Sorting

e (Classical problem in Computer Science

e Problem: Given an array of objects, sort the array by
some key.

e For example: Sort an array of students by name, or sort
an array of products by price.

e Solution for small arrays using only conditionals is not
scalable.

D McGill

Insertion sort

e Notation (not Javal): ali..j] is the part of the array
from the i-th index to the j-th index.

e |dea: sorting a set of cards can be done by inserting a
card in the subset of the cards which are already sorted.

012 j

Kk

)

- J
Y

already sorted

D McGill :

Insertion sort

e Notation (not Javal): ali..j] is the part of the array
from the i-th index to the j-th index.

e |dea: sorting a set of cards can be done by inserting a
card in the subset of the cards which are already sorted.

012 j
alb k

)

G) key | k
~

already sorted

a<=k<b

D McGill 3

Insertion sort

e Notation (not Javal): ali..j] is the part of the array
from the i-th index to the j-th index.

e |dea: sorting a set of cards can be done by inserting a
card in the subset of the cards which are already sorted.

0 12 J
alk |b
)
~_/
_) key | k
V

already sorted

D McGill 4

Insertion sort

e Notation (not Javal): ali..j] is the part of the array
from the i-th index to the j-th index.

e |dea: sorting a set of cards can be done by inserting a
card in the subset of the cards which are already sorted.

012 Jj+l
akb P

\§),
Y

already sorted

D McGill 5

Selection sort

0 12 J [
k m
/]\ m is the min of
the unsorted part
_ _NA J
Y Y
already sorted unsorted

D McGill

Selection sort

0 12) [
m k
N N J
e Y
already sorted unsorted

D McGill

Selection sort

012 Jj j+1
m|h
N\ A J
Y Y
already sorted unsorted

D McGill

Binary search

e But if we know that the array is sorted, we can improve
the speed of searching by ignoring parts which do not
need to look at.

e If we are looking for a value v in an array a, and we have
already narrowed down the search space to al[l..h],
then

value v
| i h
|
T if v=k then Visin ali]
if v<k then visin [_]
i =1+ (h-)/2

if v>k then visin [

D McGill 9

Multidimensional arrays

o 1 2 n
0 4

1 —
5 \\012 n
\O 1 2 n
o 1 2 n

m —

O 1 2 n

0

1

2

m

D McGill

10

Multidimensional arrays

e A two-dimensional array is an array of arrays.

int[J[] table = new int[5][10];

for (int row=0; row < table.length; row++)
for (int col=0; col < tablel[row].length; col++)
table[row] [col] = row * 10 + col;

e A multidimensional array is an n-dimensional array, i.e.
an array of arrays of arrays of ...

e Processing nested arrays is commonly done with nested
loops.

D McGill

11

Multidimensional arrays

e A two-dimensional array can be an array of objects

class A { int x; }

// ...somwhere else. ..
A[1[] table = new A[5][10];
for (int row=0; row < table.length; row++)
for (int col=0; col < tablel[row].length; col++){
table[row] [col]l = new AQ);
table[row] [col] .x = row * 10 + col;

}

D McGill

12

Multidimensional arrays

0 1 2 no
0 >
! — 1
5 \\ o 1 2 n
\ 0 1 2 n2
0 1 2 nm
m —_

D McGill

13

Multidimensional arrays

e Each row can have different length

class A { int x; }

// ...somewhere else...
A[]1[] table = new A[5][];
for (int row=0; row < table.length; row++) {
table[row] = new Alrow];
for (int col=0; col < tablel[row].length; col++)
table[row] [col] = new AQ);
table[row] [col] .x = row * 10 + col;
}
}

D McGill

14

Object oriented Programming

e The execution of an OO program consists of

— Creation of objects
— Interaction between objects (message-passing)

e Defining features of an OO language:

— Class definitions (describing the types of objects and
their structure,)

— Object instantiation (creation,)

— Message-passing (invoking methods,)

— Aggregation (object structure, has-a relationships)

— Encapsulation (objects as abstract units, hiding,)

— Inheritance,

— Polymorphism

D McGill

15

Inheritance

e Aristotle’s silogism describing aggregation (structure of
objects)

— If every A has a B and x is an A then x has a B
* (e.g. If every dog has a tail and Grommit is a dog,
then Grommit has a tail)
— If every A can do an action P and x is an A then
x can do an action P
x (e.g. if every dog can bark, and Grommit is a dog,
then Grommit can bark)

class Dog {
Tall t;
void bark() { ... }
b
// Somewhere else. ..
Dog grommit = new Dog() ;
grommit.bark() ;
. grommit.t ...

D McGill .

Inheritance

e Avristotle’s silogisms describing inheritance

— if every Ais a B and x is an A then x is a B
* (e.g. if every labrador is a dog and Grommit is a
labrador then Grommit is a dog)
— if every A is a B and every B has a C then every A
has a C
* (e.g. if every labrador is a dog and every dog has
a tail then every labrador has a tail)

D McGill

17

Inheritance

e Two kinds" of “is-a" relationship:

— Between an individual (object) and its class (x is of
type A, e.g. Tokyo is a City)

— Between two classes (every A is a B, e.g. every dog
is a mammal.)

e In the first silogism, when we say 'x is an A", x is an
individual, we are talking about a specific x who is a
kind of A, in other words, x is an object, and A is a
class of objects, so x is an instance of class A.

e |n the second silogism, when we say “every A is a B',
we are talking about all A's, all individuals who are A's.
This is equivalent to saying:

— “for all individuals x, if x is an A, then x is also a B.”
— ... or, for all objects x, if x is of type A, x is also of
type B."

D McGill .

Inheritance

e The first kind represents instantiation
e The second, represents inheritance

e Representing the two kinds of “is-a” in Java:

— Between an individual (object) and its class (x is of
type A, e.g. Tokyo is a City)
A x = new AQ);
City tokyo = new City();
— Between two classes (every A is a B, e.g. every dog
is a mammal.)

class B{ ... }
class A extends B { ... }
class Labrador extends Dog { ... }

e \We say that A is a subclass of B, or A is derived from
B, or B is a superclass of A, or B is a parent of A.

D McGill

19

f

A

represents:
"every A is a B"
(inheritance)

For example:

Dog

i

Inheritance

Dog

<>————Tall

Labrador

represents:
"every A has a B"
(aggregation)

D McGill

20

Inheritance

e The silogism “if every A is a B and every B has a C
then every A has a C’, means that all the attributes
that B has, are also attributes of A. A may have other
attributes as well which B doesn’t. A is more specific or
specialized than B.

class C { ... }
class B {

C v;

/] ...
}

class A extends B {
// Has an implicit C v;
/]

}

D McGill

21

Inheritance

class Engine {

/] ...
¥

class Car A
Engine e;
/] ...

}

class RacingCar extends Car {
// It implicitly has Engine e;
/] ...

¥

// In some client
RacingCar r = new RacingCar();

Engine e = r.e; // e is inherited from Car

D McGill

22

Inheritance

Car <> £ Engine

RacingCar

is the same as

Car (< s Engine

RacingCar (<>

D McGill

Inheritance

e Inheritance also represents specialization

class Engine {
/] ...
+
class Car {
Engine e;
Car() { e = new Engine(); }
/] ...
+

class RacingCar extends Car {
Aerofoil a;
TurboCharger t;

¥

// In some client

RacingCar r = new RacingCar();

Engine el = r.e; // e is inherited from Car
TurboCharger tl1 = r.t;

Car ¢ = new Car();

Engine e2 = c.e;

TurboCharger t2 = c.t; // Error

D McGill

24

Inheritance

e |nheritance serves as a tool for reusability:

e \We can write

class RacingCar extends Car {
Aerofoil a;
TurboCharger t;

¥

instead of

class RacingCar {
Engine e;
Aerofoil a;
TurboCharger t;

¥

D McGill

25

Inheritance

e Methods are inherited too:

class Engine {
void start() { ... }
}
class Car {
Engine e;
double speed;
Car() { e = new Engine(); speed = 0.0; }
void turn_on()
{
e.start();
}
+

class RacingCar extends Car {
Aerofoil a;
TurboCharger t;
by
// In some client
RacingCar r = new RacingCar();
r.turn_on(); // Inherited from Car

D McGill

Inheritance

e Classes can have many subclasses

class Sedan extends Car {
Trunk t;
PassengerSeats[] ps;

}

// In some client

Sedan s = new Sedan();

s.turn_on() ;

Car

RacingCar Sedan

D McGill

Inheritance

e Attributes in a class are shared between its subclasses
(but not the values of those attributes!)

Car

RacingCar

Sedan

)

TurboCharger

Aerofoll

Engine

Trunk

D McGill

28

Inheritance

e |nheritance is a transitive relation: if every A is a B and
every B is a C, then every Aisa C

class F1Car extends RacingCar {
SpeedControlSystem scs;

¥

e instead of

class FiCar {
Engine e;
Aerofoil a;
TurboCharger t;
SpeedControlSystem scs;

¥

D McGill

29

Inheritance

e Class hierarchy:

Car

RacingCar

JA)

Engine

Sedan

F1Car

Cart

Nascar

D McGill

30

Inheritance

e A closer look at inheritance as specialization

class Animal {

boolean tired, hungry;

void eat()

{
get_food () ;
hungry = false;

¥

void get_food() { ... }

void sleep()

{
System.out.println(‘“‘zzz...”’);
tired = false;

¥

by

D McGill

31

Inheritance

class Dog extends Animal {
Legs[] 1;
Tall t;
void run()
{
tired = true; // From class Animal
hungry = true;
b
void bark()
{
System.out.println(‘“Woof, Woof!”’);
b
b

class Labrador extends Dog {
void say_hello()
{
t.wiggle(); // t from class Dog
¥
¥

D McGill

32

Inheritance

public class ZooTest {
public static void main(Stringl[] args)
{
Labrador 1 = new Labrador();

1.say_hello(); // Will call 1.t.wiggle(Q);
1.run();

if (1.hungry)

l.eat(); // from class Animal
if (1.tired)

1.sleep();

D McGill

33

The end

D McGill

34

