Recursion

A recursive method is a method that calls itself (directly
or indirectly.)

A recursive definition is a definition of something in
terms of itself

Some recursive definitions don't make sense, (e.g. from
Webster's: growl: to utter a growl), but others do

For example:

— A list of numbers is either:
* A single number, or
x A number followed by a list of numbers.
— For example:
* 5is a list of numbers
x 7,5 s a list of numbers (because 5 is a list)
* 0, 7, 5is a list of numbers (because 7, 5 is a list)
x 8,6, 7, 5is a list of numbers (because 6, 7, 5 is a
list)

D McGill

Recursive functions

e Factorial: the factorial of a natural number n, written
n! is the multiplication of the first n positive integers,
l.e.

nl=1-2-3-...-(n—=2)-(n—1)-n (1)

But note that
1-2:3-...-(n—=2)-(n—1)=(n-1)! (2)
So by (1) and (2) we get

nl=mn-1!n (3)

But we have to assume a “base case’, by defining

0! =1 (4)

D McGill

Recursive functions (contd.)

Hence, (3) and (4) together gives us an alternative, and
recursive definition of (1):

ol { 1 ifn=20

(n—1)!'-n otherwise

This can be implemented as a static recursive method:

static int factorial(int n)

{
if (n == 0) {
return 1;
}
return factorial(n-1)*n;
}

D McGill

Execution of recursive methods

Consider the following client for this factorial function:

int r;
r = factorial(4);

lts execution proceeds as follows:

This is executed in some frame:
Some frame

r

D McGill

When we call factorial(4);
Some frame

r

factorial frame

n

4

a new frame for the method is created:

We execute the body of factorial; n is not 0 so we execute

return factorial(n-1)*n;

which in this frame is the same as
return factorial(4-1)*4;

D McGill

Some frame

r

factorial frame

n

4

factorial frame

n

3

pending computation:
return factorial(3)*4;

Again, we execute the body of factorial,
again, nis not 0 so we execute

return factorial(n-1)*n;

which in this frame is the same as
return factorial(3-1)*3;

D McGill

Some frame

r

factorial frame

n

4

factorial frame

n

3

factorial frame

pending computation:
return factorial(3)*4;

pending computation:
return factorial(2)*3;

n

2

Again, we execute the body of factorial;
again, nis not 0 so we execute

return factorial(n-1)*n;

which in this frame is the same as
return factorial(2-1)*2;

D McGill

Some frame

r

factorial frame

n

4

factorial frame

n

3

factorial frame

pending computation:
return factorial(3)*4;

pending computation:
return factorial(2)*3;

n

2

pending computation:
return factorial(1)*2;

factorial frame

1

Again, we execute the body of factorial;
again, nis not 0 so we execute

return factorial(n-1)*n;

which in this frame is the same as
return factorial(1-1)*1;

D McGill

Some frame

r

factorial frame

pending computation:
return factorial(3)*4;

n 4

factorial frame

pending computation:
return factorial(2)*3;

n 3

factorial frame

pending computation:
return factorial(1)*2;

n 2

factorial frame

pending computation:
return factorial(0)*1;

n 1

factorial frame

n 0

Now, we have reached the base case, and n is 0, SO we execute:
return 1;
We get rid of the frame, and pass the returned value to the caller

D McGill

Some frame

r

factorial frame

n 4 pending computation:
return factorial(3)*4;

factorial frame

pending computation:
return factorial(2)*3;

n 3

factorial frame

pending computation:
return factorial(1)*2;

n 2

factorial frame

n 1

The pending computation here was:
return factorial(0)*1;

and the method called factorial(0)
returned 1, so this pending computation is now:
return 1*1;

We get rid of the frame, and pass the returned value to the caller

D McGill

10

Some frame

r

factorial frame

n 4 pending computation:
return factorial(3)*4;

factorial frame

pending computation:
return factorial(2)*3;

n 3

factorial frame

n 2

The pending computation here was:
return factorial(1)*2;

and the method called factorial(1)
returned 1, so this pending computation is now:
return 1*2;

We get rid of the frame, and pass the returned value to the caller

D McGill

11

Some frame

r

factorial frame

n 4 pending computation:
return factorial(3)*4;

factorial frame

n 3

The pending computation here was:
return factorial(2)*3;

and the method called factorial(2)
returned 2, so this pending computation is now:
return 2*3;

We get rid of the frame, and pass the returned value to the caller

D McGill

12

Some frame

r

factorial frame

n 4

The pending computation here was:
return factorial(3)*4;

and the method called factorial(3)
returned 6, so this pending computation is now:
return 6*4,

We get rid of the frame, and pass the returned value to the caller

D McGill

Sone frane

The pending computation here was:
r = factorial (4);

which returned 24, so this pending computation is now:
r = 24;

D McGill

14

Recursion on other types

e Problem: given a string s, return the reverse of the

string

e Analysis:

— Notation:
% rev(s) is the reverse of s
*x 8; Is the ¢-th character of s
* len(s) is the length of s
% rest(s) is the string s without its first character sg
(i.e. rest(s) = s152...8, where n =len(s) — 1)
— Formal definition of reverse:

) () B ¢ lf S = ¢
SV = rev(rest(s)) + so otherwise

D McGill .

e For example:

Reverse (contd.)

rev(“abed”) = rev(“bed”) +' a

= (rev(“cd”) +'0") +'
= ((rev(“d”)+') +' V")
= (((rev(*”) +'d") +' v') +' a’
=(((“+"d)Y+')+
= ((“d” +') +'b') +
= (“de” +'0) +'
= “db” +' df
= “dcba”

 McGill

16

Reverse (contd.)

public class MoreStringOperations {
static String reverse(String s)

{
if (s.equals(*®’)) {

€,

return ;

}

return reverse(rest(s))+s.charAt(0);

+
static String rest(String s)

{
String result =°’;
int 1 = 1;
while (i < s.length()) {
result = result + s.charAt(i);
1++;
}

return result;

D McGill

17

Double recursion

e Problem: Compute the n-th Fibonacci number

e Analysis: The Fibonacci sequence 1, 1, 2, 3, 5, 8, 13,
21, 34, ...is defined by:

. 1 ifn <2
fib(n) = { fib(n — 1) + fib(n — 2) otherwise

e |Implementation:

static int fib(int n)

{
if (n <= 2) {
return 1;
}
return fib(n-1)+fib(n-2);
+

D McGill

18

lteration vs recursion

e [terative solution to the Fibonacci problem:

static int fib(int n)

{
int a, b, ¢, 1;
a =1;
b =1;
c =1;
1 = 3;
while (i <= n) {
c = a + b;
a = b;
b = c¢;
1++;
+
return c;
+

D McGill

19

Execution trees

fib(6)

20

D McGill

Recursion and termination

static void f(int n)

{
System.out.println(n);

f(n);
t

D McGill

21

Recursion and termination

f(5)
f(5)
f(5)
f(5)

D McGill

22

Recursion and termination

static int f(int n)

{
System.out.println(n);
return f(n) + 1;

¥

D McGill

23

Recursion and termination

£(5)

return £(5) + 1

return (f(5) + 1) + 1
return ((£(5) + 1) + 1) + 1

D McGill

24

Recursion and termination

static int f(int n)

{
System.out.println(n);
return f(n-1);

¥

D McGill

25

Recursion and termination

£(5)

return f(4)
return f(3)
return f(2)
return (1)
return f(0)
return f(-1)

D McGill

Recursion and termination

static int f(int n)

{
if (n == 0) return 1;
System.out.println(n);
return f(n);

¥

D McGill

27

Recursion and termination

£(5)

return f(5)
return f(5)
return f(5)
return f(5)
return f(5)
return f(5)

D McGill

Recursion and termination

static int f(int n)

{
if (n == 0) return 1;
System.out.println(n);
return f(n-1);

¥

D McGill

29

Recursion and termination

£(5)

return f(4)
return f(3)
return f(2)
return (1)
return f(0)
return 1

D McGill

Recursion and termination

static int f(int n)

{
if (n == 0) return 1;
System.out.println(n);
return f(n - 2) + 1;

¥

D McGill

31

Recursion and termination

static int f(int n)

{
if (n == 0) return 1;
System.out.println(n);
return f(n / 2) + 1;

}

D McGill

32

Recursion and termination

static int f(int n)

{
if (n == 0) return 1;
System.out.println(n);
return f(n + 2);

¥

D McGill

33

Recursion and termination

£(5)

returns f(7)
returns f(9)
returns f(11)
returns f(13)

D McGill

34

Recursion and termination

static int f(int n)

{
if (n == 0) return 1;
else if (n % 2 == 0) return n / 2;
else return f(f(3*n+1));

}

D McGill

35

void r(...)

Recursion

D McGill

36

Recursion

D McGill

Recursion

o 1 iftn=0
Tl bt >0
double pow(double b, int n)
{

if (n == 0) return 1;
return b * pow(b, n-1);

¥

D McGill

38

Recursion

1 ifn=0
b* =< b-b" 1t ifn>0and nisodd
(™22 if n > 0and nis even

double fastpow(double b, int n)
{

if (n == 0) return 1;

if (n % 2 == 1) return b * fastpow(b, n-1);
double p = fastpow(b, n/2);

return p * p;

m .
D McGill .

Mutual Recursion

D McGill

40

The end

D McGill

41

