Announcements

e Midterm:

— Date: Monday, March 1st
— Time: 6:00pm - 8:00pm
— Location: MAASS 112

e Review tutorials: check website for times

e Office hours

D McGill

Example

public class Movie

{
String title, director;

Movie(String t, String d)
{
title = t;
director = d;
b
void print()
{
System.out.println(title);
System.out.println(director);

¥
}

D McGill

Example

public class MovieApplication {
public static void main(Stringl[] args)
{
Movie ml;
ml.print () ;
by
by

D McGill

Create objects before sending
messages

public class MovieApplication2 {
public static void main(String[] args)
{
Movie mil;
ml.print(); // Error! Null pointer exception

¥
¥

D McGill

Create objects before sending
messages

public class MovieApplication2 {
public static void main(String[] args)
{
Movie mil;
ml = new Movie(‘‘Les Invasions barbares’’,
“Denys Arcand”’);
ml.print(); // OK
¥
¥

D McGill

Create objects before sending
messages

public class Theater {
void play(Movie m)
{
m.print () ;
b
b

public class MovieApplication3 {
public static void main(Stringl[] args)
{
Movie mil;
Theater t = new Theater();

t.play(ml); // Error! Null pointer exception

¥
¥

D McGill

Create objects before sending
messages

public class MovieApplication3 {
public static void main(String[] args)
{
Movie mil;
Theater t = new Theater();
ml = new Movie(‘‘Les Invasions barbares’’,
“Denys Arcand”’);

t.play(m1); // OK

D McGill

Example

public class MovieApplication4 {

public static void main(String[] args)

{
Movie ml;
ml = new Movie(‘‘Les Invasions barbares’’,

“Denys Arcand”’) ;

String t;
t = ml.getTitle();

D McGill

Methods must be defined

public class Movie
{
String title, director;
Movie(String t, String d)
{
title = t;
director = d;
b
void print()
{
System.out.println(title);
System.out.println(director);

¥
¥

D McGill

Methods must be defined

public class Movie
{
String title, director;
Movie(String t, String d)
{
title = t;
director = d;
¥
void print()
{
System.out.println(title);
System.out.println(director);
¥
String getTitle() { return title; }
¥

D McGill

10

Example

public class MovieApplicationb {

public static void main(String[] args)

{
Movie ml;
ml = new Movie(‘‘Les Invasions barbares’’,

“Denys Arcand”’) ;

float t;
t = ml.getTitle(1729);

D McGill

11

Types must match

public class MovieApplicationb {

public static void main(Stringl[] args)

{
Movie ml;
ml = new Movie(‘‘Les Invasions barbares’’,

“Denys Arcand”’);

String t;
t = ml.getTitle();

D McGill

12

Types must match

public class Movie
{
String title, director;
Movie(String t, String d)
{
title = t;
director = d;
by
void print()
{
System.out.println(title);
System.out.println(director);
by
String getTitle() { return title; }

int doSomething(float x, boolean b) {
//. ..
by
by

D McGill

13

Types must match

public class MovieApplicationb {

public static void main(Stringl[] args)

{
Movie ml;
ml = new Movie(‘‘Les Invasions barbares’’,

“Denys Arcand”’);

String t;
t = ml.getTitle();
ml.doSomething(‘“‘hello”’); //Error

D McGill

14

Types must match

public class MovieApplicationb {
public static void main(Stringl[] args)

{

Movie ml;

ml = new Movie(‘‘Les Invasions barbares’’,
“Denys Arcand”’);

String t;

t = ml.getTitle();

int w;

w = ml.doSomething(1.618f, false); //OK

D McGill

15

Types must match
public class Movie
{
String title, director;
Movie(String t, String d)
{
title = ¢
director
b
void print()
{
System.out.println(title);
System.out.println(director);

¥
String getTitle() { return title; }

| v

d;

int doSomething(float x, boolean b) {

//. ..
}
void boo(int n) {
/...
}
}

D McGill

16

Types must match

public class MovieApplicationb {

public static void main(Stringl[] args)

{
Movie ml;
ml = new Movie(‘‘Les Invasions barbares’’,

“Denys Arcand”’);

String t;
t = ml.getTitle();

ml.boo(ml.doSomething(1.618f, false)); //OK

D McGill

17

The “this’ reference

e T he reference "this’ is a reserved word
e It can occur inside a normal (non-static) method

e |t has a reference to the object receiving the message

D McGill

18

Example

public class Movie
{
String title, director;
Movie(String t, String d)
{
title = t;
director = d;
b
void print()
{
System.out.println(title);
System.out.println(director);

¥
¥

D McGill

Is the same as...

public class Movie
{
String title, director;
Movie(String t, String d)
{
this.title = t;
this.director = d;
¥
void print()
{
System.out.println(this.title);

System.out.println(this.director);

¥
¥

D McGill

20

Example

public class MovieApplication {

public static void main(String[] args)

{
Movie ml, m2;
ml = new Movie(““Trainspotting’’, ‘‘Danny Boyle’’)
m2 = new Movie(‘‘Pirates of the Caribbean’’,

““Gore Verbinski’’);

ml.print () ;
m2.print () ;

D McGill

21

Execution

public class MovieApplication {

public static void main(Stringl[] args)

{
Movie ml, m2;
ml = new Movie(‘““Trainspotting’’, ‘Danny Boyle’’)
m2 = new Movie(‘‘Pirates of the Caribbean’’,

““‘Gore Verbinski’’);

ml.print();
m2.print () ;

D McGill

22

Execution

main frame

ml

m2

D McGill

23

Execution

public class MovieApplication {

public static void main(Stringl[] args)

{
Movie ml, m2;
ml = new Movie(““Trainspotting’’, ‘Danny Boyle’’)
m2 = new Movie(‘‘Pirates of the Caribbean’’,

““‘Gore Verbinski’’);

ml.print();
m2.print () ;

D McGill

24

Execution

main frame

ml

m2

Movie cons frame

this

D McGill

25

Execution

Movie

main frame
m1l (
title
m2
director
_

Movie cons frame

d
this
T McGill

26

Execution

public class Movie
{
String title, director;
Movie(String t, String d)
{
this.title = t;
this.director = d;
¥
void print()
{
System.out.println(this.title);

System.out.println(this.director);

¥
¥

D McGill

27

Execution

Movie

main frame
m1l (
title
m2
director
_

Movie cons frame

t Trainspottin

d Danny Boyle

D McGill

28

Execution

public class Movie
{
String title, director;
Movie(String t, String d)
{
this.title = t;
this.director = d;
¥
void print()
{
System.out.println(this.title);

System.out.println(this.director);

¥
¥

D McGill

29

Execution

main frame

ml

m2

Movie cons frame

Movie

t Trainspottin

d Danny Boyle

_

title

director

Trainspottin

\

D McGill

30

Execution

public class Movie
{
String title, director;
Movie(String t, String d)
{
this.title = t;
this.director = d;
¥
void print()
{
System.out.println(this.title);

System.out.println(this.director);

¥
¥

D McGill

31

Execution

main frame

ml

m2

Movie cons frame

Movie

t Trainspottin

d Danny Boyle

_

title

director

Trainspottin

Danny Boyle

\

D McGill

32

Execution

public class Movie
{
String title, director;
Movie(String t, String d)
{
this.title = t;
this.director = d;
¥
void print()
{
System.out.println(this.title);

System.out.println(this.director);

¥
¥

D McGill

33

Execution

main frame
Movie
m1l 4)
title Trainspottin
m2
director Danny Boyle
\. J
T McGill

34

Execution

public class MovieApplication {

public static void main(Stringl[] args)

{
Movie ml, m2;
ml = new Movie(““Trainspotting’’, ‘Danny Boyle’’)
m2 = new Movie(‘‘Pirates of the Caribbean’’,

““‘Gore Verbinski’’);

ml.print();
m2.print () ;

D McGill

35

Execution

main frame
Movie
m1l 4)
\ title Trainspottin
m2
director Danny Boyle

\. J

T McGill

36

Execution

public class MovieApplication {

public static void main(Stringl[] args)

{
Movie ml, m2;
ml = new Movie(“‘“Trainspotting’’, ‘Danny Boyle’’)
m2 = new Movie(‘‘Pirates of the Caribbean’’,

‘“Gore Verbinski”’);

ml.print();
m2.print () ;

D McGill

37

main frame

ml

Execution

m2

—~_

Movie

Movie cons frame

t

_

title

director

Trainspottin

Danny Boyle

\

d
this
T McGill

38

Execution

main frame
Movie
m1l ()
\ title Trainspottin
m2
director Danny Boyle
_ J
Movie cons frame
t Movie
()
d title
this director
\ J

D McGill

39

Execution

public class Movie
{
String title, director;
Movie(String t, String d)
{
this.title = t;
this.director = d;
¥
void print()
{
System.out.println(this.title);

System.out.println(this.director);

¥
¥

D McGill

40

Execution

main frame
Movie
m1l ()
\ title Trainspottin
m2
director Danny Boyle
_ J
Movie cons frame
t Pirates of t Movie
()
d |Gore Verbins title
this — 1 | director
_ J
D McGill

41

Execution

public class Movie
{
String title, director;
Movie(String t, String d)
{
this.title = t;
this.director = d;
¥
void print()
{
System.out.println(this.title);

System.out.println(this.director);

¥
¥

D McGill

42

Execution

main frame
Movie
m1l ()
\ title Trainspottin
m2
director Danny Boyle
_ J
Movie cons frame
t Pirates of t Movie
()
d |Gore Verbins title Pirates of t
this — 1 | director
_ J
D McGill

43

Execution

public class Movie
{
String title, director;
Movie(String t, String d)
{
this.title = t;
this.director = d;
¥
void print()
{
System.out.println(this.title);

System.out.println(this.director);

¥
¥

D McGill

44

Execution

main frame
Movie
ml ()
\ title Trainspottin
m2
director Danny Boyle
_ J
Movie cons frame
t Pirates of t Movie
()
d |Gore Verbins title Pirates of t
this — 1 | director Gore Verbins
_ J
D McGill

45

Execution

public class Movie
{
String title, director;
Movie(String t, String d)
{
this.title = t;
this.director = d;
¥
void print()
{
System.out.println(this.title);

System.out.println(this.director);

¥
¥

D McGill

46

Execution

main frame
Movie
m1l (")
\ title Trainspottin
m2
director Danny Boyle
_ J
Movie
4)
title Pirates of t
director Gore Verbins
_ J
D McGill

47

Execution

public class MovieApplication {

public static void main(Stringl[] args)

{
Movie ml, m2;
ml = new Movie(“‘“Trainspotting’’, ‘Danny Boyle’’)
m2 = new Movie(‘‘Pirates of the Caribbean’’,

‘“Gore Verbinski”’);

ml.print();
m2.print () ;

D McGill

48

Execution

main frame
Movie
m1l (")
\ title Trainspottin
m2
director Danny Boyle
_ J
Movie
4)
title Pirates of t
director Gore Verbins
_ J
D McGill

49

Execution

public class MovieApplication {

public static void main(Stringl[] args)

{
Movie ml, m2;
ml = new Movie(“‘“Trainspotting’’, ‘Danny Boyle’’)
m2 = new Movie(‘‘Pirates of the Caribbean’’,

““‘Gore Verbinski’’);

ml.print();
m2.print () ;

D McGill

50

Execution

main frame
Movie
m1l ()
\ title Trainspottin
m2
director Danny Boyle
_ J
print frame
Movie
()
this title Pirates of t
director Gore Verbins
_ J
D McGill

51

Execution

public class Movie
{
String title, director;
Movie(String t, String d)
{
this.title = t;
this.director = d;
¥
void print()
{
System.out.println(this.title);

System.out.println(this.director);

¥
¥

D McGill

52

Execution

main frame
Movie
m1l ()
title Trainspottin
m2
director Danny Boyle
_ J
print frame
Movie
()
this —1 title Pirates of t
director Gore Verbins
_ J
D McGill

53

Execution

public class Movie
{
String title, director;
Movie(String t, String d)
{
this.title = t;
this.director = d;
¥
void print()
{
System.out.println(this.title);

System.out.println(this.director);

¥
¥

D McGill

54

Execution

main frame
Movie
m1l ()
title Trainspottin
m2
director Danny Boyle
_ J
print frame
Movie
()
this —1 title Pirates of t
director Gore Verbins
_ J
D McGill

55

Execution

public class Movie
{
String title, director;
Movie(String t, String d)
{
this.title = t;
this.director = d;
¥
void print()
{
System.out.println(this.title);

System.out.println(this.director);

¥
¥

D McGill

56

Execution

main frame
Movie
m1l ()
title Trainspottin
m2
director Danny Boyle
_ J
print frame
Movie
()
this —1 title Pirates of t
director Gore Verbins
_ J
D McGill

57

Execution

public class Movie
{
String title, director;
Movie(String t, String d)
{
this.title = t;
this.director = d;
¥
void print()
{
System.out.println(this.title);

System.out.println(this.director);
by

}

D McGill

58

Execution

main frame
Movie
m1l (")
\ title Trainspottin
m2
director Danny Boyle
_ J
Movie
4)
title Pirates of t
director Gore Verbins
_ J
D McGill

59

Execution

public class MovieApplication {

public static void main(Stringl[] args)

{
Movie ml, m2;
ml = new Movie(“‘“Trainspotting’’, ‘Danny Boyle’’)
m2 = new Movie(‘‘Pirates of the Caribbean’’,

““‘Gore Verbinski’’);

ml.print();
m2.print () ;

D McGill

60

Execution

main frame
Movie
m1l ()
\ title Trainspottin
m2
director Danny Boyle
_ J
print frame
Movie
()
this title Pirates of t
director Gore Verbins
_ J
D McGill

61

Execution

public class Movie
{
String title, director;
Movie(String t, String d)
{
this.title = t;
this.director = d;
¥
void print()
{
System.out.println(this.title);

System.out.println(this.director);

¥
¥

D McGill

62

Execution

main frame
Movie
m1l ()
\ title Trainspottin
m2
director Danny Boyle
_ J
print frame
Movie
()
this title Pirates of t
director Gore Verbins
_ J
D McGill

63

Execution

public class Movie
{
String title, director;
Movie(String t, String d)
{
this.title = t;
this.director = d;
¥
void print()
{
System.out.println(this.title);

System.out.println(this.director);

¥
¥

D McGill

64

Execution

main frame
Movie
m1l ()
\ title Trainspottin
m2
director Danny Boyle
_ J
print frame
Movie
()
this title Pirates of t
director Gore Verbins
_ J
D McGill

65

Execution

public class Movie
{
String title, director;
Movie(String t, String d)
{
this.title = t;
this.director = d;
¥
void print()
{
System.out.println(this.title);

System.out.println(this.director);

¥
¥

D McGill

66

Execution

main frame
Movie
m1l ()
\ title Trainspottin
m2
director Danny Boyle
_ J
print frame
Movie
()
this title Pirates of t
director Gore Verbins
_ J
D McGill

67

Execution

public class Movie
{
String title, director;
Movie(String t, String d)
{
this.title = t;
this.director = d;
¥
void print()
{
System.out.println(this.title);

System.out.println(this.director);
by

}

D McGill

68

Execution

main frame
Movie
m1l (")
\ title Trainspottin
m2
director Danny Boyle
_ J
Movie
4)
title Pirates of t
director Gore Verbins
_ J
D McGill

69

When would it be necessary to use
the “this’ reference?

Whenever there is ambiguity: a local variable or param-
eter has the same identifier as an attribute

public class Movie

{
String title, director;
Movie(String t, String d)

{
title = t;
director = d;
+
void change_title(String t)
{
title = t;
b

}

D McGill

70

When to use ‘‘this”

public class Movie
{
String title, director;
Movie(String t, String d)
{
title = t;
director = d;
¥
void change_title(String title)
{
title = title;
¥
¥

D McGill

71

When to use "this"

public class Movie
{
String title, director;
Movie(String t, String d)
{
title = t;
director = d;
¥
void change_title(String title)
{
this.title = title;
¥
¥

D McGill

72

Scope

e Names in different scopes do not conflict (like cities in
different countries may have the same names)

e A variable can be used only if it is reachable, i.e. only if
it is defined the current scope:

— It must be in the current frame (it is a parameter, or

a local variable),
— _..or it must be defined in the class where it is being
used (in this case it refers to an attribute of the

object which received the message)

D McGill)

Scope

e Inside a method we can use only the following variables:

— Parameters of the method
— Local variables (declared inside the method)

— Attributes of the method’s class

D McGill

74

Scope

public class House {
double height;
double width;

void open_door ()

{
boolean door_opened = true;
System.out.println(door_opened) ;

¥

void print_dimensions()
{
System.out.println(height);
System.out.println(width) ;
by

void remove(double x)
{
height = height - x;
}
}

D McGill

Scope

public class House {
double height;
double width;

void open_door ()

{
boolean door_opened = true;
System.out.println(door_opened) ;

¥

void print_dimensions()
{
System.out.println(height);
System.out.println(door_opened); //Error!
I

void remove(double x)
{
height = height - x;
}
}

D McGill

76

Scope

public class House {

}

double height;
double width;

void open_door ()

{
boolean door_opened = true;
System.out.println(door_opened) ;

¥

void print_dimensions()
{
System.out.println(height);
System.out.println(x); // Error!
I

void remove (double x)

{
height = height - x;
Iy

D McGill

7

Scope

public class House {
double height;
double width;

void open_door ()

{
boolean door_opened = true;
System.out.println(door_opened) ;

¥

void print_dimensions()
{
System.out.println(height);
System.out.println(width) ;
by

void remove(double x)
{
height = height - b; // Error
}
}

D McGill

Scope

public class Neighbourhood {
House housel;

void build()

{
housel = new House();
housel.open_door () ;

¥
}

D McGill

79

Scope

public class House {
double height;
double width;

void open_door ()

{
boolean door_opened = true;
System.out.println(door_opened) ;
housel.print_dimensions(); // Error

¥

void print_dimensions()

{
System.out.println(height);
System.out.println(width) ;

+
void remove (double x)
{

height = height - x;
+

¥

D McGill

80

Scope

public class House {
double height;
double width;

void open_door ()

{
boolean door_opened = true;
System.out.println(door_opened) ;
this.print_dimensions(); // OK

¥

void print_dimensions()
{
System.out.println(height);
System.out.println(width) ;
by

void remove(double x)
{
height = height - x;
}
}

D McGill

81

Objects are “first class citizens”

e Since classes are data types and objects are their values,
then we can do with objects the “same” things that we
can do with primitive values, namely:

— We can assign objects to variables,
— We can pass objects as arguments to methods, and
— Methods can return objects as their result.

D McGill y

OOP and Simulation

e Objects stand for entities of a "real” system
e Behaviour is determined by message passing

e OOP is very useful to model complex situations

D McGill

83

Problem

Simulate a small factory consisting of only two workers.

A factory like this works as follows: it receives a
production order consisting of a product name, the number
of items that need to be produced and the difficulty of
producing each item of this kind ('E" for easy, ‘N’ for
normal, and 'D’ for difficult.) Then for each item, one
of the two workers is selected at random, and is told to
build that item. The worker is given the product name
and the dithiculty of producing it, and it returns the new
product once it has been built. Once the worker finnishes
its job on that product, the factory reports the product’s
name, the name of the worker who assembled it and the
amount of time it took to build. When all the items have
been produced, the factory reports how much time took to
complete all products, and for each worker, how many jobs
it did and how much time it spent working.

D McGill

34

Requirements

e Each individual product has a name as specified by the
user, but with a number added to it to distinguish it
from other items of the same line.

e For a normal job, a worker requires 10 minutes on
average to finnish it, with a margin of plus or minus 2.5
minutes (i.e. it will take the worker between 7.5 and
12.5 minutes, and this is a random margin.) An easy
job is done by a worker in 5 minutes on average, with
a margin of 2.5 minutes. Finally a difficult job takes
on average 15 minutes with a margin of 2.5 minutes as
well.

e A worker has a a name, a number of completed jobs,
and a total time worked.

e A worker must be able to handle job requests from the
factory. These requests consist of a name of the product
and the difficulty. When a worker finnishes assembling
a product, it returns the new product.

D McGill

85

e A product has a name, the time it took to build it, and
a reference to the worker who built it.

D McGill

86

Analysis

e Relevant information:

— Factories
— Workers
— Products

e Relationships (specially the "has-a" relationship:)

— A factory has two workers.

— A worker has a a name, a number of completed jobs,
and a total time worked.

— A product has a name, the time it took to build it,
and a reference to the worker who built it.

e Activities and behaviours:

— Workers can produce products
— Factories can tell workers to work on a product of a
particular kind and dithculty

D McGill

87

Design

Factory

+workerl: Worker
+worker2: Worker

Worker

+name: String
+jobs: int
+time: float

é>

Product

+name: String
+assembly: float
+builder: Worker

D McGill

88

Implementation

public class Product {
/] ...

b

public class Worker {
/] ...

b

public class Factory {
/] ...

b

D McGill

89

Implementation

public class Product {
String name;
float assembly_time;
Worker builder;

¥

D McGill

90

Implementation

public class Worker {
String name;
int number_of_completed_jobs;
float total_time_worked;

¥

D McGill

91

Implementation

public class Factory {
Worker workerl, worker?2;

¥

D McGill

92

Implementation

public class Product {

String name;

float assembly_time;

Worker builder;

Product (String name, float task_duration,

Worker worker)

{
this.name = name;
this.assembly_time = task_duration;
this.builder = worker;

D McGill

93

Implementation
public class Product {
String name;
float assembly_time;
Worker builder;
Product (String n, float t, Worker w) {
this.name = n;
this.assembly_time = t;
this.buillder = w;

b
String get_name()

{

return this.name;

b
float get_assembly_time()

{

return this.assembly_time;

}

Worker get_worker ()

{

return this.worker;

}
¥

D McGill

94

Implementation

public class Worker {

¥

String name;

int number_of_completed_jobs;

float total_time_worked;

Worker (String name) {
this.name = name;
number_of_completed_jobs = 0;
total_time_worked = 0.0f;

}

String get_name()

{

return name;

}

int number_of_completed_jobs()

{

return number_of_completed_jobs;

+
float total_time_worked()

{

return total_time_worked;

¥

D McGill

95

Implementation

public class Worker {

String name;

int number_of_completed_jobs;

float total_time_worked;

Worker (String name) A
this.name = name;
number_of_completed_jobs = 0;
total_time_worked = 0.0f;

¥

String get_name()

{

return name;

}

int number_of_completed_jobs()

{

return number_of_completed_jobs;

+
float total_time_worked()

{

return total_time_worked;

}

// Continues below

D McGill

96

Product work(String product_name,
char difficulty)
{
/] ...
b
} // End of class Worker

D McGill

97

Implementation

Product work(String product_name, char difficulty)
{

float average_task_duration = 10.0f;

float margin = 2.5%;

float task_duration = 0.0f;

if (difficulty == ’E’) {

average_task_duration = average_task_duration - 5.0f;
¥
else if (difficulty == ’D’) {

average_task_duration = average_task_duration + 5.0%f;
¥

// Continues. ..

D McGill

98

task_duration = average_task_duration
+ (float) ((Math.random() * 2 - 1) * margin);

number_of_completed_jobs++;
total_time_worked = total_time_worked + task_duration;

return new Product(product_name, task_duration, this);

} // End of work method

D McGill

99

Implementation

public class Worker

{
/] ...
Worker (String name) { ... }
String get_name() { ... }
int number_of_completed_jobs() { ... }
float total_time_worked() { ... }
Product work(String product_name,

char difficulty) { ... }
} // End of class Worker

D McGill

100

Implementation

public class Factory
{
Worker workerl, worker?2;

Factory(Worker workerl, Worker worker2) { ... }

float produce(String product_name, int number_of_items,

char difficulty) { ... }
Worker get_worker1() { ... }
Worker get_worker2() { ... }

¥

D McGill

101

Implementation

public class Factory
{
Worker workerl, worker?2;
Factory(Worker workerl, Worker worker?2)
{
this.workerl = workerl;
this.worker2 = worker2;
¥
float produce(String product_name, int number_of_items,
char difficulty)
{
int item = 1;
float assembly_time = 0.0f;
float total_time = 0.0f;

D McGill

102

while (item <= number_of_items) {
int worker = choose_worker();
Product p;
if (worker == 1) {
p = workerl.work(product_name + item, difficulty);
¥
else {
p = worker2.work(product_name + item, difficulty);
¥
assembly_time = p.get_assembly_time();
total_time = total_time + assembly_time;
System.out.println("Product: "+p.get_name()+" was built by: "4
1tem++;
¥

return total_time;

}

D McGill

103

Worker get_workerl()
{

return this.workerl;

by
Worker get_worker2()

{

return this.worker?2;

}
int choose_worker ()
{
return (int) (Math.random() * 2) + 1;
}
}

D McGill

104

The end

D McGill

105

