic method. Furthermore, the same method
might be called with different objects from different
classes during the execution of the program.

D McGill

28

The end

D McGill

29

