Announcement

Final exam: Friday, December 10 at 14:00 at the GYM

D McGill

Recursion and linked-lists

public class Node {
private Object data;
private Node next;
public Node(Object d, Node n)
{
data = d;
next = n,;
b
public Object get_data() { return data; }
public Node get_next() { return next; }
public void set_data(Object d)

{
data = d;
¥
public void set_next(Node n)
{
next = n,;
¥

D McGill

Recursion and linked-lists

public class LinkedList
{
private Node first;
public LinkedList() { first = null; }
public int length()
{
int counter = 0;
Node p = first;
while (p != null) {
p = p.get_next();
i++;
b

return counter;

D McGill

Recursion and linked-lists

e What is a list of objects?

— The empty list () is a list.
— If I is some list, then (z,1) is a list

e For example:

— 11 = (3,()) is a list
— ls = (5,11) = (5,(3,())) is a list
— I3 = (—6,l3) = (— (5,(3,()))) is a list

D McGill

Recursion and linked-lists

public abstract class List

{
}
public class EmptyList extends List
{
}
public class Cons extends List
{
private Object head;
private List tail;
public Cons(Object h, List t)
{
head = h;
tail = t;
¥
public Object get_head() { return head; }
public List get_tail() { return tail; }
/] ...

D McGill

Recursion and linked-lists

public class Test {

public static void main(Stringl[] args)

{
String a = ‘‘hello’”, b = “bonjour’”, ¢ = “hola’’;
List 10 = new EmptyList();
List 11 = new Cons(b, 10);
List 12 = new Cons(a, 11);
List 13 = new Cons(c, 12);

D McGill

Recursion and linked-lists

public class Test {

public static void main(String[] args)
{

String a = ‘“‘hello’”, b = “bonjour’”, ¢ = “hola’’;

List 13 = new Cons(c,

new Cons(a,
new Cons(b,
new EmptyList())));

D McGill

Recursion and linked-lists

The length of a list:

0 if [= ()
length(l) ={ 1+ length(t) ifl= (x,t)

D McGill

Recursion and linked-lists

public class ListOperations

{
public static int length(List s)

{
if (s instanceof EmptyList) {
return O;
¥
Cons pair = (Cons)s;
return 1 + length(pair.get_tail());

¥
}

D McGill

Recursion and linked-lists

public class Test {

public static void main(Stringl[] args)

{
String a = ‘‘hello’”, b = “bonjour’”, ¢ = “hola’’;
List 10 = new EmptyList();
List 11 = new Cons(b, 10);
List 12 = new Cons(a, 11);
List 13 = new Cons(c, 12);
int n;
n = ListOperations.length(13);

D McGill

10

Recursion and linked-lists

Finding out if an element is in a list:

false if [= ()
member(z,l) = ¢ true if | = (x,t)
member(z,t) ifl=(y,t)and z £y

D McGill

11

Recursion and linked-lists

public class ListOperations

{
/] ...
public static int member (Object x, List s)
{
if (s instanceof EmptyList) {
return false;
¥
Cons pair = (Cons)s;
if (x.equals(pair.get_head())) {
return true;

}

return member (x, pair.get_tail());

D McGill

12

Recursion and linked-lists

public class Test {

public static void main(Stringl[] args)

{
String a = ‘‘hello’”, b = “bonjour’”, ¢ = “hola’’;
List 10 = new EmptyList();
List 11 = new Cons(b, 10);
List 12 = new Cons(a, 11);
List 13 = new Cons(c, 12);
boolean b;
b = ListOperations.member (‘“hiya’’, 13);

D McGill

13

Applications (Simulation)

class Customer { ... }

class SuperMarket {
Queue line;
SuperMarket() { line = new Queue(); }
void process(Customer c¢) { ... }
void run()

{
while (true) {

int coin = (int) (Math.random() * 2);

if (coin == 1) {
Customer first = line.peek();
process(first);
line.dequeue() ;

b

else {
line.enqueue(new Customer());

¥
¥
¥
¥

D McGill

14

Applications (reverse)

static String reverse(String s)

{
String r = "";
Stack stack = new Stack();
int 1 = 0;

while (i < s.length()) {
stack.push(new Character(s.charAt(i)));
it+:
+
while (!'stack.isempty()) {
Character ¢ = (Character)stack.top();
r = r + c.charValue();
stack.pop();
+

return r;

¥

D McGill

15

Trees

e A treeis a non-linear data-structure

e |f there is an arrow from a node x to a node y, we call
x the parent of y and y a child of x.

e If there is a path from x to z, we say that = is an
ancestor of z and z is a descendant of x.

e A leave is a node with no children

e A data-structure is a tree if:

— Every node has only one parent

— There is no node with an arrow to any of its ancestors
(there are no “loops”)

— There is exactly one node with no parent (the “root”)

e Normal trees are finite: no infinite paths.
e A treeis binary if every node has two children

e A unary tree is a list

D McGill

16

Binary Trees

Task

+name: String

i

SimpleTask

+description: String

+perform()

ComplexTask

+subtaskl: Task
+subtask?2: Task

D McGill

17

Binary Trees

ComplexTask

stl st2
ComplggTask ComgexTask
stl st2 stl St2
/ \ / \
SimplgfFask SimpigTask CompNTask SimpigTask
{ nam desc] { nam desc J { st1 StZJ { nam desc
/ \
7
SimplgfFask SimpigTask
[nam desc J [nam desc]

D McGill

Binary Trees

abstract class Task {
String name;

}

class SimpleTask extends Task {
String description;
void perform()
{
System.out.println(name+‘:’’+description);
//. ..
¥
¥

class ComplexTask extends Task {
Task subtaskl, subtask?2;

¥

D McGill

19

Binary Trees

e Processing trees using recursion

class Worker {
void work(Task t)
{
if (t instanceof SimpleTask) {
((SimpleTask)t) .perform() ;
¥
else if (t instanceof ComplexTask) {
work (((ComplexTask)t) .subtaskl) ;
work (((ComplexTask)t) .subtask?) ;
by
b
b

D McGill

20

Binary Trees

e Processing trees using stacks

class Worker {
void work(Task t)
{
Stack s = new Stack();
s.push(t) ;
while (!s.isempty()) {
Task temp = s.top();
s.pop() ;
if (temp instanceof SimpleTask) {
((SimpleTask)t) .perform() ;
I
else {
s.push(((ComplexTask)temp) . subtask?) ;
s.push(((ComplexTask)temp) .subtaskl) ;
by
¥
+
by

D McGill

21

Data structures zoo

e Other data-structures: sets, bags, priority queues, heaps,
binary trees, n-ary trees, red-black trees, AVL trees,
graphs, hyper-graphs, hi-graphs, dictionaries/mappings,
etc.

e The selection of data-structure has a major impact on
the efficiency of an algorithm.

D McGill

22

What this course is about

e This course is an introduction to computer programming

e Computer programming: solving problems involving
information by means of a computer

D McGill

23

What this course is not about

e [his course

— ...how to
— ...how to
— .. .how to
— .. .how to
— ...how to
— ...how to
— ...how to
— ...how to

— ..how to manage a computer system (installing

is not about. ..

use a computer

use software applications
use the Operating System
send e-mail

surf the Web

create Web pages

fix your printer

become a hacker

software, fixing problems, etc.)

e [here is no

course in Computer Science about how to
use computers, in the same way that there is no course
in Mechanical Engineering that teaches how to drive a

car or operate some machinery.

D McGill

Objectives

e 1o learn:

— ...a methodology to understand and solve problems
involving information

— ...how to think computationally

— ...how to create simple algorithms

— ...how to design and implement computer programs
using the Java programming language

— ..how to solve problems in an Object-Oriented
manner

e This is neither a “computers course’ nor a
“Java course.”

D McGill

25

The end

D McGill

26

