Exception handling

e An exception is generated (raised) with the throw
statement:

throw object;

where object is an instance of a subclass of Exception
or Throwable

e The try-catch statement:

try {
statements ;

by

catch (ExceptionSubclassl e) {
statementsl] ;

by

catch (ExceptionSubclass2 e) {
statements?2;

¥

D McGill

Exception handling

e A try-catch statement executes its default statements in
sequence, and

— If no exception is raised, then computation continues
after the catch clauses

— Otherwise, if an exception is raised, the sequence of
statements is interrupted, and execution continues
in the catch clause that matches the type of the
exception

e After a catch clause finishes, computation continues
after the try-catch. This is, the flow of control does
not return to the point where the exception occurred.
Note: [t never returns to the method that raised the
exception, in contrast with a method call.

e An exception which is not caught by a try-catch, is
“propagated’, i.e. it is raised again

D McGill

Exception handling

int some_method(int b)
{
int a, ¢, d;
a = b;
if (b '=0) ¢ =a / b;
else ¢ = 0;
d =c + 2;
return d;

D McGill

Exception handling

int some_method(int b)

{
int a, ¢, d;
try {
a = b;
c=a/ b;
d =c¢c + 2;
}
catch (ArithmeticException e)
d = 2;
}
return d;
}

D McGill

Exception handling

class SomeClass {
static int some_method(int b)

{
int a, c, d;
try {
a = b;
c=a/ b;
d =c + 2;
}
catch (ArithmeticException e) {
d = 2;
}
return d;
}

static void yet_another_method()
{
int x = 5, y;
y = some_method(x) ;
System.out.println(y) ;

¥
¥

D McGill

Exception handling

class SomeClass {
static int some_method(int b) throws ArithmeticE
{
int a, c, d;
a = b;
c=a/ b;
d =c¢c + 2;
return d;

¥

static void yet_another_method()
{
int x = 5, y;
try {
y = some_method(x);
¥
catch (ArithmeticException e) {
y = 2;
by
System.out.println(y) ;
b
b

D McGill

Exception handling

class Food {
boolean fresh, smelly;
¥
class FoulSmell extends Exception {
public String toString() {
return ‘“‘Yuck’;

¥
}

class FoodPoison extends Exception {
public String toString() {
return ‘‘Ouch’’;

¥
¥

D McGill

Exception handling

static void smell(Food f) throws FoulSmell

{
if (f.smelly)
throw new FoulSmell();
System.out.println("Smells 0K");;
+

static void eat(Food f) throws FoodPoison

{

System.out.println("Hmmm...");
digest (f);
b
static void digest(Food f) throws FoodPoison

{
if (!f.fresh)
throw new FoodPoison();

D McGill

Exception handling

static void dine()

{

try {
Food fish = new Food();
fish.smelly = false;
fish.fresh = true;
smell(fish);
eat (fish) ;

}

catch (FoulSmell e) A
System.out.println(e);
+
catch (FoodPoison e) {
System.out.println(e) ;
+
+

D McGill

Exception handling

// fish.smelly = false; fish.fresh = true;

dine

smell
! ;>
: : i (tsmel
tf}/{ : Iit(hrts)(/nveng\ZV FS();
smellfish). ™" <] -
eat(fish); '
} :
catch (FS e) { ' eat digest
| catch (FP &) { | :
: , ifi (\f.fresh)
: '} digest(f); S LI fhrow new FP();
V ----------------
D McGill

10

Exception

// fish.smelly = true;

di ne

snel |

eat (fish);

>

Eif (f.smelly)
>t hr ow new FS();

}catchl(FS e) { <t

handling

eat di gest
: Lieh (P o)
' . if (!f.fresh)
P } di gest () t hrow new FP();
V
) McGill

11

Exception handling

// fish.smelly = false; fish.fresh = false;

di ne

eat(fish); -....

%:atch (FS e) {

smel |
P>
E I f f. |
tr?/ { I tg\rosvnﬁewygzs();
smel [(fishy i &{-man-- :

eat di gest
}catch(FP e) {<-: :
. if (!'f.fresh)
.} """ di gest (f), _____________ '>t hr ow new FP()1
v
 McGill

12

Exception handling

e A method can throw more than one class of exceptions:

void m() throws A, B,

{
. throw new A()
. throw new B(...)
+
e ... but the exception needs not be raised explicitly in

the method itself: it can be raised by another method
called by m.

D McGill

13

Exception handling

e Exceptions can be used not only for errors, but for
control-flow too:

class Sheep {
private int 1d;
public Sheep(int i) { n = 1i; }
public void jump()

{
System.out.println(‘‘Sheep #’+id+”’ jumped”’);
if (id == 6)
throw new LoudSound(i);
+

D McGill

14

Exception handling

class LoudSound extends Throwable {
private int n;
public LoudSound(int i) { n = i; }
public toString()
{
return ‘‘I was 1n sheep #’+n;
b
¥

D McGill

15

Exception handling

class GoToSleep {
public static void main(Stringl[] args)
{
try {
for (int i = 1; i < 100; i++) {
Sheep s = new Sheep(i);
s. jump() ;
b
System.out.println(‘‘zzzz...”’);
¥
catch (LoudSound s) {
System.out.println(s);
¥
b
b

D McGill

16

Exception handling

e Some exceptions arise without an explicit throw.

e Some standard exceptions

Exception
RunTimeException
Index0OutOfBounds
StringIndexOutO0fBounds
ArithmeticException (e.g. division by 0)
NullPointerException
NoSuchMethodException
ClassNotFoundException

D McGill

17

Recursion

A recursive method is a method that calls itself (directly
or indirectly.)

A recursive definition is a definition of something in
terms of itself

Some recursive definitions don't make sense, (e.g. from
Webster's: growl: to utter a growl), but others do

For example:

— A list of numbers is either:
* A single number, or
x A number followed by a list of numbers.
— For example:
* 5is a list of numbers
x 7,5 s a list of numbers (because 5 is a list)
* 0, 7, 5is a list of numbers (because 7, 5 is a list)
x 8,6, 7, 5is a list of numbers (because 6, 7, 5 is a
list)

D McGill

18

Recursive functions

e Factorial: the factorial of a natural number n, written
n! is the multiplication of the first n positive integers,
l.e.

nl=1-2-3-...-(n—=2)-(n—1)-n (1)

But note that
1-2:3-...-(n—=2)-(n—1)=(n-1)! (2)
So by (1) and (2) we get

nl=mn-1!n (3)

But we have to assume a “"base case’, by defining

0! =1 (4)

D McGill

19

Recursive functions (contd.)

Hence, (3) and (4) together gives us an alternative, and
recursive definition of (1):

nl 1 ifn=20
| (n—=1)!'-n otherwise

This can be implemented as a static recursive method:

static int factorial(int n)

{
if (n == 0) {
return 1;
}
return factorial(n-1)*n;
}

D McGill

20

Execution of recursive methods

Consider the following client for this factorial function:

int r;
r = factorial(4);

lts execution proceeds as follows:

This is executed in some frame:
Sonme frane

r

D McGill

21

When we call factorial(4);
Some frame

r

factorial frame

n

4

a new frame for the method is created:

We execute the body of factorial; n is not 0 so we execute

return factorial(n-1)*n;

which in this frame is the same as
return factorial(4-1)*4;

D McGill

22

Some frame

r

factorial frame

n

4

factorial frame

n

3

pending computation:
return factorial(3)*4;

Again, we execute the body of factorial,
again, nis not 0 so we execute

return factorial(n-1)*n;

which in this frame is the same as
return factorial(3-1)*3;

D McGill

23

Some frame

r

factorial frame

n

4

factorial frame

n

3

factorial frame

pending computation:
return factorial(3)*4;

pending computation:
return factorial(2)*3;

n

2

Again, we execute the body of factorial;
again, nis not 0 so we execute

return factorial(n-1)*n;

which in this frame is the same as
return factorial(2-1)*2;

D McGill

24

Sone frane

r

factorial frane

pending computation:
return factorial (3)*4;

n 4

factorial frane

pending computation:
return factorial (2)*3;

n 3

factorial franme

pending computation:
return factorial (1)*2;

n 2

factorial frane

n 1

Again, we execute the body of factorial;
again, nis not 0 so we execute

return factorial (n-1)*n;

which in this frame is the same as
return factorial (1-1)*1,

D McGill

25

Some frame

r

factorial frame

pending computation:
return factorial(3)*4;

n 4

factorial frame

pending computation:
return factorial(2)*3;

n 3

factorial frame

pending computation:
return factorial(1)*2;

n 2

factorial frame

pending computation:
return factorial(0)*1;

n 1

factorial frame

n 0

Now, we have reached the base case, and n is 0, so we execute:

return 1;
We get rid of the frame, and pass the returned value to the caller

D McGill

26

Some frame

r

factorial frame

n 4 pending computation:
return factorial(3)*4;

factorial frame

pending computation:
return factorial(2)*3;

n 3

factorial frame

pending computation:
return factorial(1)*2;

n 2

factorial frame

n 1

The pending computation here was:
return factorial(0)*1;

and the method called factorial(0)
returned 1, so this pending computation is now:
return 1*1;

We get rid of the frame, and pass the returned value to the caller

D McGill

27

Sone frane

factorial frane

n 4 pending computation:
return factorial (3)*4;

factorial frane

pending computation:
return factorial (2)*3;

n 3

factorial franme

n 2

The pending computation here was:
return factorial (1)*2;

and the method called factorial (1)
returned 1, so this pending computation is now:
return 1*2;

We get rid of the frame, and pass the returned value to the caller

D McGill

28

Sone frane

factorial frane

n 4 pending computation:
return factorial (3)*4;

factorial frane

n 3

The pending computation here was:
return factorial (2)*3;

and the method called factorial (2)
returned 2, so this pending computation is now:
return 2*3;

We get rid of the frame, and pass the returned value to the caller

D McGill

29

Sone frane

factorial frane

n 4

The pending computation here was:
return factorial (3)*4;

and the method called factori al (3)
returned 6, so this pending computation is now:
return 6*4;

We get rid of the frame, and pass the returned value to the caller

D McGill

Sone frane

The pending computation here was:
r = factorial (4);

which returned 24, so this pending computation is now:
r = 24;

D McGill

31

The end

D McGill

32

