Reminder

e Assignments are INDIVIDUAL

e If you need help, ask the instructor or the TAs

D McGill

Defining characteristics of OOP

e A programming language is object-oriented if it supports:

— Class definitions and class instantiation
— Message-passing

— Aggregation

— Encapsulation

— Polymorphism

— Inheritance

D McGill

Encapsulation and visibility

e Abstraction and visibility

e Purpose of encapsulation:

— Hiding the state of an object, (part of) the struc-
ture of an object (attributes and/or methods,) or
the internal representation of data, so that a client
doesn’t have to know about the internals of an object
(abstraction.)

— Security: maintaining the integrity of data. Enforcing
limited visibility so that clients cannot “corrupt” the
state of an object, so that only the class of the object
can change the object’s state.

e Visibility modifiers (for attributes and methods):
public, private and protected.

e Visibility modifiers are orthogonal (independent) of
whether the attribute or method is static or not. So
they can be combined in any way.

D McGill

Encapsulation to enforce integrity

public class BankAccount
{
public double balance;
public BankAccount() { balance = 0.0; }
public void deposit(double amount)
{
if (amount > 0.0)
balance = balance + amount;
¥
public void widthdraw(double amount)
{
if (amount <= balance)
balance = balance - amount;

D McGill

Encapsulation to enforce integrity

public class BankingApplication
{

public static void main(Stringl[] args)
{
BankAccount b;
b = new BankAccount() ;
b.deposit(500.0);
b.balance = b.balance - 700.0; // OK
}
}

D McGill

Encapsulation to enforce integrity

public class BankAccount
{
private double balance;
public BankAccount() { balance = 0.0; }
public void deposit(double amount)
{
if (amount > 0.0)
balance = balance + amount;
¥
public void widthdraw(double amount)
{
if (amount <= balance)
balance = balance - amount;

D McGill

Encapsulation to enforce integrity

public class BankingApplication
{

public static void main(Stringl[] args)
{
BankAccount b;
b = new BankAccount() ;
b.deposit(500.0);
b.balance = b.balance - 700.0; // ERROR
}
}

D McGill

Encapsulation to enforce integrity

public class BankingApplication
{

public static void main(Stringl[] args)
{
BankAccount b;
b = new BankAccount() ;
b.deposit(500.0);
b.withdraw(700.0); // OK
+
+

D McGill

Privacy is relative

public class BankAccount
{
private double balance;
public BankAccount() { balance = 0.0; }
public void deposit(double amount)
{
if (amount > 0.0)
balance = balance + amount;

¥

public void widthdraw(double amount)
{
if (amount <= balance)
balance = balance - amount;

}

public void transfer (BankAccount other)

{
this.balance = this.balance + other.balance;
other.balance = 0.0;

D McGill

Privacy is relative

public class BankingApplication
{

public static void main(Stringl[] args)
{

BankAccount bl, b2;

bl = new BankAccount();

b2 = new BankAccount();

b1.deposit (500.0);

b2.transfer(bl);

D McGill

Aggregation

e Analisys:

— ldentify relevant information: objects and types of
objects (classe)
— ldentify relationships between objects

e Different kinds of relationships depending on the type
of the objects involved

e For example:

— Numeric relationships:

*

* X X X

*

account balance > 0

car fuel > 10

hitPoints <= maxHitPoints

number of heads <= 2

number of fingers > 1

tax_payable = base + (income - cutoff)*rate

— Structural relationships:

*
£ S
*

A bank account has a balance and an owner
A car has an engine
A person has a name and a head

D McGill

11

Objects and Aggregation

e Objects are data with structure: objects have attributes.

e We think of attributes as characteristics of objects in a
class.

e The relation between an object and its attributes can
be seen as a "has a" relationship.

e Aggregation is the composition of objects in different
parts or aggregates (the attributes.)

D McGill

12

Objects and Aggregation

public class Engine {

/] ...
¥

public class Car {
Engine engine;

/] ...
Iy
public class StreetSimulation {
void p()
1
Car mycar = new Car();
mycar.engine = new Engine();
¥
¥

D McGill

13

Aristotle

B McGill

14

Aristotle

e Silogisms:

— If every city has a mayor, and Edinburgh is a city,
then Edinburgh has a mayor.

— If every car has an engine, and this is a car, then
this has an engine.

— If every A has a B, and x is an A, then x has a B.

e In OOP:

— If every object of type A has an attribute of type B
and x is an A object then x has an attribute of type
B.

— If a class A has an attribute of class B, and x is an
instance of A, then x has an attribute of class B.

D McGill

15

Objects and Aggregation

e Aggregation is given by the "has a” relationship.

public class A {

B u;
/] ...
}
public class C {
void m()
{
A x = new AQ);
CX.u ...
}
}

D McGill

16

Objects and Aggregation

public class Mayor {
/] ...

b
public class City {

Mayor mayor;

/] ...
¥
public class Something {
void p()
{
City edinburgh = new City();
edinburgh.mayor = new Mayor();
¥
¥

D McGill

17

Objects and Aggregation

public class Engine {
/] ...
by

public class Car {
Engine engine;

/] ...
Iy
public class Something {
void p()
{
Car mycar = new Car();
mycar.engine = new Engine();
Iy
Iy

D McGill

18

Objects and Aggregation

p frame

mycar

D McGill

19

Objects and Aggregation

p frame

mycar

Car

engine

null

D McGill

20

Objects and Aggregation

p frame

mycar Car

engine I]
/ Engine

|

D McGill

21

Objects and Aggregation

Car
+engine: Engine =

Engine

D McGill

Example

public class Engine

{

private boolean on;
private double rpm;

public Engine()

{

on = false;

rpm = 0.0;
¥
public void turn_on()
{

on = true,;

rpm = 50.0;
¥
public void accelerate()
{

rpm = rpm + 10.0;
¥

D McGill

public void decelerate()

{
rpm = rpm - 10.0;
}
public double get_rpm()
{
return rpm,
¥

D McGill

24

Example (contd.)

public class Car

{
private Engine engine;
private double speed;

public Car()

{
engine = new Engine();
speed = 0.0;
by
public void turn_on()
{
engine.turn_on() ;
by
public void acelerate()
{
engine.acelerate();
speed = speed + 10 * engine.get_rpm();
by

by
D McGill

25

Mutual refe

rences

e Mutual reference: An object A can have a reference to an object B which has

a reference to A

BankAccount

+balance: float
+owner: Person

+BankAccount(owner:Person)
+deposit(amount:float): void
+withdraw(amount:float): void
+getBalance(): float
+getOwner(): Person

Person

<

+name: String
+age: int
L+account: BankAccount

+Person(name:String,age:int)
+open_account(a:BankAccount): void
+open_account(): void

+name(): String

+account(): BankAccount

D McGill

26

Mutual reference
public class BankAccount

{
private float balance;
private Person owner;
public BankAccount(Person owner)
{
this.owner = owner;
balance = 0.0;
¥
public void deposit(float amount)
{
balance = balance + amount;
by
public void withdraw(float amount)
{
if (amount <= balance)
balance = balance - amount;
by
public float balance() { return balance; }
public Person owner() { return owner; }
by

D McGill

27

Mutual reference

public class Person

{

private String name;
private int age;
private BankAccount account;

public Person(String name, int age)

{
this.name = name;
this.age = age;
account = null;
by
public void open_account(BankAccount a)
{
account = a,;
by
public void open_account ()
{
account = new BankAccount(this);
¥

// Continues below. ..

D McGill

28

public String name()

{
return name;
¥
public BankAccount account ()
{
return account;
¥

D McGill

29

Mutual reference (contd.)

public class Banking

{

public static void main(Stringl[] args)

{
Person alice = new Person(‘‘Alice’’, 30);
BankAccount a = new BankAccount(alice);
alice.open_account(a);

Person bob = new Person(‘‘Bob’’, 29);
bob . open_account () ;

BankAccount b = bob.account();
b.deposit(300.0);

alice.account () .deposit(200.0f);
System.out.println(b.balance());

System.out.println(alice.account().balance());
System.out.println(a.balance());

D McGill

30

‘Mutual reference (contd.)
public class Banking

{

public static void main(Stringl[] args)

{
Person alice = new Person(‘‘Alice’’, 30);
BankAccount a = new BankAccount(alice);
alice.open_account(a);

Person bob = new Person(‘‘Bob’’, 29);
bob . open_account () ;

BankAccount b = bob.account();
b.deposit (300.0);

alice.account () .deposit (200.0f);
System.out.println(b.balance());

System.out.println(alice.account().balance());
System.out.println(a.balance());

B McGill

31

Mutual reference

main frame Person
-
alice \ name "Alice"
age 30
account null
.
D McGill

32

‘Mutual reference (contd.)
public class Banking

{

public static void main(Stringl[] args)

{
Person alice = new Person(‘‘Alice’’, 30);
BankAccount a = new BankAccount(alice);
alice.open_account(a);

Person bob = new Person(‘‘Bob’’, 29);
bob . open_account () ;

BankAccount b = bob.account();
b.deposit (300.0);

alice.account () .deposit (200.0f);
System.out.println(b.balance());

System.out.println(alice.account().balance());
System.out.println(a.balance());

B McGill

33

Mutual reference

main frame Person
-
alice name [FAlice™
a \ age 30
account
_
BankAccount /
balance 0.0
owner _
D McGill

34

‘Mutual reference (contd.)
public class Banking

{

public static void main(Stringl[] args)

{
Person alice = new Person(‘‘Alice’’, 30);
BankAccount a = new BankAccount(alice);
alice.open_account(a);

Person bob = new Person(‘‘Bob’’, 29);
bob . open_account () ;

BankAccount b = bob.account();
b.deposit (300.0);

alice.account () .deposit (200.0f);
System.out.println(b.balance());

System.out.println(alice.account().balance());
System.out.println(a.balance());

B McGill

35

Mutual reference

main frame Person
alice name [FAlice™ |
a age 30
bob — account
BankAccount
balance 0.0
owner
Person
name "Bob"
age 29
account \
]
BankAccount /
balance 0.0
owner —
D McGill

36

Mutual reference

e Mutual references between objects of the same class:

public class Person {
private String name;
private Person spouse;
public Person(String name, int age)

{
this.name = name;
this.age = age;
this.spouse = null;
¥
public void marry(Person someone)
{
this.spouse = someone;
someone.spouse = this;
}

public String name() { return name; }
public Person spouse() { return spouse; }

D McGill

37

Mutual reference

public class Marriage

{
public static void main(Stringl[] args)
{
Person a = new Person(‘“‘Alice’’, 30);
Person b = new Person(‘‘Bob”’, 29);
a.marry(b) ;
System.out.println(a.name());
System.out.println(a.spouse() .name()) ;
System.out.println(b.name());
System.out.println(b.spouse() .name()) ;
by
I

D McGill

38

Aliases and shared references

e Variables and values
e If we execute:
X = 5;
e then the value of x is 5.

e Strictly speaking x is not 5; x is a memory location.

e So while we would informally read x==5 as "x is 5", the
actual meanning is the value of x is 5.
e Hence, after executing

X = 5;

y =9
and both x and y have the same value, but they are not
the same variable.

D McGill

39

Variables and values

e For primitive data types (int, boolean, float, String,
etc.)

X =Y;

means copy the value of y in the memory location of x;

e So
int x, V;
X = 4;
y = X,

means that both x and y have value 4, but they have
a separate identity because each of them is a different
memory location...

D McGill

40

Variables and values

e So the value of y is the same as the value of x, but y
is not the same as x.

e . which implies that their values are independent:

int x, v;

x = 4;

y = X,

X++;

// x ==5 and y ==

e Variables can be changed over time by assignment.

e If x and y are two variables of a primitive data type, we
say that they are equal if their values are the same.

e \We can test for whether the values of two variables are
the same using the == operator.

D McGill

41

Being the “same” as something else

e Suppose we have

Ax, v,
x = new AQ);
y = new AQ);

e Both variables x and y are A's

e ... but the objects they refer to are different, individual,
and independent A's.

D McGill

42

Example:

class Employee

{
String name;
float salary;
Employee (String name, float salary)
{
this.name = name;
this.salary = salary;
¥
String name() { return name; }
float salary() { return salary; }
void raise_salary(float percentage)
{
salary = salary * (1 + percentage/100.0f);
by
b

D McGill

43

Example (contd.)

public class Test
{
public static void main(Stringl[] args)
{
Employee el = new Employee(‘‘Adam Smith’’, 80000
Employee e2 = new Employee(‘‘John Locke’’, 50000
el.raise_salary(10f);
System.out.println(e2.salary());

D McGill

44

Example (contd.)

main frame

el

e2 —_

Employee
name | Adam Smith
salary 80000.0f
Employee
name | John Locke
salary | 50000.0f

D McGill

45

Example (contd.)

main frame

el

e2 —_

Employee
name | Adam Smith
salary 88000.0f
Employee
name | John Locke
salary |50000.0f

D McGill

46

Alias

e A variable is an alias of another variable if they both
point to the same object.

Ax, v;
x = new AQ);
y = X

e In this case x and y are the "same’.

e More precisely, the values of x and y are the same
reference (pointer,) and therefore they refer to the same
object.

D McGill

47

Example (contd.)

public class Test
{
public static void main(Stringl[] args)
{
Employee el = new Employee(‘‘Adam Smith’’, 80000
Employee e2 = el;
el.raise_salary(10f);
System.out.println(e2.salary());

D McGill

48

Example (contd.)

main frame

el

e2

Employee
name | Adam Smith
salary | 88000.0f

D McGill

49

e Compare Test with

int x1, x2;

x1l = 6;
x2 = x1;
x1l = x1 * 3;

Aliases

e |f two variables are aliases, whatever one does to either
of them, affects the other, because they refer to the

same object.

D McGill

50

Shared references

public class BankAccount
{
private float balance;
public BankAccount(float b) { balance = b; }
public void deposit(float amount)
{

balance = balance + amount;

¥

public void withdraw(float amount)
{
if (balance >= amount)
balance = balance - amount;

}

public float balance() { return balance; }

D McGill

51

Shared references

public class Person
{
private String name;
private BankAccount account;
public Person(String name) { this.name = name; }
public void set_account(BankAccount a)

{

account = a;
b
public String name() { return name; }
public BankAccount account() { return account; }

D McGill

52

Shared references

public class BankingTest
{

public static void main(Stringl[] args)

{
Person pl = new Person(‘“‘Tom”);
Person p2 = new Person(‘‘Amanda’’);
BankAccount b = new BankAccount (10000.0f);
pl.set_account(b);
p2.set_account (b) ;

b.withdraw(500.0f) ;

BankAccount ¢ = p2.account();
float balance = c.balance();
System.out.println(balance) ;

D McGill

53

Shared references

main frame Person
ol name Tom
02 account null
b
C
balance
Person

name| Amanda
account null

D McGill

54

mai n frane

Shared references

pl

p2

b

c

bal ance

Per son
nane Tom
account nul |
Per son

name | Ananda

account

nul

BankAccou

nt

bal ance

10000. O

D McGill

55

Shared references

mai n frane Per son
01 nane Tom
02 account ~_
b —_—
C
bal ance
Per son
nane | Amanda
account \
Bank Account

bal ance | 10000. 0

D McGill 56

Shared references

mai n frane Per son
01 nanme Tom
02 account ~_
b —_—
C I
bal ance| 9500. 0
Per son
nanme | Ananda
account \
BankAccount

bal ance | 9500. 0

D McGill 57

Shared references vs static variables

e |n the BankingTest example b is shared between pl and
p2 only, not between all Person objects

e Static variables are like aliases, but they force all objects
of the class to share the static reference, while non-static
shared references are shared between specific objects.

e Furthermore, if a variable is declares as static the object
it refers to is always shared between all objects in the
class, while a non-static shared reference might become
“unshared”.

D McGill

58

Shared references vs static variables

public class BankingTest
{

public static void main(Stringl[] args)

{
Person pl = new Person(‘“‘Tom”);
Person p2 = new Person(‘‘Amanda’’);
BankAccount b = new BankAccount (10000.0f);
pl.set_account(b);
p2.set_account (b) ;
b.withdraw(500.01) ;
BankAccount f = new BankAccount(5000.0f);
p2.set_account (f);
BankAccount ¢ = p2.account();
float balance = c.balance();
System.out.println(balance);

D McGill

59

Shared references vs static variables

mai n franme Per son
pl name Tom
p2 account ~_
b I
f
C
bal ance Per son
nane | Amanda
account \
Bank Account

bal ance | 9500.0

D McGill)

Shared references vs

mai n frane

pl

p2

b

f

—
—
—

c

bal ance | 5000. 0

/]]

static variables

Per son
nanme Tom
account ~_
Per son
name | Ananda
account
Bank Account
bal ance | 9500.0
Bank Account
bal ance | 5000. 0

D McGill

61

Pointer equality
e Pointer equality also called "physical” equality is equality
(sameness) of references.

e The == operator is used for testing for pointer equality.

e Pointer equality is used to test for sameness of objects:

A x, v;
x = new AQ);

y = X
e _.then x == yis true, but in

Ax, v;
x = new AQ);
y = new AQ);

e . x == yis false, even if the attributes of the objects
are the same.

e Pointer equality is an equivalence between objects of the
same class only.

D McGill

62

Example

public class BankingTest
{

public static void main(Stringl[] args)

{
Person pl = new Person(‘“‘Tom”);
Person p2 = new Person(‘‘Amanda’’);
BankAccount b = new BankAccount (10000.0f);
pl.set_account(b);
p2.set_account (b) ;

BankAccount d = pl.account();
d.withdraw(500.0f) ;
BankAccount ¢ = p2.account();
if (¢ == d)
System.out.println(““It’s a shared account”’);

D McGill

63

Being equal to something

e Structural equality: when the aggregates (parts) of two
different objects are equal

e Structural equality is only between objects of the same
class.

e Two objects are structurally equal if their attributes are
equal

e Suppose we have a class

class A {
String x, y;
A(String x, String y)
{
this.x = X;
this.y = y;

¥

D McGill

64

Being equal to something

e and there is some client with

A al = new A(“hello”, ‘“bye”’);
A a2 = new A(“hello”, ‘“bye”’);
A a3 = new A(“bonjour’, “‘bye’’);

e then al is structurally equal to a2, but a3 is not
structurally equal to either al or a2.

e |f we want to test for structural equality we must ex-
plicitely provide the code. This is usually done by writing
a method called “equal” or "equals™

D McGill

65

Structural equality

class A {
String x, v;
A(String x, String y)
{
this.x = X;
this.y = vy;
¥
boolean equals(A other)
{
return this.x == other.a
&& this.y == other.y;

D McGill

66

Structural equality

public class Test

{
public static void main(Stringl[] args)
{
A al = new A("hello", "bye");
A a2 = new A("hello", "bye"):
A a3 = new A("bonjour", "bye");
if (al.equals(a2))
System.out.println(‘‘al is equal to a2’’);
if (a2.equals(a3))
System.out.println(‘a2 is equal to a3’);
if (al == a2)
System.out.println(‘‘al is the same as s2”’);

D McGill

67

Structural equality vs pointer equality

e Note that

— If two objects are the same (equal by pointer equality)
then they are (structurally) equal, ...
This is, x == y implies that x.equals(y) must
evaluate to true.

— ...but if two objects are structurally equal, they may
not be physically the same.
This is, it may be the case that x.equals(y) eval-
uates to true, but x == y may be false.

D McGill

68

Example

public class BankAccount {
private float balance;
// ... same as before
public boolean equals(BankAccount other_account)

{

return this.balance == other_account.balance;

D McGill

69

Example

public class BankingTest
{

public static void main(Stringl[] args)
{
Person pl = new Person(‘“‘Tom”);
Person p2 = new Person(‘‘Amanda’’);
BankAccount bl = new BankAccount(10500.0f);
BankAccount b2 = new BankAccount (10000.0f);
pl.set_account(bl);
p2.set_account (b2);
BankAccount d = pl.account();
d.withdraw(500.0£) ;
BankAccount ¢ = p2.account();
if (c.equals(d))
System.out.println(‘““They are equal accounts”

D McGill

70

mai n frane

Example

Per son
pl name | Tom
p2 account ~
b2 \\
C
d Per son
name | Ananda
account \
\
Bank Account
bal ance | 10000. 0]
Bank Account
bal ance | 10500. 0
D McGill

71

mai n frane

Per son
pl nanme [Tom
P2 account ~
b2 \\
Cc —
d \\\ Per son

nane | Amanda
account \

Bank Account

bal ance | 10000. 0]

BankAccount

bal ance | 10000. 0

D McGill

Being of some kind

e The “is a" relationship between an object (or instance)
and its class

e So if we have a class

class A {

//. ..
¥

e and in some client code we have

A x;
x = new AQ);

e Then xisan A
e The variable x is of type A
e The value of x is an object of type A

e The object referred to by x is a kind of A.

D McGill

73

The end

D McGill

74

