Midterm

Section | Average

1 68.66
° 2 64.56

3 73.35
Total 64.73

e Median: 71

Distribution

 ERRREN
O T T T T T T T T T
0-10 10- 20- 30- 40- 50- 60- 70- 80- 90-

200 30 40 50 60 70 8 90 100
Grade range

D McGill

Defining characteristics of OOP

e A programming language is object-oriented if it supports:

— Class definitions and class instantiation
— Message-passing

— Aggregation

— Encapsulation

— Polymorphism

— Inheritance

D McGill

Aggregation: the “has-a"’ relationship

e Silogisms:

— If every city has a mayor, and Edinburgh is a city,
then Edinburgh has a mayor.

— If every car has an engine, and this is a car, then
this has an engine.

— If every A has a B, and x is an A, then x has a B.

e In OOP:

— If every object of type A has an attribute of type B
and x is an A object then x has an attribute of type
B.

— If a class A has an attribute of class B, and x is an
instance of A, then x has an attribute of class B.

D McGill

Objects and Aggregation

public class Engine {
/] ...
by

public class Car {
Engine engine;

/] ...
Iy
public class Something {
void p()
{
Car mycar = new Car();
mycar .engine = new Engine();
¥
Iy

D McGill

Objects and Aggregation

p frame

mycar

D McGill

Objects and Aggregation

p frame

mycar

Car

engine

null

D McGill

Objects and Aggregation

p frame

mycar

Car

engine

)

|

/ Engine

|

D McGill

Objects and Aggregation

Car
+engine: Engine =

Engine

D McGill

Mutual references

e Mutual reference: An object A can have a reference to an object B which has
a reference to A

BankAccount

+balance: float

+owner: Person =<

+BankAccount(owner:Person)

+deposit(amount:float): void Person

+withdraw(amount:float): void —

+getBalance(): float +name: String

+getOwner(): Person +age: Int

<t+account: BankAccount

+Person(name:String,age:int)
+open_account(a:BankAccount): void
+open_account(): void
+name(): String
+account(): BankAccount

D McGill

Mutual reference

public class BankAccount
{
private float balance;
private Person owner;

public BankAccount(Person owner)
{
this.owner = owner;
balance = 0.0;
}
// Etc...

D McGill

10

Mutual reference

public class Person
{
private String name;
private int age;
private BankAccount account;

public Person(String name, int age)
{

this.name = name;

this.age = age;

account = null;

}

public void open_account(BankAccount a)

{

account = a;

}

public void open_account ()

{

account = new BankAccount(this);

D McGill

11

Mutual reference

public class Banking

{

public static void main(Stringl[] args)

{
Person alice = new Person(‘“‘Alice”’, 30);
BankAccount a = new BankAccount(alice);
alice.open_account(a);

}
¥

D McGill

12

Mutual reference

main frame Person
-
alice name [FAlice™
a \ age 30
account
_
BankAccount /
balance 0.0
owner _
D McGill

13

Mutual reference

e Mutual references between objects of the same class:

public class Person {
private String name;
private Person spouse;
public Person(String name, int age)

{
this.name = name;
this.age = age;
this.spouse = null;
¥
public void marry(Person someone)
{
this.spouse = someone;
someone.spouse = this;
}

public String name() { return name; }
public Person spouse() { return spouse; }

D McGill

14

Mutual reference

public class Marriage

{
public static void main(Stringl[] args)
{
Person a = new Person(““Alice’’, 30);
Person b = new Person(‘“Bob’’, 29);
a.marry(b) ;
}
}

D McGill

15

Aliases

e Suppose we have

Ax, v;
x = new AQ);
y = new AQ);

e Both variables x and y are A's

e .. but the objects they refer to are different, individual,
and independent A's.

e A variable is an alias of another variable if they both
point to the same object.

A x, v;
x = new AQ);
y = X5

D McGill

16

e In this case x and y are the "same”.

e More precisely, the values of x and y are the same
reference (pointer,) and therefore they refer to the same
object.

D McGill

17

Example:

class Employee

{
String name;
float salary;
Employee (String name, float salary)
{
this.name = name;
this.salary = salary;
by
String name() { return name; }
float salary() { return salary; }
void raise_salary(float percentage)
{
salary = salary * (1 + percentage/100.0f);
b
b

D McGill

18

Example (contd.)

public class Test
{
public static void main(Stringl[] args)
{
Employee el = new Employee(‘‘Adam Smith’’, 80000
Employee e2 = new Employee(‘‘John Locke’’, 50000
el.raise_salary(10f);
System.out.println(e2.salary());

D McGill

19

Example (contd.)

main frame

el

e2 —_

Employee
name | Adam Smith
salary 80000.0f
Employee
name | John Locke
salary | 50000.0f

D McGill

20

Example (contd.)

main frame

el

e2 —_

Employee
name | Adam Smith
salary 88000.0f
Employee
name | John Locke
salary |50000.0f

D McGill

21

Example (contd.)

public class Test
{
public static void main(Stringl[] args)
{
Employee el = new Employee(‘‘Adam Smith’’, 80000
Employee e2 = el;
el.raise_salary(10f);
System.out.println(e2.salary());

D McGill

22

Example (contd.)

main frame

el

e2

Employee
name | Adam Smith
salary | 88000.0f

D McGill

23

e Compare Test with

int x1, x2;

x1l = 6;
x2 = x1;
x1l = x1 * 3;

Aliases

e |f two variables are aliases, whatever one does to either
of them, affects the other, because they refer to the

same object.

D McGill

24

Shared references

® Representing:

— Shared resources
— Shared information
— Shared parts

e Example: shared bank account

e Done by creating aliases in different objects

D McGill

25

Shared references

public class BankAccount
{
private float balance;
public BankAccount(float b) { balance = b; }
public void deposit(float amount)
{

balance = balance + amount;

¥

public void withdraw(float amount)
{
if (balance >= amount)
balance = balance - amount;

}

public float balance() { return balance; }

D McGill

26

Shared references

public class Person
{
private String name;
private BankAccount account;
public Person(String name) { this.name = name; }
public void open_account(BankAccount a)

{

account = a;
by
public String name() { return name; }
public BankAccount account() { return account; }

D McGill

27

Shared references

public class BankingTest
{

public static void main(Stringl[] args)

{
Person pl = new Person(‘‘Tom”);
Person p2 = new Person(‘‘Amanda’’) ;
BankAccount b = new BankAccount (10000.0f) ;
pl.set_account(b);
p2.set_account (b) ;

b.withdraw(500.0f) ;

BankAccount ¢ = p2.account();
float balance = c.balance();
System.out.println(balance);

B McGill

28

Shared references

main frame Person
ol name Tom
02 account null
b
C
balance
Person

name| Amanda
account null

D McGill

29

main frame

Shared references

pl
p2
b
C

balance

Person
name Tom
account null
Person
name| Amanda
account null
BankAccount
balance 10000.0

D McGill

30

Shared references

main frame Person
ol name Tom
02 account ~_
b —_—
C
balance
Person
name| Amanda
account \
BankAccount

balance 10000.0

D McGill 31

Shared references vs static variables

D McGill

32

Shared references vs static variables

e |n the BankingTest example b is shared between pl and
p2 only, not between all Person objects

e Static variables are like aliases, but they force all objects
of the class to share the static reference, while non-static
shared references are shared between specific objects.

e Furthermore, if a variable is declares as static the object
it refers to is always shared between all objects in the
class, while a non-static shared reference might become
“unshared”.

D McGill

33

Shared references vs static variables

public class BankingTest
{

public static void main(Stringl[] args)

{
Person pl = new Person(‘‘Tom”);
Person p2 = new Person(‘‘Amanda’’) ;
BankAccount b = new BankAccount (10000.0f) ;
pl.open_account (b);
p2.open_account (b) ;
b.withdraw(500.01) ;
BankAccount f = new BankAccount(5000.0f);
p2.open_account (f) ;
BankAccount ¢ = p2.account();
float balance = c.balance();
System.out.println(balance);

D McGill

34

Shared references vs static variables

main frame Person
pl name Tom
p2 account ~_
b I
f
C
balance Person
name| Amanda
account \
BankAccount

balance 9500.0

D McGill)

Shared references vs static variables

main frame Person
pl name Tom
p2 account ~._
b —_—
f — T~
C —_—
balance | 5000.0 Person

name| Amanda
account

BankAccount

balance 9500.0
BankAccount

balance 5000.0

D McGill

36

Equality between objects

e To check whether two primitive values are equal we use

e How do we know if two objects are equal?
e \What does it mean to say that two objects are equal?
e Fquality is not the same as "sameness’

e Possible questions related to equality:

— Given two people, do they share a bank account?
— Given two people, do they have the same amount of
money in their bank accounts?

D McGill

37

Jorg's account and Sam's account are pointer equal, i.e. they are the same.

Equality between objects

Per son
-
name |jorg
account A
. \

Per son
4 N
nane | sam
account f
_ /)
ccount

[bal ance

100

J

D McGill

38

Equality between objects

Per son Per son
4 N 4 N
name |jorg nanme | sam
account I account |
_ I) _ l)
Bagyk Account Bawk Account

[bal ance | 100 J [bal ance | 100]

Jorg's account and Sam's account are structurally equal, i.e. the values of the
attributes are the equal.

D McGill

39

Equality between objects

Per son Per son
4 N 4 N
name |jorg nanme | sam
account I account |
_ I) _ l)
Bagyk Account Bagk Account

[bal ance

100

J [bal ance

250

]

Jorg's account and Sam’s account are different, i.e. the object is not shared
and values of the attributes are the different.

D McGill

40

Pointer equality
e Pointer equality also called “"physical” equality is equality
(sameness) of references.

e The == operator is used for testing for pointer equality.

e Pointer equality is used to test for sameness of objects:

A x, v;
x = new AQ);

y = X
e __then x == yis true, but in

Ax, v;
x = new AQ);
y = new AQ);

e . x == yis false, even if the attributes of the objects
are the same.

e Pointer equality is an equivalence between objects of the
same class only.

D McGill

41

Example

public class BankingTest
{

public static void main(Stringl[] args)

{
Person pl = new Person(‘“‘Tom”);
Person p2 = new Person(‘‘Amanda’’) ;
BankAccount b = new BankAccount (10000.0f) ;
pl.open_account (b);
p2.open_account (b) ;

BankAccount d = pl.account();
d.withdraw(500.0f) ;
BankAccount ¢ = p2.account();
if (¢ == d)
System.out.println(““It’s a shared account”’);

D McGill

42

Being equal to something

e Structural equality: when the aggregates (parts) of two
different objects are equal

e Structural equality is only between objects of the same
class.

e Two objects are structurally equal if their attributes are
equal

e Suppose we have a class

class A A
String x, y;
A(String x, String y)
{
this.x = X;
this.y = y;

¥

D McGill

43

Being equal to something

e and there is some client with

A al = new A(“hello”, ‘“bye”’);
A a2 = new A(“hello”, ‘“bye”’);
A a3 = new A(“bonjour’, “bye’’);

e then al is structurally equal to a2, but a3 is not
structurally equal to either al or a2.

e |f we want to test for structural equality we must ex-
plicitely provide the code. This is usually done by writing
a method called “equal” or "equals™

D McGill

44

Structural equality

class A {
String x, v;
A(String x, String y)
{
this.x = X;
this.y = vy;
}
boolean equals(A other)
{
return this.x == other.a
&& this.y == other.y;

D McGill

45

Structural equality

public class Test

{
public static void main(Stringl[] args)
{
A a1l = new A("hello", "bye");
A a2 = new A("hello", "bye"):
A a3 = new A("bonjour", "bye");
if (al.equals(a2))
System.out.println(‘‘al is equal to a2’’);
if (a2.equals(a3))
System.out.println(‘a2 is equal to a3’);
if (al == a2)
System.out.println(‘‘al is the same as s2”’);

D McGill

46

Structural equality vs pointer equality

e Note that

— If two objects are the same (equal by pointer equality)
then they are (structurally) equal, ...
This is, x == y implies that x.equals(y) must
evaluate to true.

— ...but if two objects are structurally equal, they may
not be physically the same.
This is, it may be the case that x.equals(y) eval-
uates to true, but x == y may be false.

D McGill

47

Example

public class BankAccount {
private float balance;
// ... same as before
public boolean equals(BankAccount other)

{

return this.balance == other.balance;

D McGill

48

Example

public class BankingTest
{

public static void main(Stringl[] args)
{
Person pl = new Person(‘“‘Tom”);
Person p2 = new Person(‘‘Amanda’’) ;
BankAccount bl = new BankAccount(10500.0f);
BankAccount b2 = new BankAccount (10000.0f);
pl.open_account (bil);
p2.open_account (b2) ;
BankAccount d = pl.account();
d.withdraw(500.0£) ;
BankAccount ¢ = p2.account();
if (c.equals(d))
System.out.println(‘““They are equal accounts”

D McGill

49

Example

mai n frane

Per son
pl nane [Tom
p2 account ~
b2 ——
C
d Per son

nanme | Ananda
account \

Bank Account

bal ance | 10000. 0

BankAccount

bal ance | 10500. 0

D McGill

Example

mai n frane

Per son
pl nanme [Tom
P2 account ~
b2 \\
Cc —
d \\\ Per son

nane | Amanda
account \

Bank Account

bal ance | 10000. 0]

Bank Account

bal ance | 10000. 0

D McGill

The end

D McGill

52

