Announcements

e The wednesday, February 4th, lecture will be held at
ENGMD 280 (McDonald Engineering 280)

D McGill

Properties of conditionals

e In the following, C is any boolean expression, P, Q, R |,
S, and T are any list of statements.

P;
if (C) {
Q;

D McGill

Properties of conditionals

s equivalent to

P;

Q;

if (C) {
R;

if and only if the statements in Q do not modify the
variables in C

D McGill

Properties of conditionals

e Consider the following:

boolean high = false;
double altitude;
altitude = Keyboard.readDouble();
System.out.println(‘“‘Begin’’);
if (altitude > 2000.0) {
high = true;
System.out.println(‘“It is high’’);
¥
else {
high = true;
System.out.println(“It is low”’);
¥

D McGill

Properties of conditionals

e |t is equivalent to:

boolean high = false;
double altitude;
altitude = Keyboard.readDouble();
System.out.println(‘“‘Begin”’);
high = true;
if (altitude > 2000.0) {
System.out.println(““It is high”’);
¥
else {
System.out.println(““It is low”’);

¥

D McGill

Properties of conditionals

e Consider the following:

double altitude;
altitude = Keyboard.readDouble();
System.out.println(‘“Begin’’);
if (altitude > 2000.0) {
altitude = altitude - 500.0;
System.out.println(““It is high”’);
¥
else {
altitude = altitude - 500.0;
System.out.println(““It is low”’);

¥

D McGill

Properties of conditionals

e |t is not equivalent to:

double altitude;
altitude = Keyboard.readDouble();
System.out.println(‘“Begin’’);
altitude = altitude - 500.0;
if (altitude > 2000.0) {
System.out.println(‘““It is high’’);
¥
else {
System.out.println(“It is low”’);

¥

D McGill

Conditionals

1nt x;

boolean b;

//...

if (b) {
X=3;

+

else {
x=4;

¥

iIs equivalent to

x=4;
if (b) {
xX=3;

¥

D McGill

Conditionals

int x,y;
boolean b;

//. ..

if (b) {
x=3;

}

else {
y=4;

}

is not equivalent to

y=4;
if (b) A{
xX=3;

¥

D McGill

Problem solving

e Clear statement of the problem
e Analysis (of the problem)

e Design

e |Implementation

e Testing / Verification

e Maintenance

D McGill

10

Analysis

e Goal: to obtain a precise understanding the problem

e Things to do in analysis:

— Determine inputs and outputs

— Determine general and specific requirements

— Make or obtain precise definitions of concepts in-
volved

— Determine the relevant information to the problem

— Determine the relationship between ditferent elements
or pieces of information of the problem

— Make explicit any relevant assumptions

D McGill

11

Design

e Goal: to obtain an algorithm or set of algorithms which
solves the problem correctly, satisfying all of the prob-
lem’s requirements

e An algorithm is an (abstract) procedure which describes
the solution to a problem

e Develop an algorithm using different techniques:

— Decision diagrams

— Incremental design

— Divide and conquer

— Dynamic programming
— etc.

e Develop data-structures required by the algorithm(s)

e Design a general structure or organization of the set of
algorithms

D McGill

12

Implementation

e Goal: to realize an algorithm or set of algorithms into a
computer program, using a programming language

e |Implementation depends on the particular programming
language being used.

e Concretise the general organization by dividing the sys-
tem into modules

e In Object-Oriented programming:

— Describe information and data structures as classes
— Translate algorithms into methods

D McGill

13

Testing

e Goal: to gain confidence in that the program solves the
problem adequately and without errors

e Testing involves:

— Identify key features to be tested
— Defining test cases which cover all significan aspects
— Performing the tests (possibly in an automatic way)

e A program which has been tested satisfactorily is not
guarranteed to be correct (because it is impossible to
always cover all possible cases.)

e To be certain of absolute correctness, the design and
the implementation must be mathematically proven to
be correct. This is called verification. This is different
than testing.

D McGill

14

Maintenance

e Goal: to make appropriate modifications to a program
if required

e Maintenance might be required when

— the program generates errors (compile-time or run-
time)

— the specification of the problem changes

— the program should be improved (e.g. speed, better
user-interface, etc.)

e Maintenance might require changes at:

— the implementation level (debugging)
— the design level
— the analysis level

D McGill

15

Conditionals

e Problem: compute the taxes to be paid by a person
depending on the person’s single/married status, if the
person is filing jointly with his/her spouse, and the tax-
able income of that person, according to the following:

— A single person earning no more than $21,450, or
a married person filing jointly and earning less than
$35,800, pays 15% of all income.

— Assingle person earning between $21,450 and $51,900,
pays a base amount of $3,217.50 plus 28% of the
income amount over $21 450.

— A married person filing jointly, earning between
$35,800 and 9$86,500, pays a base amount of
$5,370.00 plus 28% of the income amount over
$35,800.

— A single person earning more than $51,900 pays a
base amount of $11,743.50 plus 31% of the income
amount over $51,900.

— A married person filing jointly, earning more than
$86,500 pays a base amount of $19,566.00 plus 31%

of the income amount over $86,500.

D McGill

16

Analysis

e [nputs:

— Whereas married and filing jointly or filing as single
— Taxable income

e Output: tax

e Other relevant information:

— Tax brackets

— Base amount payable for each tax bracket
— Cutoff for each tax bracket

— Rates for each tax bracket

e Assumptions: tax brackets, base amounts, cutoffs and
rates are fixed

e Assumptions: taxable income is greater or equal to $0

D McGill

17

e Relationships:

— If filing as single:

Analysis

If the taxable income is over but not over the tax is of the amount over
$0 $21,450 15% $0
$21.450 $51,900 $3,217.504+28% $21.450
$51,900 $11,743.504+31% $51,900
— If filing jointly:
If the taxable income is over but not over the tax is of the amount over
$0 $35,800 15% $0
$35,800 $86,500 $5,370.00+28% $35,800
$86,500 $19.566.004+31% $86,500

D McGill

18

Analysis

e The tax is computed (by definition) according to the
following equality

tax = base + rate x (income — cutof f)

e For example:

— If a single person earns $30,000, then the base is
$3.217.50, the rate is 28% and the cutoff is $21,450,
so the tax will be

tax = 3217.50 + 0.28 x (30000.0 — 21450.0)

D McGill

19

Design

true

income<=21450

income<=51900

true

true

single?

15% . _ 15%
bracket income<=35800 bracket
28% i - 28%
bracket income<=86500 bracket
31%
bracket
31%
bracket

D McGill

20

Implementation

import csl.Keyboard;
public class TaxCalculator {
public static void main(String[] args) {
double 1ncome;

boolean single_status;

double tax;

String single;

System.out.print (‘“‘Enter your taxable income: *’
income = Keyboard.readDouble;
System.out.print(‘‘Are you filing as single? (y
single = Keyboard.readString() ;
single = single.toLowerCase();
if (single.equals(‘“‘yes”’))

single_status = true;
else single_status = false;

if (single_status) {
if (income <= 21450.00) {
tax = 1ncome * 0.15;

¥

D McGill

21

else if (income <= 51900.00) {
tax = 3217.50 + 0.28 * (income - 21450.00)
}
else {
tax = 11743.50 + 0.31 * (income - 51900.00
}
}
else { // filing as married
if (income <= 35800.00) A
tax = 1ncome * 0.15;
}
else if (income <= 86500.00) {
tax = 5370.00 + 0.28 * (income - 35800.00)
}
else {
tax = 19566.00 + 0.31 * (income - 86500.00
+
}

System.out.println(‘“The tax payable is ’+tax);

} // End of main method
} // End of TaxCalculator class

D McGill

22

Implementation

import csl.Keyboard;
public class TaxCalculator {
public static void main(String[] args) {
double 1ncome;

boolean single_status;

double tax, base, rate, cutoff;

String single;

System.out.print (‘“‘Enter your taxable income: *’
income = Keyboard.readDouble;
System.out.print(‘‘Are you filing as single? (y
single = Keyboard.readString() ;
single = single.toLowerCase();
if (single.equals(‘“‘yes”’))

single_status = true;
else single_status = false;

if (single_status) {
if (income <= 21450.00) {
base = 0.00;
rate = 0.15;

D McGill

23

cutoff = 0.00;

¥
else if (income <= 51900.00) {

base = 3217.50;

rate = 0.28;
cutoff = 21450.00;
+
else {
base = 11743.50;
rate = 0.31;
cutoff = 51900.00;
+

¥

else { // filing as married
if (income <= 35800.00) {

base = 0.00;

rate = 0.15;

cutoff = 0.00;
}

else if (income <= 86500.00) {
base = 5370.00;
rate = 0.28;
cutoff = 35800.00;

D McGill

else {
base = 19566.00;
rate = 0.31;
cutoff = 86500.00;
b
ks

tax = base + rate * (income - cutoff);
System.out.println(‘“The tax payable is ’’+tax);

} // End of main method
} // End of TaxCalculator class

D McGill

25

Constants

e To enforce that a variable cannot change we declare it
as a constant:

final type variable = expression;

e The variable must be initialised

final double PI = 3.1415;
PI = 2 x PI; // Error

e A variable declared as final is a constant and cannot
ocurr on the left-hand side of an assignment statement

e It is common practice (but not mandatory) to name
constants in all capitalized letters.

D McGill

26

Implementation

import csl.Keyboard;
public class TaxCalculator {
public static void main(Stringl[] args) {
double 1ncome;
boolean single_status;

double tax, base, rate, cutoff;
String single;

final double SINGLE_CUTOFF_1 = 21450.00;
final double SINGLE_CUTOFF_2 = 51900.00;
final double MARRIED_CUTOFF_1 = 35800.00;
final double MARRIED_CUTOFF_2 = 86500.00;
final double SINGLE_BASE_1 = 3217.50;
final double SINGLE_BASE_2 = 11743.50;
final double MARRIED_BASE_1 = 5370.00;
final double MARRIED_BASE_2 = 19566.00;
final double RATE_1 = 0.15;

final double RATE_2 = 0.28;

final double RATE_3 = 0.31;

D McGill

27

System.out.print (‘“Enter your taxable income: *’
income = Keyboard.readDouble;
System.out.print(‘“‘Are you filing as single? (y
single = Keyboard.readString() ;
single = single.toLowerCase();
if (single.equals(‘“‘yes’’))

single_status = true;
else single_status = false;

if (single_status) {

if (income <= SINGLE_CUTOFF_1) {
base = 0.00;
rate = RATE_1;
cutoff = 0.00;

}

else if (income <= SINGLE_CUTOFF_2) {
base = SINGLE_BASE_1;
rate = RATE_2;
cutoff = SINGLE_CUTOFF_1;

+

else {
base = SINGLE_BASE_2;

D McGill

28

rate = RATE_3;
cutoff = SINGLE_CUTOFF_2;
+
+
else { // filing as married
if (income <= MARRIED_CUTOFF_1) {
base = 0.00;
rate = RATE_1;
cutoff = 0.00;
+
else if (income <= MARRIED_CUTQFF_2) A
base = MARRIED_BASE_1;
rate = RATE_2;
cutoff = MARRIED_CUTOFF_1;

+
else {
base = MARRIED_BASE_2;
rate = RATE_3;
cutoff = MARRIED_CUTOFF_2;
+
+

tax = base + rate * (income - cutoff);

D McGill

29

System.out.println(‘The tax payable is ’’+tax);

} // End of main method
} // End of TaxCalculator class

D McGill

30

Abstraction

e Abstraction:

“disassociated from any specific instance” - Webster's
dictionary

e To abstract is to make something independent of par-
ticular cases

e Variables give us a basic mechanism for abstraction:

— A concrete definition:

tar = 3217.50 + 0.28 x (income — 21450.0)

— An abstract definition:
tax = base + rate x (income — cutof f)

e |n software, abstraction facilitates reusability and makes
It easier to maintain.

D McGill N

The random method

® [he method
static double random()

from the Math class returns a random number between
0 and 1 (including 0 but excluding 1)

e |t can be used for giving random integers in any interval
by means of casting

int coin;

coin = (int) (Math.random() * 2);

int die;
die = (int) (Math.random() * 6 + 1);

D McGill

32

Large conditionals

int die;
die = (int) (6 * Math.random() + 1);

if (die == 1)
System.out.println(“‘Excellent’’);
else
if (die == 2)
System.out.println(‘“‘Good”’) ;
else
if (die == 3)
System.out.println(“0K’);
else
if (die == 4)
System.out.println(‘““‘Ah...”’);
else
if (die == 5)
System.out.println(‘Bad”’);
else
if (die == 6)
System.out.println(‘Terrible”’) ;

S
D McGill N

Large conditionals

int die;

die = (int) (6 * Math.random() + 1);

if (die == 1)
.println(‘“‘Excellent”’);

System.out
else if (die
System.out
else if (die
System.out
else if (die
System.out
else if (die

System.out.

else if (die
System.out

== 2)

.println(“‘Good”’) ;

- 3)

.println(“‘0K*);

== 4)

.println(“‘Ah...”");

.println(“Terrible’’);

D McGill

34

The switch statement
int die;
die = (int) (6 * Math.random() + 1);
switch (die) {
case 1:
System.out.println(“‘Excellent”’);
break;
case 2:
System.out.println(‘“‘Good”’) ;
break;
case 3:
System.out.println(““‘0K”’);
break;
case 4:
System.out.println(““Ah...”");
break;
case 5:
System.out.println(‘‘Bad”);
break;
case 6:
System.out.println(“Terrible’);
break;

¥

D McGill

35

Large conditionals

int die;
die = (int) (6 * Math.random() + 1);

if (die == 1)
System.out.println(‘“‘Excellent’’);

else if (die == 2)
System.out.println(‘‘Good”);

else if (die == 3)
System.out.println(‘‘0K’);

else if (die == 4)
System.out.println(“‘Ah...”");

else if (die == b)
System.out.println(‘Bad”’);

else
System.out.println(‘“Terrible”’);

D McGill

The switch statement
int die;
die = (int) (6 * Math.random() + 1);
switch (die) {
case 1:
System.out.println(“‘Excellent”’);
break;
case 2:
System.out.println(‘“‘Good”’) ;
break;
case 3:
System.out.println(““‘0K”’);
break;
case 4:
System.out.println(““Ah...”");
break;
case 5:
System.out.println(‘‘Bad”);
break;
default:
System.out.println(“Terrible’’);
break;

¥

D McGill

37

The switch statement

e Just another form of conditiona

switch (integer_or_character_expression)

case integer_or_character_expression_1:

list_of_statements_1;
break;

case integer_or_character_expression_2:

list_of_statements_2;
break;

case 1integer_or_character_expression_3:

list_of_statements_3;
break;

default:
list_of_statements_n;

D McGill

38

The switch statement

e Semantics:

1. Evaluate the condition,

(a) compare it with each case
(b) if a case matches, the corresponding list of statements
s executed
I. if there is a break statement, the switch stops and
computation continues directly after the switch.
ii. if there is no break statement in the list, execution
continues with the next case

D McGill

39

The switch statement

int die;
die = (int) (6 * Math.random() + 1);
switch (die) {
case 1:
System.out.println(‘“Excellent’’);
break;
case 2:
System.out.println(‘‘Good’’);
case 3:
System.out.println(‘‘0K’);
case 4:
System.out.println(‘‘Ah...”");
break;
case b:
System.out.println(‘Bad’’);
break;
default:
System.out.println(“Terrible’);
break;

D McGill

40

The switch statement

e |f the break statement is included,

switch (C) {
case E1l:
S1;
break;
case E2;
S2;
break;
case E3;
S3;
break;
default:
on;
+

Is equivalent to

D McGill

41

The switch statement

if (C == E1) S1;
else if (C == E2) S2;
else if (C == E3) S3;

else Sn;

D McGill

42

Switch conditions

e An integer expression is an arithmetic expression of type
int, short, long or byte, e.g.

3

5+3%-2

x*(7/2) // (if x is of type int)
(int) ‘A’

s.length() // (if s is a String)

e The expression (int)’A’ has as value the ASCII or
Unicode number for the character A’

D McGill

43

Character expressions

e A character expression is an expression of type char

(a)

(BJ

C8)

‘d’ + 2

(char)65

s.charAt (3) // if s is a String

e The expression ‘d’ + 2 has as value the character £’

e The expression (char)65 has as value the character
corresponding to the ASCII or Unicode number 65 (‘a?)

e Character expressions can be used in relational expres-
sions (Their ASCII or Unicode value is compared):

‘m’ <= 7p7
‘D) > ‘A)
(a) < CA)

D McGill 5

Character expressions

String sentence;
char c;
boolean letter = false, digit = false;

sentence = Keyboard.readString() ;
c = sentence.charAt(sentence.length() - 1);

if (‘A2 <= c && c <= ‘2’ || ‘a’ <= ¢c && c <= ‘z2’)
letter = true;

else if (0’ <= c && c <= ‘9?)
digit = true;

D McGill

45

Character expressions

String sentence;
char c;

sentence = Keyboard.readString() ;
c = sentence.charAt(sentence.length() - 1);

if (YA? <= ¢c && c <= ‘2?) {
c = (char)(c + (‘a’ - “‘A’));
// ¢ is a lower case letter

¥

D McGill

46

Character expressions

String sentence;
char c;

sentence = Keyboard.readString() ;
c = sentence.charAt(sentence.length() - 1);

if (‘a’ <= c & c <= ‘2?) {
c = (char)(c + (‘A” - ‘a’));
// ¢ is an upper case letter

¥

D McGill

47

Switch conditions

String name;
name = Keyboard.readString() ;

switch(name.charAt(3) - 2) {

case ‘e’:
System.out.println(‘“Helloooo’’);
break;

case ‘h’:
System.out.println(‘“Noooo”’) ;
break;

(4

case ‘z’:
System.out.println(““‘0K”’);

D McGill

Character expressions

String sentence;
char c;
boolean vowel;

sentence = Keyboard.readString() ;

sentence = sentence.toLowerCase();
c = sentence.charAt(sentence.length() - 1);

switch (c) {

case ‘a’:

case ‘e’

case ‘i’:

case ‘0’:

case ‘u’:
vowel = true;
break;

default:

vowel = false;

D McGill

49

Statements
e \ariable declaration

type variable;

e Assignment

variable = expression,

e Method invocation

objectreference .methodname (parameters) ;
or

classname .methodname (parameters)

e Conditional
if (condition) block;
or

if (condition) blockl; else block2;

e Loop

D McGill

50

Loops

e The loop is a statement used to describe a task which

IS repetitive

e For example:

System.out
System.out
System.out
System.out
System.out
System.out
System.out

//. ..

print the first 100 odd integers

.println(1);
.println(3);
.println(5);
.println(7);
.println(9);
.println(11);
.println(13);

e What if we want to print the first 1000 odd numbers?

e \What if the user is supposed to give the program the
number of odd numbers?

D McGill

51

Loops

e The basic loop statement:

while (boolean_expression) {
list_of_statements;

}

e Semantics: the execution of a while loop proceeds as
follows:

1. The boolean expression is evaluated

(a) If it is false,
I. the loop stops
ii. and computation proceeds directly after the loop
(b) If it is true,
I. the list of statements is executed,
ii. and when finished, the whole process is repeated
from step 1

D McGill

52

A;

while (C) A
B;

}

D

e Control flow diagram:

false

Loops

A

true

D McGill

53

Loops

int counter, number;

counter = 1;

number = 1;

while (counter <= 100) A
System.out.println(number) ;

number = number + 2;
counter++;

}

System.out.println(‘Done”’) ;

D McGill

54

Loops

int counter, number;

counter = 1;

number = 1;

while (counter <= 3) {
System.out.println(number) ;

number = number + 2;
counter++;

}

System.out.println(‘“Done”’) ;

counter | number

(This table shows the values of the variables just before
the statement in red is executed)

Printed:

D McGill .

Loops

int counter, number;

counter = 1;

number = 1;

while (counter <= 3) {
System.out.println(number) ;

number = number + 2;
counter++;

}

System.out.println(‘“Done”’) ;

counter | number
1 _

Printed:

D McGill

Loops

int counter, number;

counter = 1;

number = 1;

while (counter <= 3) {
System.out.println(number) ;

number = number + 2;
counter++;

}

System.out.println(‘“Done”’) ;

counter | number

1 1

Printed:

D McGill

Loops

int counter, number;

counter = 1;

number = 1;

while (counter <= 3) {
System.out.println(number) ;

number = number + 2;
counter++;

}

System.out.println(‘Done”’) ;

counter | number

1 1

Printed:

D McGill

Loops

int counter, number;

counter = 1;

number = 1;

while (counter <= 3) {
System.out.println(number) ;

number = number + 2;
counter++;

}

System.out.println(‘“Done”’) ;

counter | number

1 1

Printed:

D McGill

Loops

int counter, number;

counter = 1;

number = 1;

while (counter <= 3) {
System.out.println(number) ;

number = number + 2;
counter++;

}

System.out.println(‘Done”’) ;

counter | number

1 3

Printed:

D McGill

Loops

int counter, number;

counter = 1;

number = 1;

while (counter <= 3) {
System.out.println(number) ;

number = number + 2;
counter++;

}

System.out.println(‘“Done”’) ;

counter | number

2 3

Printed:

D McGill

Loops

int counter, number;

counter = 1;

number = 1;

while (counter <= 3) {
System.out.println(number) ;

number = number + 2;
counter++;

}

System.out.println(‘Done”’) ;

counter | number

2 3

Printed:

D McGill

Loops

int counter, number;

counter = 1;

number = 1;

while (counter <= 3) {
System.out.println(number) ;

number = number + 2;
counter++;

}

System.out.println(‘“Done”’) ;

counter | number

2 3

Printed:

D McGill

Loops

int counter, number;

counter = 1;

number = 1;

while (counter <= 3) {
System.out.println(number) ;

number = number + 2;
counter++;

}

System.out.println(‘Done”’) ;

counter | number

2 5

Printed:

D McGill

Loops

int counter, number;

counter = 1;

number = 1;

while (counter <= 3) {
System.out.println(number) ;

number = number + 2;
counter++;

}

System.out.println(‘“Done”’) ;

counter | number

3 5

Printed:

D McGill

Loops

int counter, number;

counter = 1;

number = 1;

while (counter <= 3) {
System.out.println(number) ;

number = number + 2;
counter++;

}

System.out.println(‘Done”’) ;

counter | number

3 5

Printed:

D McGill

Loops

int counter, number;

counter = 1;

number = 1;

while (counter <= 3) {
System.out.println(number) ;

number = number + 2;
counter++;

}

System.out.println(‘“Done”’) ;

counter | number

3 5

Printed:

D McGill

Loops

int counter, number;

counter = 1;

number = 1;

while (counter <= 3) {
System.out.println(number) ;

number = number + 2;
counter++;

}

System.out.println(‘Done”’) ;

counter | number

3 I

Printed:

D McGill

Loops

int counter, number;

counter = 1;

number = 1;

while (counter <= 3) {
System.out.println(number) ;

number = number + 2;
counter++;

}

System.out.println(‘“Done”’) ;

counter | number
4 7

Printed:

D McGill

Loops

1int counter, number;

counter = 1;

number = 1;

while (counter <= 3) {
System.out.println(number) ;
number = number + 2;

counter++;

¥

System.out.println(‘Done”’) ;

counter | number

4 7

Printed:

1
3
5
Done

D McGill

Loops

int counter = 1;

int number = 1;

while (counter <= 10000) {
System.out.println(number) ;
number = number + 2;
counter++;

by

System.out.println(‘“Done”’) ;

D McGill

Loops

int maximum = Keyboard.readInt() ;

int counter = 1;

int number 1;

while (counter <= maximum) A
System.out.println(number) ;
number = number + 2;
counter++;

D McGill

72

Loops

e A loop may not terminate

int maximum = Keyboard.readInt();

int counter = 1;

int number = 1;

while (counter <= maximum) A
System.out.println(number) ;
number = number + 2;

e A loop will not terminate if its condition is always true

D McGill

73

The end

D McGill

74

