Defining characteristics of OOP

e A programming language is object-oriented if it supports:

— Class definitions and class instantiation
— Message-passing

— Aggregation

— Encapsulation

— Polymorphism

— Inheritance

D McGill

Aliases

e Suppose we have

A x, v;
x = new AQ);
y = new AQ);

e Both variables x and y are A's

e .. but the objects they refer to are different, individual,
and independent A's.

e A variable is an alias of another variable it they both
point to the same object.

Ax, v;
x = new AQ);
y = X5

e In this case x and y are the "same’, i.e. they refer to
the same object.

D McGill

main frame

Shared references

pl
p2
b
C

balance

Person
name Tom
account null
Person
name| Amanda
account null
BankAccount
balance 10000.0

D McGill

Shared references

main frame Person
ol name Tom
02 account ~_
b —_—
C
balance
Person
name| Amanda
account \
BankAccount

balance 10000.0

D McGill 4

Shared references vs static variables

e |n the BankingTest example b is shared between pl and
p2 only, not between all Person objects

e Static variables are like aliases, but they force all objects
of the class to share the static reference, while non-static
shared references are shared between specific objects.

e Furthermore, if a variable is declared as static the object
it refers to is always shared between all objects in the
class, while a non-static shared reference might become
“unshared".

D McGill

Shared references vs static variables

main frame Person
pl name Tom
p2 account ~_
b I
f
C
balance Person
name| Amanda
account \
BankAccount

balance 9500.0

D McGill 6

Shared references vs static variables

main frame Person
pl name Tom
p2 account ~._
b —_—
f — T~
C —_—
balance | 5000.0 Person

name| Amanda
account

BankAccount

balance 9500.0
BankAccount

balance 5000.0

D McGill

Equality between objects

e To check whether two primitive values are equal we use

e How do we know if two objects are equal?
e What does it mean to say that two objects are equal?
e Fquality is not the same as "sameness’

e Possible questions related to equality:

— Given two people, do they share a bank account?
— Given two people, do they have the same amount of
money in their bank accounts?

D McGill

Equality between objects

Person Person
(()
name |jorg name | sam
account A account ’
L \ L / J
ccount

[balance 100 J

Jorg's account and Sam’s account are pointer equal, i.e. they are the same.

D McGill

Equality between objects

Person
4 N
name |jorg
account I
_ I)
B ccount

Person
4 N
name | sam
account f
_ l)

[balance

BagkAccount

100 J [balance

100

]

Jorg's account and Sam's account are structurally equal, i.e. the values of the
attributes are the equal.

D McGill

10

Equality between objects

Person
4 N
name |jorg
account I
_ I)
B ccount

Person
4 N
name | sam
account f
_ l)

[balance

BagkAccount

100 J [balance

250

]

Jorg's account and Sam’s account are different, i.e. the object is not shared
and values of the attributes are the different.

D McGill

11

Pointer equality

e Pointer equality also called "physical” equality is equality
(sameness) of references.

e The == operator is used for testing for pointer equality.

e Pointer equality is used to test for sameness of objects:

A x, v;
x = new AQ);

y = X
e ..then x == yis true, but in

Ax, v;
x = new AQ);
y = new AQ);

e . x == yis false, even if the attributes of the objects
are the same.

e Pointer equality is an equivalence between objects of the
same class only.

D McGill

12

Example

public class BankingTest
{

public static void main(String[] args)

{
Person pl = new Person(‘“‘Tom”);
Person p2 = new Person(‘‘Amanda’’);
BankAccount b = new BankAccount (10000.0f) ;
pl.open_account (b) ;
p2.open_account (b) ;

BankAccount d = pl.account();
d.withdraw(500.0f) ;
BankAccount ¢ = p2.account();
if (¢ == d)
System.out.println(““It’s a shared account”’);

D McGill

13

Structural equality

e Structural equality: when the aggregates (parts) of two
different objects are equal

e Structural equality is only between objects of the same
class.

e Two objects are structurally equal if their attributes are
equal

e Suppose we have a class

class A {
int x, V;
A(int x, int y)
{

this.x = X;
this.y = y;

D McGill

14

Structural equality

e and there is some client with

A al = new A(17, 29);
A a2 = new A(17, 29);
A a3 = new A(17, 80);

e then al is structurally equal to a2, but a3 is not
structurally equal to either al or a2.

e |f we want to test for structural equality we must ex-
plicitely provide the code. This is usually done by writing
a method called “equal” or "equals™

D McGill

15

Structural equality

class A {
int x, V;
A(int x, int y)
{
this.x = x;
this.y = vy;
¥
boolean equals(A other)
{
return this.x == other.a
&& this.y == other.y;

D McGill

16

Structural equality

public class Test

{
public static void main(Stringl[] args)
{
A al = new A(17, 29);
A a2 = new A(17, 29);
A a3 = new A(17, 80);
if (al.equals(a2))
System.out.println(‘‘al is equal to a2’’);
if (a2.equals(a3))
System.out.println(‘a2 is equal to a3’);
if (al == a2)
System.out.println(‘‘al is the same as s2’);

D McGill

17

Structural equality vs pointer equality

e Note that

— If two objects are the same (equal by pointer equality)
then they are (structurally) equal, ...
This is, x == y implies that x.equals(y) must
evaluate to true.

— ...but if two objects are structurally equal, they may
not be physically the same.
This is, it may be the case that x.equals(y) eval-
uates to true, but x == y may be false.

D McGill

18

Example

public class BankAccount {
private float balance;
// ... same as before
public boolean equals(BankAccount other)

{

return this.balance == other.balance;

D McGill

19

Example

public class BankingTest
{

public static void main(String[] args)
{
Person pl = new Person(‘“‘Tom”);
Person p2 = new Person(‘‘Amanda’’);
BankAccount bl = new BankAccount(10500.0f);
BankAccount b2 = new BankAccount (10000.0f);
pl.open_account (bil);
p2.open_account (b2) ;
BankAccount d = pl.account();
d.withdraw(500.0£) ;
BankAccount ¢ = p2.account();
if (c.equals(d))
System.out.println(‘““They are equal accounts”

D McGill

20

Example

main frame Person
pl name Tom
p2 account ~_
b2 —_—
bl ——
C
d Person
name| Amanda
account \
\
BankAccount
balance 10000.0
BankAccount
balance 10500.0
D McGill

21

Example

main frame Person

pl name| Tom
p2 account ~.
b2 \\
bl ——

C —

d \\ Person

name| Amanda
account \
\
BankAccount

balance 10000.0

BankAccount

balance 10000.0

D McGill

Shallow vs. deep structural equality

e Two objects are structurally equal if their attributes are
equal

e There are two main kinds of structural equality:

— Shallow equality
— Deep equality

e Two objects are shallow-equal if their attributes are
physically equal

e Two objects are deeply-equal if their attributes are struc-
turally equal

D McGill

23

Shallow vs. deep structural equality

p2 |

pl and p2 are
physically equal

Person

name
account

jean

/

/

] pl==p2

Ba#count

balance
rate

300.0

1.5

J

D McGill

24

Person

name
account

jean

|
\

]

Shallow vs. deep structural equality

p2 /
pl and p2 are
shallow-equal
Person
name | jean
account]
Z

count

rate

[balance

300.0

1.5

J

D McGill

25

Person

name
account

jean

/

/

]

Baéccount

balance
rate

300.0

1.5

J

p2

Shallow vs. deep structural equality

pl and p2 are
deeply equal

Person

name
account

jean

l

[

J

Ba%count

balance
rate

300.0

1.5

]

D McGill

26

Shallow vs. deep structural equality

public class BankAccount {
private double balance, rate;

/] ...
public double getBalance()

{

return balance;

b
public double getRate()

{

return rate;

}

public boolean equals(BankAccount other)

{

return this.balance == other.balance
&& this.rate == other.rate;

D McGill

Shallow vs. deep structural equality
public class Person {
private String name;
private BankAccount account;
Person(String name) {
this.name = name;
account = null;

}

public void openAccount (BankAccount a)

{

account = a;

}

public boolean shallow_equals(Person other)
{
return this.name == other.name
&& this.account == other.account;

¥

public boolean deep_equals(Person other)
{
return this.name.equals(other.name)
&& this.account.equals(other.account);

}
¥

D McGill

28

Shallow vs. deep structural equality

public class Test {
public static void main(Stringl[] args)
{
Person pl = new Person(‘“Tom”);
Person p2 = new Person(‘‘Amanda’’);
BankAccount bl = new BankAccount (10000.0f) ;
BankAccount b2 = new BankAccount (10000.0f);
pl.open_account (bl) ;
p2.open_account (b2) ;
if (pl == p2)
System.out.println(‘“‘Physically equal’’);
if (pl.shallow_equals(p2))
System.out.println(‘‘Shallow-equal’’);
if (pl.deep_equals(p2))
System.out.println(‘Deeply equal’’);

D McGill

29

Shallow vs. deep structural equality

public class Test {
public static void main(Stringl[] args)
{
Person pl = new Person(‘“Tom”);
Person p2 = new Person(‘“‘Tom’);
BankAccount bl = new BankAccount (10000.0f) ;
BankAccount b2 = new BankAccount (20000.0f) ;
pl.open_account (bl) ;
p2.open_account (b2) ;
if (pl == p2)
System.out.println(‘“‘Physically equal’’);
if (pl.shallow_equals(p2))
System.out.println(‘‘Shallow-equal’’);
if (pl.deep_equals(p2))
System.out.println(‘Deeply equal’’);

D McGill

30

Shallow vs. deep structural equality

public class Test {
public static void main(Stringl[] args)
{
Person pl = new Person(‘“Tom”);
Person p2 = new Person(‘“‘Tom’);
BankAccount bl = new BankAccount (10000.0f) ;
BankAccount b2 = new BankAccount (10000.0f);
pl.open_account (bl) ;
p2.open_account (b2) ;
if (pl == p2)
System.out.println(‘“‘Physically equal’’);
if (pl.shallow_equals(p2))
System.out.println(‘‘Shallow-equal’’);
if (pl.deep_equals(p2))
System.out.println(‘Deeply equal’’);

D McGill

31

Shallow vs. deep structural equality

public class Test {
public static void main(Stringl[] args)
{
Person pl = new Person(‘“Tom”);
Person p2 = new Person(‘“‘Tom’);
BankAccount bl = new BankAccount (10000.0f) ;
BankAccount b2 = bil;
pl.open_account (bl) ;
p2.open_account (b2) ;
if (pl == p2)
System.out.println(‘“‘Physically equal’’);
if (pl.shallow_equals(p2))
System.out.println(‘‘Shallow-equal’’);
if (pl.deep_equals(p2))
System.out.println(‘Deeply equal’’);

D McGill

32

Shallow vs. deep structural equality

public class Test {
public static void main(Stringl[] args)
{
Person pl = new Person(‘“Tom”);
Person p2 = pil;
BankAccount bl = new BankAccount (10000.0f);
BankAccount b2 = new BankAccount (10000.0f);
pl.open_account (bl) ;
p2.open_account (b2) ;
if (pl == p2)
System.out.println(‘“‘Physically equal’’);
if (pl.shallow_equals(p2))
System.out.println(‘‘Shallow-equal’’);
if (pl.deep_equals(p2))
System.out.println(‘Deeply equal’’);

D McGill

33

Shallow vs. deep structural equality

class F {
int 1;
String j;
F(int i, String j)
{
this.1 = 1;
this.j = j;
b
boolean equals(F other)
{
return this.i == other.1

&& this.j.equals(other.j);

D McGill

34

Shallow vs. deep structural equality

class G {
float v;
F u;
G(float v, F u)
{
this.v = v;
this.u = u;

}
boolean equals(G other)
{
return this.v == other.v
&& this.u == other.u; //tests for
//shared u
}

D McGill

35

Shallow vs. deep structural equality

public class Test {
public static void main(Stringl[] args)

{
F f1 =
F £2 =
F £3 =
G gl =
G g2 =
G g3 =
if (gl.

new F(17, ‘“‘pancakes”);
new F(17, ‘‘pancakes”);
f1;

new G(1.618, f1);

new G(1.618, f2);

new G(1.618, £3);
equals(g2))

System.out.println("gl equals g2");

if (gl

.equals(g3))

System.out.println("gl equals g3");

if (g2.

equals(g3))

System.out.println("g2 equals g3");

D McGill

36

Shallow vs. deep structural equality

mai n frane

fl

—

f2

il

17

pancakes

o —

17

pancakes

D McGill

37

Shallow vs. deep structural equality

mai n frane

fl

—

f2

f3

—

17

pancakes

gl

g2

g3

v |1.618
u —_—

ﬁ

—

\;[!

17

pancakes

D McGill

38

Shallow vs. deep structural equality

mai n frane

f1
f2
f3
gl
g2
g3

—

17

pancakes]

e
v |1.618
u —

i |17
pancakes

1

—

v |1.618

D McGill

39

Shallow vs. deep structural equality

mai n frane

f1

—

f2

\:'[}

17

pancakes

—

[~
[r—

—

N
N\

)

v |1.618
u —

"

v |1.618
u —

—

17
pancakes

c

. 618

D McGill

40

Shallow vs. deep structural equality

class G {
float v;
F u;
G(float v, F u)
{
this.v = v;
this.u = u;
+
boolean equals(G other)
{
return this.v == other.v
&& this.u == other.u;
b
boolean deep_equals(G other)
{
return v == other.v
&& u.equals(other.u);
by

D McGill

Shallow vs. deep structural equality

e Shallow structural equality is when the equality used to
compare the parts (attributes) of the objects is pointer
equality.

e Deep structural equality is when the equality used to
compare the parts (attributes) of the objects is some
structural equality (shallow/deep).

e Shallow equality compares only one level of indirectness,
while deep equality might compare many.

D McGill

42

Shallow vs. deep structural equality

e In the example, g1 and g3 are shallowly-structurally
equal; g1, g2 and g3 are deeply-structurally equal, but
g2 is not shallow-structurally equal to neither g1 nor
g3. And none of g1, g2, nor g3 is pointer-equal to any
of the others.

e Suppose that F had a deep_equals method, then we
could have a very_deep_equals method in G:

boolean very_deep_equals(G other)

{

return v == other.v
&& u.deep_equals (other.u);

D McGill

43

Copying and cloning

e Sometimes you don't want to share information, but
just give a copy.

e Hence, the purpose of copying an object is to produce
a structurally equivalent object to the original, which
is not pointer equivalent (i.e. a different object whose
attributes are equal to the original.)

e For primitive data types, this is done simply by using
the assignment statement:

X = V;
e Means copy the value of y in the memory location of x.

e But, for user-defined data types (classes), one must
explicitly create the copy (sometimes called clone) and
copy the each of attributes of the object into the copy.

D McGill

44

Copying and cloning

class Sheep {
String name;

int age;
int legs;
Sheep(String n)
{

name = n;

age = 0;

legs = 4;
¥

void grow_up() { age++; }
Sheep clone()
{
Sheep copy = new Sheep(name) ;
copy.age = this.age;
copy.legs = this.legs; //could be different
return copy,;

¥
}

D McGill

45

Copying and cloning

public class SheepTest {

public static void main(String[] args)

{
Sheep dolly = new Sheep(‘‘Dolly”’);
dolly.grow_up();
Sheep molly = dolly.clone();
dolly.grow_up();
System.out.println(dolly.age);
System.out.println(molly.age);

D McGill

46

mai n frane

Copying and cloning

dolly
nmol |y

Sheep
name | Dol |y
age 0
| egs 4

D McGill

47

mai n frane

Copying and cloning

dol ly
mol |y

Sheep
nanme | Dol |y
age 1
| egs 4

D McGill

48

Copying and cloning

mai n frane

dol l'y

mol |y

Sheep
nanme | Dol |y
age 1
| egs 4

Sheep
name | Dol |y
age 1
| egs 4

D McGill

49

Copying and cloning

mai n frane

dol l'y

mol |y

Sheep
nanme | Dol |y
age 2
| egs 4

Sheep
name | Dol |y
age 1
| egs 4

D McGill

50

Shallow copy

class Brain {
String memory;
Brain()

€,

memory = ‘“’;

}

void learn(String something)

{
memory = memory + something;
¥
}

D McGill

51

Shallow copy

class Sheep {
String name;
int age, legs;
Brain br;
Sheep(String n)
{
name = n;
br = new Brain();
age = 0;
legs = 4;
b
void grow_up() { age++; }
void learn(String something)

{

br.learn(something) ;

¥

// Contintues below. ..

D McGill

52

Sheep clone()

{
Sheep copy = new Sheep(name);
copy.age = this.age;
copy.legs = this.legs;

copy.br = this.br; // Making an alias

return copy,;

¥
} // End of class Sheep

D McGill

53

Shallow copy

public class SheepTest {

public static void main(Stringl[] args)

{
Sheep dolly = new Sheep(‘‘Dolly”’);
dolly.grow_up();
Sheep molly = dolly.clone();
dolly.grow_up();
molly.learn(‘‘ to walk *’);
System.out.println(dolly.age);
System.out.println(molly.age) ;
System.out.println(dolly.br.memory) ;

D McGill

54

Shallow copy

mai n frane Sheep
()
dolly name | Dol |y
mol |y \ age 1
| egs 4
br —~

Brain
_ J
\‘[rrermry

D McGill

55

Shallow copy

mai n frane

Sheep
()
dolly name | Dol | y
mol |y ____\\\\\\’_ age 2
| egs 4
br — Brai n
. J
\\ﬁ.[nenory to wal k
Sheep
()
name | Dol | y
age 1
| egs 4
br —1
\. J
) McGill

56

Deep copy

class Brain {
String memory;
Brain()

€,

memory = ‘“’;

}

void learn(String something)

{

memory = memory + something;

¥

Brain clone()

{
Brain copy = new Brain();
copy.memory = this.memory,
return copy,

¥
¥

D McGill

57

Deep copy
class Sheep {
String name;
int age, legs;
Brain br;
// Same as before...
Sheep clone()
{
Sheep copy = new Sheep(name) ;
copy.age = this.age;
copy.legs = this.legs,;
copy.br = this.br; // Making an alias
return copy,

¥

Sheep deep_clone()

{
Sheep copy = new Sheep(name);
copy.age = this.age;
copy.legs = this.legs;
copy.br = br.clone();
return copy,

}
¥

D McGill

58

Deep copy

public class SheepTest {

public static void main(String[] args)

{
Sheep dolly = new Sheep(‘“Dolly”’);
dolly.grow_up();
Sheep molly = dolly.deep_clone();
dolly.grow_up() ;
molly.learn(‘‘ to walk *’);
System.out.println(dolly.age);
System.out.println(molly.age);
System.out.println(dolly.br.memory) ;

D McGill

59

Deep copy

mai n frane Sheep
()
dol |y nanme | Dol |y
nol |y —-\\ age 2
| egs 4
or — T Brain
\. J
\‘[rrermry]
Sheep
()
nanme | Dol |y
age 1
| egs 4
br —_ _
L) Brai n

menory [to vvalk]

D McGill

60

Shallow copy vs deep copy

e Shallow copying creates a new object with exactly the
same values in its attributes as the original.

— This s, the original object and its copy are structurally
equal, they are not pointer equal, but their attributes
are pointer equal.

e Deep copying creates a new object where the attributes
of the copy are copies (structurally equivalent) of the
attributes of the original.

— This s, the original object and its copy are structurally
equal, they are not pointer equal, and their attributes
are structurally equal.

D McGill _

Parameter passing by reference vs. by
value

e A programming language that has methods, procedures,
and/or functions can pass arguments to the function in
several ways:

— Passing parameters by value: The arguments received
by the function are a copy (usually shallow) of the
actual arguments.

— Passing parameters by reference: The arguments
received by the function are aliases of the actual
arguments.

e In Java, primitive data types are passed by value, but
all user-defined data types are passed by reference.

D McGill

62

Parameter passing by reference vs. by

value

public class PassingParameters {

public static void main(Stringl[] args)

{
Sheep dolly = new Sheep(“‘Dolly’’);
Sheep molly = new Sheep(‘“‘Molly”’);
do_something(dolly);
System.out.println(dolly.br.memory) ;
do_something(molly.clone());
System.out.println(molly.br.memory) ;
do_something(molly.deep_clone());
System.out.println(molly.br.memory) ;

b
static void do_something(Sheep s)

{

s.learn(‘‘ to eat ”’);

¥
}

D McGill

63

Being of some kind

e The “is a" relationship between an object (or instance)
and its class

e So if we have a class

class A {

//. ..
¥

e and in some client code we have

A x;
x = new AQ);

e Then xisan A
e The variable x is of type A
e The value of x is an object of type A

e The object referred to by x is a kind of A.

D McGill

64

The end

D McGill

65

