Announcements

• Schedule for Unix/Linux seminars

http://www.cs.mcgill.ca/socsinfo/seminars/

Binary to decimal conversion

- Problem: given a bit sequence $b = b_{n-1}b_{n-2}\cdots b_2b_1b_0$, compute its decimal representation dec(b)
- Algorithm:

$$dec(b) = \sum_{i=0}^{n-1} b_i \cdot 2^i$$

• Examples:

$$dec(1101) = 1 \cdot 2^{3} + 1 \cdot 2^{2} + 0 \cdot 2^{1} + 1 \cdot 2^{0}$$

$$= 1 \cdot 8 + 1 \cdot 4 + 0 \cdot 2 + 1 \cdot 1$$

$$= 8 + 4 + 1$$

$$= 13$$

$$\begin{array}{lll} dec(101101) & = & 1 \cdot 2^5 + 0 \cdot 2^4 + 1 \cdot 2^3 + 1 \cdot 2^2 + 0 \cdot 2^1 + 1 \cdot 2^0 \\ & = & 1 \cdot 32 + 0 \cdot 16 + 1 \cdot 8 + 1 \cdot 4 + 0 \cdot 2 + 1 \cdot 1 \\ & = & 32 + 8 + 4 + 1 \\ & = & 45 \end{array}$$

Decimal to binary conversion

- ullet Problem: Given a natural number m, compute its bit sequence $b=b_{n-1}b_{n-2}\cdots b_2b_1b_0$ such that m=dec(b)
- Algorithm:
- 1. Let b be "" (the empty sequence)
- 2. Let q be m
- 3. While q is not 0 repeat the following:
 - (a) Let new_q be q divided by 2, and
 - (b) Let r be the remainder of q divided by 2
 - (c) Append r in the front of the sequence b
 - (d) Set q to be new_q
 - (e) Repeat (from line 3)
- 4. Output: b

Algorithm execution

- Trace of execution
- ullet Example: Consider the case m=26

iteration	q	new_q	r	b
0	26			(1)
1	13	13	0	"0"
2	6	6	1	"10"
3	3	3	0	"010"
4	1	1	1	"1010"
5	0	0	1	"11010"

Elements of algorithms

- Variables to store values (such as numbers, sequences, etc.)
- Instructions organized and executed in sequence: order of execution matters
- Instructions for:
 - computing values (e.g. divide by)
 - assigning values to variables
 - repeating a set of instructions
 - etc.
- Solving a problem: (General methodology)
- 1. Analysis: Understanding the problem
- 2. Design: Algorithm
- 3. Implementation: write a program which implements the algorithm using a programming language

- CPU:
 - Registers (PC, IR, ...)
 - ALU (Arithmetic-Logic Unit)
 - Control Unit
 - Decoder
- Program execution:
 - Fetch: get an instruction
 - Decode: sent it to the appropriate component
 - Execute

- Program instructions:
 - Instructions are numbers (ultimately in binary form)
 - * 00110101 represents ADD (adding numbers)
 - * 10101100 represents MULT (multiplication)
 - * 01010111 represents LOAD (load data from memory to a register)
 - * 10100111 represents STORE (stores data from a register to memory)

- Instructions, or operators may have parameters
 - Adding the contents of registers R1 and R2 and put the result in R3:

$$\underbrace{00110101}_{ADD}$$
 $\underbrace{10001001}_{R1}$ $\underbrace{10001010}_{R2}$ $\underbrace{10001011}_{R3}$

 Loading data from memory cell 26 and put it in register 2

$$11111001$$
 00011010 10001010 $R2$

- Different kinds of processors have different *instruction* sets (e.g. Pentium, PowerPC, Alpha, SPARC, Motorola)
 - Each instruction set has different instructions, and associates different numbers to each type of instruction
 - Hence, a program for one type of processor cannot be directly executed by a different processor.
- Portability: the ability to run (execute) a program in more than one type of processor.

Programming Languages

 A program as understood by the computer is a long sequence of words (bits):

- Machine Language
- But each instruction can be written in a fashion readable by humans:

```
LOAD [26], R1
LOAD 3, R2
ADD R1, R2, R3
STORE R3, [1700000029]
```

- Assembly language
- Assembler: a program that translates an assembly language program into its machine language equivalent.

Programming Languages

- Assembly is a low-level language
- High-level languages abstract the components of the machine

$$x = y + 3;$$

- Java, C, C++, Python, Perl, ML, Scheme, Prolog,
 Ada, Pascal, Basic, Fortran, Cobol, ...
- Abstracting the components is good: when implementing an algorithm you don't have to think about the component of the computer. You focus on the problem.
- Compiler: a program that translates a high-level language program into its machine language equivalent.

```
// This is a very, very, simple program
public class HelloWorld
{
    public static void main(String[] args)
    {
        System.out.println('Hello, World!'');
    }
}
```

```
// This is a very, very, simple program // Comments

public class HelloWorld // Class declaration
{
    public static void main(String[] args) // Method
    {
        System.out.println("Hello, World!""); // Statement
    }
}
```

```
// This is a very, very, simple program

public class HelloWorld
{      // Definition of class HelloWorld begins here
      public static void main(String[] args)
      {
            System.out.println("Hello, World!");
      }
}      // Definition of class HelloWorld ends here
```



```
// This is a very, very, simple program

public class HelloWorld
{
    public static void main(String[] args)
    { // Definition of main method begins here
        System.out.println("Hello, World!");
    } // Definition of main method ends here
}
```


• Java is case-sensitive:

HelloWorld

is not the same as

helloworld

From code to a running program

- Editing
- Compilation/Interpretation
 - Compilation:
 - * Translation
 - * Execution
 - Interpretation:
 - * Execution

Editing

Programming Languages

- A programming language is a formal language to describe algorithms
- A language is a means of communication
- A programming language is a means of communication between a human and a computer, but also between humans
- A programming language is formal: well-defined

Languages

- Elements of a language
 - Alphabet
 - Syntax (grammar)
 - Semantics (meaning)
- Elements of Java:
 - Alphabet of Java: ASCII
 - Syntax: 'constructs'
 - * Class definitions
 - * Method definitions
 - * Statements
 - * others
 - Semantics: computation

Errors

- Errors:
 - Compile-time errors
 - Run-time errors
 - * Exceptions
 - * Logical

