Reminder

e Wednesday's lecture will be at ENGMD 280

D McGill

Computers

Road map

Syntax Semantics

\/

Programming Languages

|

Programming

Problem
Solving

Information

...... Algorithms }--°

-
e
-

Java

|

Classes

™~

----- Methods

™~

Statements

D McGill

Statements

e Variable declaration

type variable;

® Assignment

variable = expression,

e Method invocation

objectreference .methodname (parameters) ;
or

classname .methodname (parameters)

e Conditional
if (condition) block:;
or

if (condition) blockl; else block2;

e Loop

D McGill

The random method

® [he method
static double random()

from the Math class returns a random number between
0 and 1 (including 0 but excluding 1)

e |t can be used for giving random integers in any interval
by means of casting

int coin;

coin = (int) (Math.random() * 2);

int die;
die = (int) (Math.random() * 6 + 1);

D McGill

Large conditionals

int die;
die = (int) (6 * Math.random() + 1);

if (die == 1)
System.out.println(“‘Excellent”’);
else
if (die == 2)
System.out.println(‘“‘Good”) ;
else
if (die == 3)
System.out.println(“0K’);
else
if (die == 4)
System.out.println(‘“‘Ah...”’);
else
if (die == 5)
System.out.println(‘Bad”’);
else
if (die == 6)
System.out.println(‘Terrible”’) ;

B McGill 5

Large conditionals

int die;

die =

if (die ==
System.out

else if (die
System.out

else if (die
System.out

else if (die
System.out

else if (die

System.out.

else if (die
System.out

1)
.println(‘“‘Excellent”’);

(int) (6 * Math.random() + 1);

—= 2)

.println(‘‘Good”);

- 3)

.println(“‘0K*);

== 4)

.println(“‘Ah...”");

.println(“Terrible’’);

D McGill

The switch statement
int die;
die = (int) (6 * Math.random() + 1);
switch (die) {
case 1:
System.out.println(“‘Excellent”’);
break;
case 2:
System.out.println(‘“‘Good”’) ;
break;
case 3:
System.out.println(“‘0K”’);
break;
case 4:
System.out.println(““Ah...”);
break;
case 5:
System.out.println(‘‘Bad”);
break;
case 6:
System.out.println(“Terrible’’);
break;

by

D McGill

Large conditionals

int die;
die = (int) (6 * Math.random() + 1);

if (die == 1)
System.out.println(“‘Excellent’’);

else if (die == 2)
System.out.println(‘“‘Good”);

else if (die == 3)
System.out.println(‘‘0K’) ;

else if (die == 4)
System.out.println(‘‘Ah...”");

else if (die == b)
System.out.println(‘Bad”’);

else
System.out.println(‘“Terrible”’);

D McGill

The switch statement
int die;
die = (int) (6 * Math.random() + 1);
switch (die) {
case 1:
System.out.println(“‘Excellent”’);
break;
case 2:
System.out.println(‘“‘Good”’) ;
break;
case 3:
System.out.println(“‘0K”’);
break;
case 4:
System.out.println(““Ah...”);
break;
case 5:
System.out.println(‘‘Bad”);
break;
default:
System.out.println(“Terrible’’);
break;

by

D McGill

The switch statement

e Just another form of conditiona

switch (integer_or_character_expression)

case integer_or_character_expression_1:

list_of_statements_1;
break;

case integer_or_character_expression_2:

list_of_statements_2;
break;

case 1integer_or_character_expression_3:

list_of_statements_3;
break;

default:
list_of_statements_n;

D McGill

10

The switch statement

e Semantics:

1. Evaluate the condition,

(a) compare it with each case
(b) if a case matches, the corresponding list of statements
s executed
I. if there is a break statement, the switch stops and
computation continues directly after the switch.
ii. if there is no break statement in the list, execution
continues with the next case

D McGill

11

The switch statement

int die;
die = (int) (6 * Math.random() + 1);
switch (die) {
case 1:
System.out.println(“‘Excellent’’);
break;
case 2:
System.out.println(‘‘Good’’);
case 3:
System.out.println(‘‘0K’);
case 4:
System.out.println(‘‘Ah...”");
break;
case b:
System.out.println(‘Bad’’);
break;
default:
System.out.println(“Terrible’);
break;

D McGill

12

The switch statement

e |f the break statement is included,

switch (C) {
case E1l:
S1;
break;
case E2;
S2;
break;
case E3;
S3;
break;
default:
on;
+

iIs equivalent to

D McGill

13

The switch statement

if (C == E1) S1;
else if (C == E2) S2;
else if (C == E3) S3;

else Sn;

D McGill

14

Switch conditions

e An integer expression is an arithmetic expression of type
int, short, long or byte, e.g.

3

5+3%-2

x*(7/2) // (if x is of type int)
(int) ‘A’

s.length() // (if s is a String)

e The expression (int)’A’ has as value the ASCII or
Unicode number for the character A’

D McGill

15

Character expressions

e A character expression is an expression of type char

(a)
(B)

(8)

‘4’ + 2

(char)65

s.charAt (3) // if s is a String

e The expression ‘d’ + 2 has as value the character £’

e The expression (char)65 has as value the character
corresponding to the ASCII or Unicode number 65 (‘a”)

e Character expressions can be used in relational expres-
sions (Their ASCII or Unicode value is compared):

‘m’ <= 7p>
‘D> > ‘A’
fa) < CA)

D McGill .

Character expressions

String sentence;
char c;
boolean letter = false, digit = false;

sentence = Keyboard.readString() ;
c = sentence.charAt(sentence.length() - 1);

if (‘A2 <= c && c <= ‘2’ || ‘a’ <= ¢c && c <= ‘z’)
letter = true;

else if (0’ <= c && c <= ‘9?)
digit = true;

D McGill

17

Character expressions

String sentence;
char c;

sentence = Keyboard.readString() ;
c = sentence.charAt(sentence.length() - 1);

if (‘A” <= ¢c && c <= ‘2?) {
c = (char)(c + (‘a’ - ‘A?));
// ¢ is a lower case letter

¥

D McGill

18

Character expressions

String sentence;
char c;

sentence = Keyboard.readString() ;
c = sentence.charAt(sentence.length() - 1);

if (‘a’ <= c & c <= ‘2?) {
c = (char)(c + (‘A? - ‘a’));
// ¢ is an upper case letter

¥

D McGill

19

Switch conditions

String name;
name = Keyboard.readString() ;

switch(name.charAt(3) - 2) {

case ‘e’:
System.out.println(‘“Helloooo’’);
break;

case ‘h’:
System.out.println(‘“Noooo”’) ;
break;

¢

case 'z’:
System.out.println(““0K”’);

D McGill

Character expressions

String sentence;
char c;
boolean vowel;

sentence = Keyboard.readString() ;
sentence = sentence.toLowerCase();

c = sentence.charAt(sentence.length() - 1);

switch (c) {

case ‘a’:

case ‘e’

case ‘i’:

case ‘0’:

case ‘u’:
vowel = true;
break;

default:

vowel = false;

D McGill

21

Loops

e The loop is a statement used to describe a task which

IS repetitive

e For example:

System.out
System.out
System.out
System.out
System.out
System.out
System.out

//. ..

print the first 100 odd integers

.println(1);
.println(3);
.println(5);
.println(7);
.println(9);
.println(11);
.println(13);

e What if we want to print the first 1000 odd numbers?

e \What if the user is supposed to give the program the
number of odd numbers?

D McGill

22

Loops

e The basic loop statement:

while (boolean_expression) {
list_of_statements;

}

e Semantics: the execution of a while loop proceeds as
follows:

1. The boolean expression is evaluated

(a) If it is false,
I. the loop stops
ii. and computation proceeds directly after the loop
(b) If it is true,
I. the list of statements is executed,
ii. and when finished, the whole process is repeated
from step 1

D McGill

23

A;

while (C) A
B;

}

D

e Control flow diagram:

false

Loops

A

true

D McGill

24

Loops

int counter, number;

counter = 1;

number = 1;

while (counter <= 100) A
System.out.println(number) ;

number = number + 2;
counter++;

}

System.out.println(‘Done”’) ;

D McGill

25

Loops

int counter, number;

counter = 1;

number = 1;

while (counter <= 3) {
System.out.println(number) ;

number = number + 2;
counter++;

}

System.out.println(‘Done”’) ;

counter | number

(This table shows the values of the variables just before
the statement in red is executed)

Printed:

D McGill y

Loops

int counter, number;

counter = 1;

number = 1;

while (counter <= 3) {
System.out.println(number) ;

number = number + 2;
counter++;

}

System.out.println(‘Done”’) ;

counter | number
1 _

Printed:

D McGill

Loops

int counter, number;

counter = 1;

number = 1;

while (counter <= 3) {
System.out.println(number) ;

number = number + 2;
counter++;

}

System.out.println(‘Done”’) ;

counter | number

1 1

Printed:

D McGill

Loops

int counter, number;

counter = 1;

number = 1;

while (counter <= 3) {
System.out.println(number) ;

number = number + 2;
counter++;

}

System.out.println(‘Done”’) ;

counter | number

1 1

Printed:

D McGill

Loops

int counter, number;

counter = 1;

number = 1;

while (counter <= 3) {
System.out.println(number) ;

number = number + 2;
counter++;

}

System.out.println(‘Done”’) ;

counter | number

1 1

Printed:

D McGill

Loops

int counter, number;

counter = 1;

number = 1;

while (counter <= 3) {
System.out.println(number) ;

number = number + 2;
counter++;

}

System.out.println(‘Done”’) ;

counter | number

1 3

Printed:

D McGill

Loops

int counter, number;

counter = 1;

number = 1;

while (counter <= 3) {
System.out.println(number) ;

number = number + 2;
counter++;

}

System.out.println(‘Done”’) ;

counter | number

2 3

Printed:

D McGill

Loops

int counter, number;

counter = 1;

number = 1;

while (counter <= 3) {
System.out.println(number) ;

number = number + 2;
counter++;

}

System.out.println(‘Done”’) ;

counter | number

2 3

Printed:

D McGill

Loops

int counter, number;

counter = 1;

number = 1;

while (counter <= 3) {
System.out.println(number) ;

number = number + 2;
counter++;

}

System.out.println(‘Done”’) ;

counter | number

2 3

Printed:

D McGill

Loops

int counter, number;

counter = 1;

number = 1;

while (counter <= 3) {
System.out.println(number) ;

number = number + 2;
counter++;

}

System.out.println(‘Done”’) ;

counter | number

2 5

Printed:

D McGill

Loops

int counter, number;

counter = 1;

number = 1;

while (counter <= 3) {
System.out.println(number) ;

number = number + 2;
counter++;

}

System.out.println(‘Done”’) ;

counter | number

3 5

Printed:

D McGill

Loops

int counter, number;

counter = 1;

number = 1;

while (counter <= 3) {
System.out.println(number) ;

number = number + 2;
counter++;

}

System.out.println(‘Done”’) ;

counter | number

3 5

Printed:

D McGill

Loops

int counter, number;

counter = 1;

number = 1;

while (counter <= 3) {
System.out.println(number) ;

number = number + 2;
counter++;

}

System.out.println(‘Done”’) ;

counter | number

3 5

Printed:

D McGill

Loops

int counter, number;

counter = 1;

number = 1;

while (counter <= 3) {
System.out.println(number) ;

number = number + 2;
counter++;

}

System.out.println(‘Done”’) ;

counter | number

3 I

Printed:

D McGill

Loops

int counter, number;

counter = 1;

number = 1;

while (counter <= 3) {
System.out.println(number) ;

number = number + 2;
counter++;

}

System.out.println(‘Done”’) ;

counter | number
4 7

Printed:

D McGill

Loops

1int counter, number;

counter = 1;

number = 1;

while (counter <= 3) {
System.out.println(number) ;
number = number + 2;

counter++;

}

System.out.println(‘Done”’) ;

counter | number

4 7

Printed:

1
3
5
Done

D McGill

Loops

int counter = 1;

int number = 1;

while (counter <= 10000) {
System.out.println(number) ;
number = number + 2;
counter++;

by

System.out.println(‘Done”’) ;

D McGill

Loops

int maximum = Keyboard.readInt();

int counter = 1;

int number 1;

while (counter <= maximum) A
System.out.println(number) ;
number = number + 2;
counter++;

D McGill

43

Loops

e while is not the same as if

int maximum = Keyboard.readInt() ;

int counter = 1;

int number = 1;

if (counter <= maximum) A
System.out.println(number) ;
number = number + 2;
counter++;

e [he while statement executes a statement or list of
statements repeteadely, until its condition becomes false

e The if statement executes a statement or list of state-
ments once, and only if its condition is true

D McGill 5

Loops

e A loop may not terminate

int maximum = Keyboard.readInt();

int counter = 1;

int number = 1;

while (counter <= maximum) A
System.out.println(number) ;
number = number + 2;

e A loop will not terminate if its condition is always true

e The condition of a loop will remain true if its variables
never change

D McGill

45

Loops

e The variables of the condition must change in a way
which eventually makes the condition false

e |f the variables change, but in a way that does not make
the condition false eventually, then the loop does not
terminate

int maximum = Keyboard.readInt();

int counter = 1;

int number = 1;

while (counter <= maximum) A
System.out.println(number) ;
number = number + 2;
counter--;

D McGill

46

e Will this terminate?

int 1;

1 =1;

while (i !'= 10) {
//. ..

1 =1+ 2;

Loops

D McGill

47

e Will this terminate?

int 1;

1 = 100;

while (i '= 0) {
//...
i=1/2;

+

Loops

D McGill

48

e Will this terminate?

int 1;

1 = 10;

while (i '= 3) {
//...
i=1/2;

+

Loops

D McGill

49

e Will this terminate?

float 1;

1 = 10;

while (i !'= 0) {
//. ..
i=1/2;

+

Loops

D McGill

50

Loops

e [ermination is important

D McGill

51

Gussing game
import csl.Keyboard;
public class GuessingGame {
public static void main(Stringl[] args)
{
int die, guess, points, game;
final int ROUNDS = 10;

points = O;

game = 1;

while (game <= ROUNDS) {
System.out.print(‘What is your guess? ’’);
guess = Keyboard.readInt();

die = (int) (Math.random() * 6 + 1);
if (guess == die) {
points++;
b
game++;
¥
System.out.println(‘““You guessed *’+points+‘ tim
b
b

D McGill

52

Reverse

e Problem: Given any string, print the string in reverse.

e Analysis:

— Information involved: a four letter word, w.
— |nput: w

— Output: a word v which is the reverse of w
— Definitions:

x The reverse of a word w is a word v which has the
the same characters as w, but in inverse order: the
first letter of v is the last of w, the second letter
of v is the second-to-last of w, etc.

— Note: no restrictions on the string!

D McGill)

Design
The design for only strings of size 4:

1. Obtain the word w

2. Create a new word v, initially empty

3. Add the last character of w to the end of v

4. Add the third character of w to the end of v
5. Add the second character of w to the end of v
6. Add the first character of w to the end of v

/. Print v

D McGill

54

Design

Generalise the design:

1. Create a new word v, initially empty
2. Add the last character of w to the end of v

3. Add the second to last character of w to the end of v

5. Add the second character of w to the end of v
6. Add the first character of w to the end of v

/. Print v

D McGill

55

Design

Generalise the design:

1. Create a new word v, initially empty

2. Traverse the string w from last character to first, adding
the corresponding character at the end of v

3. Print v

D McGill 3

Design

Generalise the design:

1. Create a new word v, initially empty
2. Set a variable index to be the last index of w

3. While the index is larger or equal to 0, repeat:

(a) Let c be the character at index, of the string w.

a
(b) Append ¢ to v
(c) decrement index by 1

4. Print v

D McGill

57

Implementation

// This solution traverses w from right to left
String w, v;

int 1ndex;
char c;
V — (U’;

index = w.length() - 1;
while (index >= 0) {
¢ = w.charAt(index) ;
V=V + C;
index--;

¥

D McGill

58

Implementation

// This solution traverses w from left to right
String w, v;

int 1ndex;
char c;
V — (U’;
index = 0;

while (index <= w.length() - 1) {
¢ = w.charAt(index);
V — €€ + C + V;
index++;

¥

D McGill

59

Prime numbers

e Problem: determine whether a given positive integer is

prime or not

e Analysis:

— Input: an integer n
— Output: a boolean: true if n is prime, false otherwise
— Definitions:
x A prime number is a number which is divisible only
by 1 and itself
x An integer a is divisible by b if there is an integer
k such that a = kb

— Assumptions: n is positive

D McGill)

Prime numbers

e Basic idea: try to find a factor of n (i.e. a number
that divides n), between 1 and n. If such number exists.
then n is not prime, otherwise it is prime.

1. Set is_prime to true

2. Set/to be?2

3. While / < n, repeat:

(a) if / divides n, then set is_prime to false
(b) increment i by 1

4. Return the value of is_prime

D McGill _

Prime numbers

boolean 1s_prime = true;

int 1 = 2;

while (i < n) {
if (n % i == 0) is_prime = false;
14++;

D McGill

62

Prime numbers

boolean 1s_prime = true;
int 1 = 2;
while (i < n) {
if (m % 1i==20) {
is_prime = false;
1 = n;

1++;

D McGill

63

Prime numbers

boolean 1s_prime = true;
int 1 = 2;
while (i < n) {
if (m % 1i==20) {
is_prime = false;
break;

¥

1++;

D McGill

64

The end

D McGill

65

