Reminder

e Midterm today at 6:00pm at MAASS 112

D McGill

Review

Computers Programming
Problem
Solving

Information Algorithms

D McGill

Review

Software

Hardware

Computers

Programming

Problem
Solving

-

Information

~

Algorithms

D McGill

Review

Software

Hardware

Computers

Data representation

Programming

Problem
Solving

-

N

Information

~

Algorithms

D McGill

Review

Compilers/
Interpreters —~ Software
Hardware Computers

Data representation

N

Programming

Problem
Solving

-

Information

~

Algorithms

D McGill

Review

Compilers/
Interpreters —~ Software
Hardware Computers

Data representation

Programming

Problem
Solving

-

N

Information

Analysis

~

Algorithms

Design

Implementation

D McGill

Review

Compilers/
Interpreters —~ Software
Hardware Computers

Data representation

Programming

Problem
Solving

-

N

Information

Analysis

~

Algorithms

Design

Implementation

D McGill

Review

Compilers/ \

Interpreters 1 Software Programming Languages
Hardware Computers Programming

Problem

Solving

~

Algorithms

Data representation /
\— Information

Analysis Design Implementation

D McGill

Problem solving

e (Clear statement of the problem
e Analysis (of the problem)

e Design

e Implementation

e Testing / Verification

e Maintenance

D McGill

Analysis

e Goal: to obtain a precise understanding the problem

e Things to do in analysis:

— Determine inputs and outputs

— Determine general and specific requirements

— Make or obtain precise definitions of concepts in-
volved

— Determine the relevant information to the problem

— Determine the relationship between ditferent elements
or pieces of information of the problem

— Make explicit any relevant assumptions

D McGill

10

Computers

Review

Syntax Semantics

\/

Programming Languages

|

Programming

Problem
Solving

-

Information

~

Algorithms

Java

D McGill

Computers

Review

Syntax Semantics

\/

Programming Languages

|

Programming

Problem
Solving

-
.-"
-

Java

|

Classes

™~

----- Methods

™~

Statements

Information }---"" Algorithms ---
D McGill

12

Statements

e Variable declarations
e Assignment

e Conditionals

e [oops

e Method calls

D McGill

13

Statements

e \ariables

— A variable is a memory cell with a name (identifier)
— A variable can change its value

— A variable has a data type

— Variable declaration

type identifier;

type identifier = expression;

type 1d1, 1d2, id3;

type 1dl = el, 1d2 = e2, 1d3 = e3;

— The type of a variable can be
* Primitive (e.g. int, boolean, etc.)
* User-defined (i.e. a class)

D McGill)

Statements

e Assignment

— Changes the value of a variable
variable = expression;

— Expressions:
* arithmetic: int type
* boolean
*x string

D McGill

15

Statements

e Conditionals: making decisions
— if

if (condition)
statement_or_block;

— if-else

if (condition)
statement_or_blockl ;

else
statement_or_block2;

— switch

switch(int_or_char_expr) A
case i1nt_or_char_exprl: statementsli;
case i1nt_or_char_expr2: statementsZ2;

default: statementsn;

¥

D McGill

16

Statements

e |Loops: Repetition
— while

while (condition)
statement_or_block;

— do-while

do
statement_or_block
while(condition) ;

— for

for (init; condition; statement)
statement_or_block;

D McGill

17

Statements

e Method calls

— normal

objectreference.methodname (argl, arg2, ..., argr
— static

classname.methodname (argl, arg2, ..., argn)

e Messages to self

methodname (argl, arg2, ..., argn)
this.methodname (argl, arg2, ..., argn)

D McGill

18

Control-flow

e Statements are executed sequentially

e The order in which statements appear matters

int x;
X = 8;
X = X + 3;

if (x >= 10) {
System.out.println(“0K’’);

¥

else {
System.out.println(“Error’’);

¥

D McGill

19

Control-flow

e Statements are executed sequentially

e The order in which statements appear matters

int x;

X = 8;

if (x >= 10) {
System.out.println(““0K”’);

by

else {
System.out.println(“‘Error”’) ;

by

X

=x + 3;

D McGill

20

Control-flow

e |oops

e Termination: a loop may fail to terminate

int 1;

1 =0;

while (1 < 10) {
System.out.print (i) ;

b

e To terminate, the body of the loop must have some “ad-
vance statements, i.e. statements which will eventually
make the condition false.

int 1;

1 = 0;

while (i < 10) {
System.out.print (i) ;
i++;

by

D McGill

21

Classes and objects

e Objects are composite data that can react to messages
e Classes define the structure and behaviour of objects

e Objects are not classes

— A class is a data type
— An object is an instance of a class

D McGill ,

Classes and objects

e Defining classes

— Attributes (instance variables): characteristics of the

objects
— Methods: how objects react to messages

e Using classes

— Creating objects
— Accessing attributes
— Invoking (calling) methods: sending messages

D McGill y

Classes and objects

e Defining classes:

public class ClassName {
// Attribute definitions
// Method definitions

+

e Defining attributes:
type identifier;

Note: different classes can have attributes with the same
name

D McGill

24

Classes and objects

e Defining methods:

— normal

type name (typel pl, type2 p2, ..., typen pn)
{

list_of_statements;

¥

— static

static type name (typel pl, type2 p2, ..., typen
{

list_of_statements;

¥

Note: different classes can have methods with the same
name

D McGill

25

Classes and objects

e Using classes:

— Creating objects:
type objectreference;
objectreference = new type (args);
where type is a class.

e Accessing attributes:
objectreference.attributename

only if the attribute is defined in objectreference's
class.

e Calling methods:

objectreference.methodname (argl,arg2,...,argn)

only if the method is defined in objectreference’s
class, and the types of the arguments are the same as
the types of the parameters.

D McGill

26

Methods calls

e If class A is defined as

class A {
void m() { ... %}
t

e and a variable x has a reference to an A object:

A x;
x = new AQ);

e then method m can be applied to x

x.m() ;

e But if method p is not defined in A, it cannot be applied
to x

x.p(); // Error

D McGill

27

Method calls

e Control flow
e Frames and parameter passing

e Access to variables

— Parameters
— Local variables
— Object attributes

e Static methods
e Static variables

e Recursive methods

D McGill

28

Methods calls: control flow

MyProgram A B
main b P

------- > : : .
' v : :
v ' ' '
X.M() =-f---- - XPp() -feeecte ; :
b R - Ak Rkl sl : :
vl b Y S N

) McGill)

Methods calls: parameter passing
public class Stereo {

double volume;
void set_volume(double v)

{

volume = v;
+
double get_volume()
{

return volume;
}

b
public class SoundSystem {
public static void main(String[] args)
{
Stereo mystereo = new Stereo();
double x, factor = 2;
System.out.println(““Testing...”’);
x =4.0;
mystereo.set_volume(x * factor);
System.out.println(mystereo.get_volume());

D McGill

30

Method invocation: Memory structure

Before calling mystereo.set_volume(x*factor)

Stereo

main frame
mystereo

X 4.0
factor 2

volume

First its arguments (x*factor
Evaluating X*factor

) are evaluated:
in the main frame results in 8.0

D McGill

31

Method invocation: Memory structure

A frame for set_volume is created, and
the argument is assigned to the parameter:

v = 8.

0;
Stereo

main frame
mystereo

X 4.0
factor 2

volume

set_volume frame

\Y; 8.0
this
D McGill

32

Method invocation: Memory structure

The current method (main) is suspended, and
the body of the called method (set_volume) is executed

in the context of the current frame (the set_volume frame):

Stereo

main frame
mystereo

X 4.0
factor 2

volume

8.0

set_volume frame

\Y; 8.0
this
D McGill

33

Method invocation: Memory structure

Finally the called method frame is discarded, and
computation of the calling method (main) is resumed
in the instruction immediately after the method call.

main frame Stereo
mystereo
volume | 8.0
X 4.0
factor 2
D McGill

34

Static methods

e Static methods have no direct effect on objects

e When calling a static method, the frame does not have
a this’ reference

e Therefore they cannot access any object attributes

e They can access only:

— Parameters

— Local variables

— static variables (shared between all objects in the
class)

e Non-static methods can access both static and non-
static methods and variables

e Static methods cannot access non-static methods and
non-static instance variables

D McGill

35

Objects as first class values

e Objects can be passed as parameters and returned as
values

public class Rabbit {
void jump() { ... }
¥
public class Cage {
void shake(Rabbit a)
{
a.jump() ;
by
Rabbit create()
{
return new Rabbit();
+
by

...elsewhere. ..

Rabbit bugs = new Rabbit();
Cage ¢ = new Cage();
c.shake (bugs) ;

Rabbit wester = c.create();

D McGill

36

Objects as first class values

e Objects can be attibutes of other objects

public class Rabbit {
void jump() { ... }
¥
public class Cage {
Rabbit my_rabbit;
void put(Rabbit a)
{
my_rabbit = a;
b
Rabbit get ()
{
return my_rabbit;
b
¥

...elsewhere. ..

Rabbit bugs = new Rabbit();
Cage ¢ = new Cage();
c.put(bugs) ;

Rabbit wester = c.get();

D McGill

Methods: divide and conquer

If a problem is too complex, then its solution should
be done by dividing the problem into smaller subproblems,
and solving each subproblem in a separate method. The
solution to the entire problem is then achieved by combining
the solutions of the subproblems (by calling the necessary
methods.)

D McGill

38

Methods: reusable abstractions

e A method can be reused in different contexts

e Calling a method is "the same” as substituting its body
in place of its call (replacing the parameters by the
actual arguments,) but

e |f we define a method, we can simply call it from more
than one context without having to do copy and paste.

D McGill

39

Methods: reusable abstractions

Determining whether n is a prime number or not:

boolean result;
int 1;

result = true;
1 = 2;
while (i < n && result) A
if (m % 1==0) {
result = false;

}

1++;

D McGill

Methods: reusable abstractions

public class MyMathProcedures {
static void print_primes(int m)
{
boolean result;
int n;

n=1;
while (n <= m) {

// Find out if n is prime...
if (result)

System.out.println(n);
n++;

D McGill

41

Methods: reusable abstractions
public class MyMathProcedures {
static void print_primes(int m)
{
boolean result;
int 1, n;

n=1;
while (n <= m) A
result = true;
1 = 2;
while (i < n && result) A
if (m % 1i==0) {
result = false;

+
1++;

b

if (result)
System.out.println(n);

n++:

by
+
¥

D McGill

42

Methods: reusable abstractions

public class MyMathProcedures {
static boolean is_prime(int n)
{
boolean result;
int 1;

result = true;
1 = 2;
while (i < n && result) A
if (m % 1==0) {
result = false;

¥
1++;
¥

return result;

//... rest of the class

D McGill

43

Methods: reusable abstractions
public class MyMathProcedures {
static void print_primes(int m)
{
boolean result;
int 1, n;

n=1;
while (n <= m) A
result = true;
1 = 2;
while (i < n && result) A
if (m % 1i==0) {
result = false;

by
1++;

by

if (result)
System.out.println(n);

n++:

by
+
¥

D McGill

44

Methods: reusable abstractions

public class MyMathProcedures {
static boolean is_prime(int n) { ... }

static void print_primes(int m)
{

boolean result;

int n;

n=1;

while (n <= m) {
result = is_prime(n);
if (result)

System.out.println(n);
nt++;

D McGill

45

Methods: reusable abstractions

public class MyMathProcedures {
static boolean is_prime(int n) { ... }

static void print_primes(int m)

{

int n;

n=1;
while (n <= m) {
if (is_prime(n))
System.out.println(n);
n++;

D McGill

46

Methods: reusable abstractions

Problem: given three numbers, determine whether all
of them are prime or their sum is prime

D McGill

47

Methods: reusable abstractions

public class MyMathProcedures {
static boolean is_prime(int n) { ... }

static void threenumbers(int a, int b, int c)
{

if (is_prime(a) && is_prime(b) && is_prime(c)

|| is_prime(a+b+c)) {
return true;

}

return false;
}

+

D McGill

48

Methods: reusable abstractions

public class MyMathProcedures {
static boolean is_prime(int n) { ... }

static void threenumbers(int a, int b, int c)
{
return (is_prime(a) && is_prime(b) && is_prime
|| is_prime(a+b+c));

D McGill

49

Methods: reusable abstractions

public class MyMathProcedures {
static boolean is_prime(int n) { ... }

static void threenumbers(int a, int b, int c)
{
boolean resultl, result2, result3, result4;
int 1;

resultl = true;
1 = 2;
while (1 < a && resultl) {
if (a % 1i==0) {
resultl = false;

+
i++;

}

result2 = true;

1 = 2;

while (i < b && result2) {
if (b % 1i==0) {

result?2 = false;

D McGill

50

+
i++;

}

result3 = true;

1 = 2;

while (i < ¢ && result3) {
if (¢ % 1i==0) 1

result3 = false;

+
1++;

}

resultd = true;

1 = 2;

while (i < a+b+c && resultd) {
if ((atb+c) % 1 == 0) {

result4 = false;

+
1++;
}
return resultl && result2 && result3 || result

D McGill

51

Methods: reusable abstractions

public class MyMathProcedures {
static boolean is_prime(int n)
{
boolean result;
int 1;

result = true;
1 = 2;
while (i < Math.sqrt(n) && result) {
if (n% i==0) A
result = false;

¥
1++;
¥

return result;

//... rest of the class

D McGill

52

Recursion

A recursive method is a method that calls itself (directly
or indirectly.)

A recursive definition is a definition of something in
terms of itself

Some recursive definitions don't make sense, (e.g. from
Webster's: growl: to utter a growl), but others do

For example:

— A list of numbers is either:
* A single number, or
x A number followed by a list of numbers.
— For example:
* 5 is a list of numbers
% 7,5 is a list of numbers (because 5 is a list)
x 0, 7, 5 is a list of numbers (because 7, 5 is a list)
x 8,6, 7,5 is a list of numbers (because 6, 7, 5 is a
list)

D McGill

53

Recursive functions

e Factorial: the factorial of a natural number n, written
n! is the multiplication of the first n positive integers,
l.e.

nl=1-2-3-...-(n—2)-(n—1)-n (1)

But note that
1-2:3-...-(n—=2)-(n—1)=(n-1)! (2)
So by (1) and (2) we get

nl=mn-1!n (3)

But we have to assume a "base case’, by defining

0! =1 (4)

D McGill

54

Recursive functions (contd.)

Hence, (3) and (4) together gives us an alternative, and
recursive definition of (1):

ol { 1 ifn=20

(n—1)!'-n otherwise

This can be implemented as a static recursive method:

static int factorial(int n)

{
if (n == 0) {
return 1;
}
return factorial(n-1)*n;
}

D McGill

55

Execution of recursive methods

Consider the following client for this factorial function:

int r;
r = factorial(4);

lts execution proceeds as follows:

This is executed in some frame:
Sonme frane

r

When we call factorial(4); a new frame for the method is created:
Some frame

r

factorial frame

n 4

We execute the body of factorial; n is not 0 so we execute
return factorial(n-1)*n;

which in this frame is the same as
return factorial(4-1)*4;

D McGill

56

Some frame

r

factorial frame

n

4

factorial frame

n

3

pending computation:
return factorial(3)*4;

Again, we execute the body of factorial,
again, nis not 0 so we execute

return factorial(n-1)*n;

which in this frame is the same as
return factorial(3-1)*3;

D McGill

57

Some frame

r

factorial frame

n

4

factorial frame

n

3

factorial frame

pending computation:
return factorial(3)*4;

pending computation:
return factorial(2)*3;

n

2

Again, we execute the body of factorial;
again, nis not 0 so we execute

return factorial(n-1)*n;

which in this frame is the same as
return factorial(2-1)*2;

D McGill

58

Sone frane

r

factorial frane

pending computation:
return factorial (3)*4;

n 4

factorial frane

pending computation:
return factorial (2)*3;

n 3

factorial franme

pending computation:
return factorial (1)*2;

n 2

factorial frane

n 1

Again, we execute the body of factorial;
again, nis not 0 so we execute

return factorial (n-1)*n;

which in this frame is the same as
return factorial (1-1)*1,

D McGill

59

Sone frane

factorial frane

pending computation:
return factorial (3)*4;

n 4

factorial frane

pending computation:
return factorial (2)*3;

n 3

factorial frane

pending computation:
return factorial (1)*2;

n 2

factorial frane

pending computation:
return factorial (0)*1;

n 1

factorial frane

n 0

Now, we have reached the base case, and n is 0, so we execute:

return 1,
We get rid of the frame, and pass the returned value to the caller

D McGill

60

Sone frane

factorial frane

n 4 pending computation:
return factorial (3)*4;

factorial frane

pending computation:
return factorial (2)*3;

n 3

factorial franme

pending computation:
return factorial (1)*2;

n 2

factorial frane

n 1

The pending computation here was:
return factorial (0)*1;

and the method called factorial (0)
returned 1, so this pending computation is now:
return 1*1;

We get rid of the frame, and pass the returned value to the caller

D McGill

61

Sone frane

factorial frane

n 4 pending computation:
return factorial (3)*4;

factorial frane

pending computation:
return factorial (2)*3;

n 3

factorial franme

n 2

The pending computation here was:
return factorial (1)*2;

and the method called factorial (1)
returned 1, so this pending computation is now:
return 1*2;

We get rid of the frame, and pass the returned value to the caller

D McGill

62

Sone frane

factorial frane

n 4 pending computation:
return factorial (3)*4;

factorial frane

n 3

The pending computation here was:
return factorial (2)*3;

and the method called factorial (2)
returned 2, so this pending computation is now:
return 2*3;

We get rid of the frame, and pass the returned value to the caller

D McGill

63

Sone frane

factorial frane

n 4

The pending computation here was:
return factorial (3)*4;

and the method called factori al (3)
returned 6, so this pending computation is now:
return 6*4;

We get rid of the frame, and pass the returned value to the caller

D McGill

Sone frane

The pending computation here was:
r = factorial (4);

which returned 24, so this pending computation is now:
r = 24;

D McGill

65

Recursion on other types

e Problem: given a string s, return the reverse of the

string

e Analysis:

— Notation:
% rev(s) is the reverse of s
*x 8; Is the ¢-th character of s
* len(s) is the length of s
* rest(s) is the string s without its first character sg
(i.e. rest(s) = s152...8, where n =len(s) — 1)
— Formal definition of reverse:

) () B ¢ lf S = ¢
SV = rev(rest(s)) + so otherwise

D McGill)

e For example:

Reverse (contd.)

rev(“abed”) = rev(“bed”) +' a

= (rev(“cd”) +'0") +'
= ((rev(“d”)+') +' ")
= (((rev(*”) +'d") +' v') +' a’
=(((“+"d)Y+')+
= ((“d” +') +'b') +
= (“dc” +'0) +'
= “dcb” +' df
= “dcba”

 McGill

67

Reverse (contd.)

public class MoreStringOperations {
static String reverse(String s)

{
if (s.equals(‘®’)) {

€,

return ;

}

return reverse(rest(s))+s.charAt(0);

by
static String rest(String s)

{
String result =°’;
int 1 = 1;
while (i < s.length()) {
result = result + s.charAt(i);
1++;
+

return result;

D McGill

68

Double recursion

e Problem: Compute the n-th Fibonacci number

e Analysis: The Fibonacci sequence 1, 1, 2, 3, 5, 8, 13,
21, 34, ...is defined by:

. 1 ifn <2
fib(n) = { fib(n — 1) + fib(n — 2) otherwise

e |Implementation:

static int fib(int n)

{
if (n <= 2) {
return 1;
}
return fib(n-1)+fib(n-2);
+

D McGill

69

lteration vs recursion

e [terative solution to the Fibonacci problem:

static int fib(int n)

{
int a, b, ¢, 1;
a =1;
b =1;
c = 1;
1 = 3;
while (i <= n) {
c = a + b;
a = b;
b = c¢;
1++;
ks
return c;
+

D McGill

70

Execution trees

fib(6)

71

D McGill

Method overloading

e There can be several (static or not) methods with the
same name...

e __but the type or number of parameters must be different

D McGill

72

Example

public class A {
void f(int x)
{

System.out.println(‘‘one:

}

void f(boolean x)

{

System.out.println(‘“‘two:

}

I
public class B {

void g()
{
A u = new AQ);
u.f(5);
u.f(false);
}
}

93+X)

93+X)

D McGill

73

Same for static methods

public class A {
static void f(int x)

{

System.out.println("one: "+x)

¥

static void f(boolean x)

{
System.out.println("two: "+x)
b

b
public class B {

void g()
{
A.£(5);
A . f(false);
}
}

D McGill

74

The end

D McGill

75

