Announcements

e Schedule for Unix/Linux seminars

http://www.cs.mcgill.ca/socsinfo/seminars/

D McGill

Binary to decimal conversion

e Problem: given a bit sequence b = b,,_1b,,_2 - - - bab1bg, compute its decimal
representation dec(b)

e Algorithm:
n—1
dec(b) =) b; -2’
1=0
e Examples:
dec(1101) = 1-2°+1-22+4+0-2'+1-2°
= 1-841-440-2+1-1
8+4+1
= 13

D McGill

dec(101101) = 1-2°40-2*+1-2941-22+4+0-214+1-2°
1-3240-164+1-8+1-4+0-2+1-1
32+8+4+1
= 45

D McGill

Decimal to binary conversion

e Problem: Given a natural number m, compute its bit
sequence b = b,,_1bp_2---bab1bg such that m =
dec(b)

e Algorithm:

1. Let b be ™ (the empty sequence)

2. Let g be m

3. While g is not 0 repeat the following:

(a
(b) Let r be the remainder of g divided by 2
(c) Append r in the front of the sequence b
(d) Set g to be new_q

(e)

4. Qutput: b

D McGill

Algorithm execution

e Trace of execution

e Example: Consider the case m = 26

iteration | q | new_q | r b
0 20
1 13 13 0 0"
2 § § 1 10"
3 3 3 01| "010"
4 1 1 1| "1010"
5 0 0 1 | “11010"

D McGill

Elements of algorithms

e Variables to store values (such as numbers, sequences,
etc.)

e Instructions organized and executed in sequence: order
of execution matters

e Instructions for:

— computing values (e.g. divide by)
— assigning values to variables

— repeating a set of instructions

— etc.

e Solving a problem: (General methodology)

1. Analysis: Understanding the problem
2. Design: Algorithm

3. Implementation: write a program which implements the
algorithm using a programming language

D McGill

Computer Architecture

o CPU:

— Registers (PC, IR, ...)

— ALU (Arithmetic-Logic Unit)
— Control Unit

— Decoder

e Program execution:

— Fetch: get an instruction
— Decode: sent it to the appropriate component
— Execute

D McGill

1729
1730

Computer Architecture

Memory CPU
Registers
Decoder
BUS ITFCQ: 1729
ADD
MULT
Control Unit ALU

D McGill

1729
1730

Computer Architecture

Memory CPU
Registers
Decoder
BUS ITFCQ: 1729
ADD 1729
——

MULT Fetch

Control Unit ALU

D McGill

Computer Architecture

Memory CPU
Registers
c Decoder
P 1729
Bus R D)
1729 ADD ADD
1730 MULT Toth
Control Unit ALU

D McGill

10

1729
1730

Computer Architecture

Memory CPU
Registers
Decode
- Decoder
1729
Bus R D)
ADD Decode&
MULT
Control Unit ALU

D McGill

11

1729
1730

Computer Architecture

Memory CPU
Registers
- Decoder
1729
Bus R D)
ADD
MULT Exe
Control Unit ALU
Execute

D McGill

12

1729
1730

Computer Architecture

Memory CPU
Registers
Decoder
BUS ITFCQ: 1730
ADD
MULT
Control Unit ALU

D McGill

13

Computer Architecture

e Program instructions:

— Instructions are numbers (ultimately in binary form)

*
*
*

00110101 represents ADD (adding numbers)
10101100 represents MULT (multiplication)
01010111 represents LOAD (load data from mem-
ory to a register)

10100111 represents STORE (stores data from a
register to memory)

D McGill

14

Computer Architecture

e Instructions, or operators may have parameters

— Adding the contents of registers R1 and R2 and put
the result in R3:

00110101, 10001001, 10001010 J0001011]
ADD R1 R2 R3

— Loading data from memory cell 26 and put it in
register 2

41111001 00011010 10001010,
LOAD 26 R2

D McGill

15

Computer Architecture

e Different kinds of processors have different instruction

sets (e.g. Pentium, PowerPC, Alpha, SPARC, Motorola)

— Each instruction set has different instructions, and
associates different numbers to each type of instruc-
tion

— Hence, a program for one type of processor cannot
be directly executed by a different processor.

e Portability: the ability to run (execute) a program in
more than one type of processor.

D McGill .

Programming Languages

e A program as understood by the computer is a long
sequence of words (bits):

110110001110100010010001001010010100101001001010

— Machine Language

e But each instruction can be written in a fashion readable
by humans:

LOAD [26], Rl

LOAD 3, R2

ADD R1, R2, R3

STORE R3, [1700000029]

— Assembly language

e Assembler: a program that translates an assembly lan-
guage program into its machine language equivalent.

D McGill

17

Programming Languages

e Assembly is a low-level language

e High-level languages abstract the components of the
machine

X =y + 3;

— Java, C, C++, Python, Perl, ML, Scheme, Prolog,
Ada, Pascal, Basic, Fortran, Cobol, ...

e Abstracting the components is good: when implement-
ing an algorithm you don't have to think about the
component of the computer. You focus on the problem.

e Compiler: a program that translates a high-level lan-
guage program into its machine language equivalent.

D McGill

18

A simple Java program

// This is a very, very, simple program

public class HelloWorld

{
public static void main(Stringl[] args)
{
System.out.println(‘“Hello, World!’’);
by
b

D McGill

19

A simple Java program

// This is a very, very, simple program // Comments
public class HelloWorld // Class declaration
{
public static void main(Stringl[] args) // Method
{
System.out.println(““Hello, World!”’); // Statement
by

D McGill

20

A simple Java program

// This is a very, very, simple program

public class HelloWorld

{ // Definition of class HelloWorld begins here
public static void main(String[] args)
{
System.out.println(“Hello, World!’’);
by
} // Definition of class HelloWorld ends here

D McGill

21

A simple Java program

// This is a very, very, simple program

public class HelloWorld
{

// Definition of main method begins here

// Definition of main method ends here

D McGill

22

A simple java program

e Java is case-sensitive:
HelloWorld
is not the same as

helloworld

D McGill

23

From code to a running program

e Editing

e Compilation/Interpretation

— Compilation:
* Translation
x Execution

— Interpretation:
x Execution

D McGill

24

Editing

HelloWorld.java

Sourc_e code
file

Java

D McGill

25

Sourc_e code
file

Java

Compilers

Target code
file

Machine Language

D McGill

26

Source code
file

Java

Compilers

Target code
file

Pentium
Machine Language

Target code
file

PowerPC
Machine Language

Target code
file

Alpha
Machine Language

D McGill

27

Compilers

Sourc_e code
file

Java

Interpreter

D McGill

28

Compilers

nterpreter

Pentium

Source code

file terpreter 4

PowerPC

Java

nterpreter 3

Alpha

D McGill

29

Compilers

HelloWorld.java HelloWorld.class
Source code Target code
file file Interpreter
Java Java Bytecode JVM

(Java Virtual Machine)

D McGill

30

Compilers

nterpreter

Pentium

HelloWorld.java HelloWorld.class
Source code Target code
file file
Java Java Bytecode PowerPC

nterpreter 3

Alpha

D McGill

31

Programming Languages

e A programming language is a formal language to de-
scribe algorithms

e A language is a means of communication

e A programming language is a means of communication
between a human and a computer, but also between
humans

e A programming language is formal: well-defined

D McGill

32

Languages

e Elements of a language

— Alphabet
— Syntax (grammar)
— Semantics (meaning)

e Elements of Java:

— Alphabet of Java: ASCII
— Syntax: 'constructs’

x Class definitions

* Method definitions

x Statements

x others
— Semantics: computation

D McGill

33

Errors

e FErrors:

— Compile-time errors
— Run-time errors

x Exceptions

x Logical

D McGill

34

